Sympathetic Activation Promotes Sodium Glucose Co-Transporter-1 Protein Expression in Rodent Skeletal Muscle
Abstract
:1. Introduction
2. Materials and Methods
2.1. L6 Cell Culture
2.2. Treatment with Norepinephrine (NE)
2.3. Sole SGLT2 Inhibitors and Dual SGLT1/2 Inhibitor Treatment
2.4. Collection of Protein Cell Lysates
2.5. Protein Quantification Using the Bradford Assay
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. SGLT1 and SGLT2 Immunocytochemistry of L6 Cells
2.8. Animal Work
2.9. SGLT1 Immunohistochemistry of Quadricep Skeletal Muscle
2.10. SGLT2 Immunohistochemistry of Quadricep Skeletal Muscle
2.11. Tissue Imaging and Analysis
2.12. Statistical Analysis
3. Results
3.1. Skeletal Muscle Is a Novel Source of SGLT2 Protein
3.1.1. Immunocytochemistry Staining of Differentiated L6 Skeletal Muscle Cells Shows SGLT2 Protein Expression
3.1.2. Skeletal Muscle Expresses SGLT2 In Vivo
3.2. Skeletal Muscle Is a Novel Source of SGLT1 Protein
3.2.1. Immunocytochemistry Staining of Differentiated L6 Skeletal Muscle Cells and Quadricep Muscle Shows SGLT1 Protein Expression
3.2.2. SGLT2 Inhibition (SGLT2i) Promotes SGLT1 Expression in Differentiated L6 Skeletal Muscle Cells
3.2.3. The Primary Neurotransmitter of the SNS, NE, Significantly Increases SGLT1 Levels in Differentiated L6 Skeletal Muscle Cells
3.2.4. Norepinephrine (NE) Induces an Increase in Interleukin-6 (IL-6) Levels in Differentiated L6 Cells
3.3. Determination of Significantly Increased SGLT1 in Skeletal Muscle of Neurogenically Hypertensive Mice (BPH/2J): Functional Implications on High Blood Pressure
3.3.1. BPH/2J Hypertensive Mice Have Significantly Higher Blood Pressures Than BPN/3J Normotensive Mice
3.3.2. Are SGLT1 Protein Levels Positively Regulated by Sympatho-Excitation in Skeletal Muscle In Vivo?
3.3.3. Inhibition of SGLT1 and 2 with Sotagliflozin Lowers High Blood Pressure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frontera, W.; Ochala, J. Skeletal Muscle: A Brief Review of Structure and Function. Calcif. Tissue Int. 2015, 96, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, B.; Young, M.; Nakamura, N.; Ha, H.; Carter, L.; Pitts, W.; Torres, D.; Noh, H.; Suk, S.; Kim, J.; et al. Disrupted glucose homeostasis and skeletal muscle-specific glucose uptake in an exocyst knockout mouse model. J. Biol. Chem. 2021, 296, 100482. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Williams, S.; Ho, S.; Loraine, H.; Hagan, D.; Whaley, J.; Feder, J. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. 2010, 1, 57–92. [Google Scholar] [CrossRef] [PubMed]
- Herat, L.; Matthews, J.; Ong, W.; Rakoczy, E.; Schlaich, M.; Matthews, V. Determining the Role of SGLT2 Inhibition with Dapagliflozin in the Development of Diabetic Retinopathy. Front. Biosci. 2022, 27, 321. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.; Herat, L.; Rooney, J.; Rakoczy, E.; Schlaich, M.; Matthews, V. Determining the Role of SGLT2 Inhibition with Empagliflozin in the development of diabetic retinopathy. Biosci. Rep. 2022, 42, BSR20212209. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.; Yang, P.; Chao, S.; Lee, C.; Huang, J.; Yang, S.; Lin, H. Association of sodium-glucose cotransporter 2 inhibitors with the incidence of corneal diseases in type 2 diabetes mellitus. Int. J. Med. Sci. 2024, 21, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, C.; Wu, T.; Ho, C.; Yeh, T.; Sun, G.; Tseng, C.; Cheng, P. Attenuation of epithelial-mesenchymal transition via SGLT2 inhibition and diabetic cataract suppression by dapagliflozin nanoparticles treatment. Life Sci. 2023, 330, 122005. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.; Woerle, H.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Matthews, V.B.; Elliot, R.H.; Rudnicka, C.; Hricova, J.; Herat, L.; Schlaich, M.P. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J. Hypertens. 2017, 35, 2059–2068. [Google Scholar] [CrossRef]
- Bhatt, D.; Szarek, M.; Steg, P.; Cannon, C.; Leiter, L.; McGuire, D.; Lewis, J.; Riddle, M.; Voors, A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2020, 384, 117–128. [Google Scholar] [CrossRef]
