Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic?
Abstract
:1. Introduction
2. SCI Pathophysiology
3. Sex Steroid Hormones
3.1. Neuroprotective Effects of Estradiol on Spinal Cord Injury in Animal Models
SCI Animal Model | Treatment | Evaluated Parameters | Outcome vs. Controls | Conclusions | Author (Year) [Ref] |
---|---|---|---|---|---|
Male rats with severe SCI at T12 | 17β-estradiol i.v. injection (4.0 mg/kg weight) 15 min and 24 h post-injury | Inflammation (tissue edema, infiltration of macrophages/microglia and NFkB levels, and myelin integrity) |
| Estrogen’s multi-active nature, acting as an anti-inflammatory, antiapoptotic, and antioxidant, suggests its potential as a therapeutic agent | Sribnick et al. (2005) [8] |
C57/BL/6 mice (males and females) with moderate SCI at T10 | No treatment | Injury severity and locomotor function |
| Gender considerably influences the initial injury severity and the ultimate recovery of motor function after SCI. Recovery is remarkably better in females | Farooque et al. (2006) [47] |
Male rats with severe SCI at T12 | Tamoxifen i.p. injection (5.0 mg/kg weight) 30 min post-injury | BSCB permeability, tissue edema formation, microglial activation, neuronal cell death, myelin loss, and locomotor testing |
| Tamoxifen provides neuroprotective effects for SCI-related pathology and disability, making it a potential neuroprotectant for human SCI therapy | Tian et al. (2009) [78] |
Male rats with moderately severe SCI at T10 | Estrogen i.v. injection (4 mg/kg weight) 15 min and 24 h post-injury, followed by a daily dose (2 mg/kg weight) for 5 days | Inflammation, glial reactivity, neuron death, myelin loss, and locomotor function |
| Estrogen may help prevent damage and improve locomotor function in chronic SCI | Sribnick et al. (2010) [14] |
Male rats with midthoracic crush SCI injury | 17β-estradiol s.c. pellet-release (0.05, 0.5, or 5.0 mg) over 21 days | Cell death, expression of Bcl-family proteins, white-matter sparing, and hindlimb locomotion |
| 17β-estradiol is an effective therapeutic intervention for reducing secondary damage after SCI in males | Kachadroka et al. (2010) [9] |
Male rats with acute SCI at T10 | 17β-estradiol i.v. injection (1–10 μg/kg) 15 min–4 h post-SCI | Microgliosis and neuronal death |
| Low or physiologic doses of 17-β estradiol reverse secondary pathophysiology in an animal model of SCI through anti-inflammatory and anti-apoptotic actions | Samantaray et al. (2011) [10] |
Male rats with acute SCI at T9 | 17β-estradiol i.v. injection (100 μg/kg weight) 15 min and 24 h after SCI | Neuronal death and functional recovery |
| GPER1 may mediate estrogenic neuroprotection in SCI | Hu et al. (2012) [15] |
Female rats with moderate contusion SCI at T9–T10 | Estradiol (3 mg) or estradiol + tamoxifen (15 mg) silastic implants | Locomotor functional recovery, lesion area, estrogen receptor alpha (ER-α) expression |
| Estradiol improves functional outcomes mediated by ER-α dependent and independent mechanisms | Mosquera et al. (2014) [16] |
Male rats with moderate SCI at T10 | 17β-estradiol i.p. injection (4 mg/kg weight) immediately after SCI | Functional recovery and motor-evoked potential |
| 17β-estradiol improved neurological and functional motor recovery in rats with SCI | Letaif et al. (2015) [11] |
Male rats with moderate contusion SCI at T9 | Estradiol i.v. injection (300 g/kg weight) immediately after SCI | BSCB disruption, progressive bleeding, and inflammation |
| Estradiol’s neuroprotective effect after SCI is partially mediated by inhibiting BSCB disruption and hemorrhage | Lee et al. (2015) [73] |
Male rats with moderate to severe SCI at T9 and T10 | Estradiol nanoparticles (25 µg or 2.5 µg) placed directly on the dural surface of the SCI | Inflammation |
| Nanoparticle-delivered estrogen may provide a safe and effective treatment option for patients with acute SCI | Cox et al. (2015) [76] |
Male rats with moderately severe SCI at T10 | 17β-estradiol i.v. injection (10 μg/kg weight) 15 min and 24 h post-SCI | Inflammation, neural death, reactive gliosis |
| Acute treatment (48-h) with low doses (5–10 μg) of 17β-estradiol attenuates several destructive pathways and brings neuroprotection | Samantaray et al. (2016) [4] |
Male rats with moderately severe SCI at T10 | 17β-estradiol i.v. injection (10 or 100 μg) 7 days post-SCI | Inflammation, cells and axons, and improved locomotor function |
| Very low doses of 17β-estradiol show significant therapeutic implications for improving locomotor function in chronic SCI | Samantaray et al. (2016) [77] |
3.2. Neuroprotective Effects of Progesterone on Spinal Cord Injury in Animal Models
SCI Animal Model | Treatment | Evaluated Parameters | Outcome vs. Controls | Conclusions | Author (Year) [Ref] |
---|---|---|---|---|---|
Male rats with moderate SCI | P4 i.p. injection (4 mg/kg weight) 30 min after SCI and repeated at 6 h, 24 h, 48 h, 72 h, 96 h, and 120 h intervals | Injury severity and locomotor function |
| P4 showed potential therapeutic properties in managing acute SCI | Thomas et al. (1999) [94] |
Male rats with complete spinal cord transection at T10 | P4 i.p. injection (4 mg/kg) 1 h after SCI, and s.c. administration 24, 48, and 72 h post-injury | Neuronal function under negative regulation (ChAT and Na,K-ATPase) and stimulated neuronal function (GAP-43) |
| P4 appears to replenish acetylcholine, restore membrane potential, ion transport, and nutrient uptake, and accelerate reparative responses to injury | Labombarda et al. (2002) [95] |
Male rats with complete spinal cord transection at T10 | P4 i.p. injection (4 mg/kg) 1 h after SCI, and s.c. administration 24, 48, and 72 h post-injury | Expression of PR and 25-Dx binding proteins for P4 |
| Distinct membrane-binding sites may mediate P4 neuroprotective effects | Labombarda et al. (2003) [68] |
Male rats with complete spinal cord transection at T10 | P4 s.c. administration (4 mg/kg) 1 h and again at 24, 48, and 72 h post-injury | Expression of BDNF at both the mRNA and protein levels Chromatolysis analysis |
| P4 increased neuronal BDNF, which could provide a trophic environment and might be part of the P4-activated pathways to provide neuroprotection | González et al. (2004) [17] |
Male rats with SCI at T10 | P4 s.c. administration (4 mg/kg) 1 h and again at 24, 48, and 72 h post-injury | Expression of the BDNF mRNA and BDNF immunoreactivity receptor TrkB Chromatolysis analysis MBP expression at the mRNA and protein levels PR expression |
| P4-induced BDNF expression might regulate the function of neurons and glial cells in a paracrine or autocrine fashion and prevent the generation of SCI damage | De Nicola et al. (2006) [12] |
Male rats with SCI at T10 | P4 s.c. administration (4 mg/kg) 1 h and again at 24, 48 and 72 h post-injury | Expression of MBP at the mRNA and protein levels NG2-immunopositivity as markers for OPCs RIP-immunopositivity as mature oligodendrocytes identifier |
| P4 effects on MBP expression and NG2 immunopositivity may contribute to neuroprotection | Labombarda et al. (2006) [13] |
Male and female rats with moderate spinal cord contusion at T10 | Short-term (5 days) P4 (4 or 8 mg/kg) and long-term (14 days) P4 (8 or 16 mg/kg) | Locomotor recovery Morphologic assessment of white and grey matter |
| This study does not support P4 therapy as a potential therapeutic agent in SCI | Fee et al. (2007) [105] |
Male rats with complete spinal cord transection at T10 | P4 s.c. administration (16 mg/kg/day) for 3 or 21 days after injury | OPC parameters (NG2 immunostaining), mature oligodendrocytes, and central myelin proteins (MBP, PLP) Oligodendrocyte transcription factors (Olig1, Olig2, and Nkx2.2) Myelin proteins (MBP and PLP-immunoreactivity) | Short treatment (3 days)
| Short P4 treatment influenced the proliferation and differentiation of OPC into mature oligodendrocytes. Prolonged P4 treatment favored remyelination and oligodendrocyte maturation. Thus, P4 effects on oligodendrogenesis and myelin proteins may constitute fundamental steps for repairing traumatic injuries to the spinal cord | Labombarda et al. (2009) [82] |