- Bhatt, D.; Szarek, M.; Pitt, B.; Cannon, C.; Leither, L.; McGuire, D.; Lewis, J.; Riddle, M.; Inzucchi, S.; Kosiborod, M.; et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N. Engl. J. Med. 2020, 384, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Furuichi, Y.; Kawabata, Y.; Aoki, M.; Mita, Y.; Nobuharu, F.; Manabe, Y. Excess Glucose Impedes the Proliferation of Skeletal Muscle Satellite Cells Under Adherent Culture Conditions. Front. Cell Dev. Biol. 2021, 9, 640399. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Kosaki, K.; Sugasawa, T.; Matsui, M.; Yoshioka, M.; Aoki, K.; Kuji, T.; Mizuno, R.; Kuro-o, M.; Yamagata, K.; et al. High Salt Diet Impacts the Risk of Sarcopenia Associated with Reduction of Skeletal Muscle Performance in the Japanese Population. Nutrients 2020, 12, 3474. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Burley, G.; Li, L.; Shu, L.; Shi, Y. The role of dietary salt in metabolism and energy balance: Insights beyond cardiovascular disease. Diabetes Obes. Metab. 2023, 25, 1147–1161. [Google Scholar] [CrossRef]
- Saunders, B.M.; Rudnicka, C.; Filipovska, A.; Davies, S.; Ward, N.; Hricova, J.; Schlaich, M.P.; Matthews, V.B. Shining LIGHT on the metabolic role of the cytokine TNFSF14 and the implications on hepatic IL-6 production. Immunol. Cell Biol. 2018, 96, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.; Hibbs, M.; Herat, L.; Schlaich, M.; Matthews, V. The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney. Biomedicines 2023, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Le, Y.; Yang, J.; Li, F.; Jiang, Y.; Wei, T.; Wang, D.; Wang, K.; Cui, X.; Lin, X.; Yang, K.; et al. Dapagliflozin improves pancreatic islet function by attenuating microvascular endothelial dysfunction in type 2 diabetes. Diabetes Metab. Res. Rev. 2023, 39, e3607. [Google Scholar] [CrossRef] [PubMed]
- Pirklbauer, M.; Sallaberger, S.; Staudinger, P.; Corazza, U.; Leierer, J.; Mayer, G.; Schramek, H. Empagliflozin Inhibits IL-1B-Mediated Inflammatory Response in Human Proximal Tubular Cells. Int. J. Mol. Sci. 2021, 22, 5089. [Google Scholar] [CrossRef] [PubMed]
- Davern, P.; Nguyen-Huu, T.-P.; Abdelkader, A.; Head, G. Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension 2009, 54, 852–859. [Google Scholar] [CrossRef]
- Schlager, G.; Sides, J. Characterization of hypertensive and hypotensive inbred strains of mice. Lab. Anim. Sci. 1997, 47, 288–292. [Google Scholar]
- Herat, L.; Magno, A.; Kiuchi, M.; Jackson, K.; Carnagarin, R.; Head, G.; Schlaich, M.; Matthews, V. The Schlager Mouse as a model of altered retinal phenotype. Neural Regen. Res. 2020, 15, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.; Jackson, K.; Hearn, N.; Steiner, N.; Head, G.; Lind, J. Identification of genes with altered expression in male and female Schlager hypertensive mice. BMC Med. Genet. 2014, 15, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Arenare, F.; Pieruzzi, F.; Brambilla, G.; Mancia, G. Sympathetic activation in cardiovascular and renal disease. J. Nephrol. 2009, 22, 190–195. [Google Scholar] [PubMed]
- Herat, L.; Magno, A.; Rudnicka, C.; Hricova, J.; Carnagarin, R.; Ward, N.; Arcambal, A.; Kuichi, M.; Head, G.; Schlaich, M.; et al. SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC Basic. Transl. Sci. 2020, 5, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Herat, L.; Matthews, J.; Hibbs, M.; Rakoczy, E.; Schlaich, M.; Matthews, V. SGLT1/2 inhibition improves glycemic control and multi-organ protection in type 1 diabetes. iScience 2023, 26, 107260. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Arakawa, K.; Ueta, K.; Matsushita, Y.; Kuriyama, C.; Martin, T.; Du, F.; Liu, Y.; Xu, J.; Conway, B.; et al. Effect of Canagliflozin on Renal Threshold for Glucose, Glycemia, and Body Weight in Normal and Diabetic Animal Models. PLoS ONE 2012, 7, e30555. [Google Scholar] [CrossRef] [PubMed]
- Helwig, B.; Craig, R.; Fels, R.; Blecha, F.; Kenney, M. Central nervous system administration of interleukin-6 produces splenic sympathoexcitation. Auton. Neurosci. 2009, 141, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Lastra, G.; Syed, S.; Kurukulasuriya, L.; Monrique, C.; Sowers, J. Type 2 diabetes mellitus and hypertension: An update. Endocrinol. Metab. Clin. N. Am. 2014, 43, 103–122. [Google Scholar] [CrossRef]
- Joyner, M.; Charkoudian, N.; Wallin, B. Sympathetic nervous system and blood pressure in humans: Individualized patterns of regulation and their implications. Hypertension 2010, 56, 10–16. [Google Scholar] [CrossRef]
- Kalil, G.; Haynes, W. Sympathetic nervous system in obesity-related hypertension: Mechanisms and clinical implications. Hypertens. Rep. 2012, 35, 4–16. [Google Scholar] [CrossRef]
- Takesue, H.; Hirota, T.; Tachimura, M.; Tokashiki, A.; Ieiri, I. Nucleosome Positioning and Gene Regulation of the SGLT2 Gene in the Renal Proximal Tubular Epithelial Cells. Mol. Pharmacol. 2018, 94, 953–962. [Google Scholar] [CrossRef]
- Fujino, M.; Morito, N.; Hayashi, T.; Ojima, M.; Ishibashi, S.; Kuno, A.; Koshiba, S.; Yamagata, K.; Takahashi, S. Transcription factor c-Maf deletion improves streptozotocin—Induced diabetic nephropathy by directly regulating Sglt2 and Glut2. JCI Insight 2023, 8, e163306. [Google Scholar] [CrossRef]
- Kamp, Y.; Gemmink, A.; Ligt, M.; Dautzenberg, B.; Kornips, E.; Jorgensen, J.; Schaart, G.; Esterline, R.; Pava, D.; Hoeks, J.; et al. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. Mol. Metab. 2022, 66, 101620. [Google Scholar] [CrossRef]
- Goto, Y.; Otsuka, Y.; Ashida, K.; Nagayama, A.; Hasuzawa, N.; Iwata, S.; Hara, K.; Tsuruta, M.; Wada, N.; Motomura, S.; et al. Improvement of skeletal muscle insulin sensitivity by 1 week of SGLT2 inhibitor use. Endocr. Connect. 2020, 9, 599–606. [Google Scholar] [CrossRef]
- Xu, L.; Nagata, N.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Chen, G.; Mayoux, E.; Kaneko, S.; Ota, T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine 2017, 20, 137–149. [Google Scholar] [CrossRef]
- Rafiq, K.; Fujisawa, Y.; Sherajee, S.; Rahman, A.; Sufiun, A.; Kobori, H.; Koepsell, H.; Mogi, M.; Horiuchi, M.; Nishiyama, A. Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats. Diabetologia 2015, 58, 2885–2898. [Google Scholar] [CrossRef]
- Minushkina, L. Possibilities of the use of moxonidine in the treatment of arterial hypertension in patients with metabolic syndrome and diabetes. Kardiologiia 2011, 51, 74–78. [Google Scholar]
- Schlaich, M.; Sobotka, P.; Krum, H.; Whitbourn, R.; Walton, A.; Esler, M. Renal denervation as a therapeutic approach for hypertension: Novel implications for an old concept. Hypertension 2009, 54, 1195–1201. [Google Scholar] [CrossRef]
- Salvatore, T.; Galiero, R.; Caturano, A.; Rinaldi, L.; Di Martino, A.; Albanese, G.; Di Salvo, J.; Epifani, R.; Marfella, R.; Docimo, G.; et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int. J. Mol. Sci. 2022, 23, 3651. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthews, J.R.; Herat, L.Y.; Schlaich, M.P.; Matthews, V.B. Sympathetic Activation Promotes Sodium Glucose Co-Transporter-1 Protein Expression in Rodent Skeletal Muscle. Biomedicines 2024, 12, 1456. https://doi.org/10.3390/biomedicines12071456
Matthews JR, Herat LY, Schlaich MP, Matthews VB. Sympathetic Activation Promotes Sodium Glucose Co-Transporter-1 Protein Expression in Rodent Skeletal Muscle. Biomedicines. 2024; 12(7):1456. https://doi.org/10.3390/biomedicines12071456
Chicago/Turabian StyleMatthews, Jennifer R., Lakshini Y. Herat, Markus P. Schlaich, and Vance B. Matthews. 2024. "Sympathetic Activation Promotes Sodium Glucose Co-Transporter-1 Protein Expression in Rodent Skeletal Muscle" Biomedicines 12, no. 7: 1456. https://doi.org/10.3390/biomedicines12071456
APA StyleMatthews, J. R., Herat, L. Y., Schlaich, M. P., & Matthews, V. B. (2024). Sympathetic Activation Promotes Sodium Glucose Co-Transporter-1 Protein Expression in Rodent Skeletal Muscle. Biomedicines, 12(7), 1456. https://doi.org/10.3390/biomedicines12071456