Male rats unilaterally hemisected at T13 | P4 s.c. administration (16 mg/kg/day) | Behavioral evaluation of mechanical and cold allodynia Expression of NMDAR subunits (NR1, NR2A, NR2B), PKCγ, ppD, and KOR |
| P4 modulates neuropathic pain after SCI, creating a favorable molecular environment that may decrease spinal nociceptive signaling | Coronel et al. (2011) [100] |
Primary demyelination model in male mice | Single implant of P4 (100 mg). | Determination of total myelin and MBP Determination of OX-42+ microglia/macrophages Staining of oligodendrocyte precursors (NG2+ cells) and mature oligodendrocytes (CC1+ cells) Analysis of the microglial marker CD11b mRNA |
| P4 exerts promyelinating and anti-inflammatory effects at the spinal cord level | Garay et al. (2011) [92] |
Male rats with complete spinal cord transection at T10 | P4 s.c. administration (16 mg/kg/day) for 3 or 21 days after injury | Immunodetection of S100β, GFAP, NG2+ oligodendrocyte precursors, CC1+ oligodendrocytes, and OX-42+ microglia/macrophages | Acute treatment (3 days)
| P4 emerges as a glioactive factor, favoring remyelination and inhibiting reactive astro- and microgliosis | Labombarda et al. (2011) [83] |
Male rats unilaterally hemisected at T13 | P4 s.c. administration (16 mg/kg/day) | Expression and activity of spinal COX-2 and iNOS IκB-α mRNA levels Profile of glial cell activation Pain-associated behaviors |
| P4 may represent a valuable strategy to prevent the development of central chronic pain by modulating early neuroinflammatory events after SCI | Coronel et al. (2014) [101] |
Male rats with moderately severe SCI at T8 | P4 s.c. administration (16 mg/kg/day) for 60 days | Tissue preservation using magnetic resonance imaging and quantification of tissue-sparing Optical density of MBP staining Total number of APC+ cells Quantification of axonal profiles Functional outcome evaluated with the BBB scale Sensory function (mechanical and thermal sensitivity) |
| P4 beneficial actions on locomotor outcome could be related to the reduction of secondary damage and the preservation or regeneration of axons and myelin of the descending pathways | García-Ovejero et al. (2014) [91] |
Male rats with complete spinal cord transection at T10 | P4 s.c. administration (16 mg/kg/day). Animals were euthanized 6 h, 24 h, 48 h, 3 days, or 21 days following surgery | Expression of proinflammatory factors and enzymes |
| PR participates in the anti-inflammatory effects of P4, the modulation of astrocyte and microglial responses, and the prevention of OPC apoptosis | Labombarda et al. (2015) [18] |
Male PRKO mice (inactivated PRA and PRB isoforms) with complete spinal cord transection at T10 | Immunohistochemistry to assess astrocytes, microglia, and OPC Detection of OPC apoptosis |
| |||
Male rats unilaterally hemisected at T13 | P4 s.c. administration (16 mg/kg/day) immediately after SCI and during 1 or 28 days after injury | Behavioral evaluation of mechanical and cold allodynia Expression of IL-1β, IL-1RI and IL-1RII, IL-1ra, IL-6, and TNFα IL-1β protein levels Immunofluorescence to detect NR1 subunit of NMDAR, IL-1β, NeuN |
| By modulating the expression of pro-inflammatory cytokines and neuronal IL-1RI/NR1 colocalization, P4 emerges as a promising agent for preventing chronic pain after SCI | Coronel et al. (2016) [102] |
Male rats unilaterally hemisected at T13 | P4 s.c. administration (16 mg/kg/day) immediately after SCI and during 1 or 28 days after injury | Behavioral evaluation of mechanical and cold allodynia Expression of galanin, GalR1, GalR2, NPY, Y1R, Y2R CyCB | Early phase (1 day)
| Early and sustained P4 administration prevents temporal changes in the spinal expression of galanin and NPY and their associated receptors, which could potentially prevent and treat chronic pain after central injuries | Coronel et al. (2017) [103] |
Male YFP-H and male CX3CR1GFP/+ transgenic mice with hemisected spinal cords at T11 | P4 i.p. injection (16 mg/kg) one-hour post-injury and s.c. injection at 3 h, 24 h, and 48 h after SCI | Axonal dynamics and survival neurons Identification of neurons, microglia, and astrocytes Protein levels of caspase-3, GFAP, and MBP mRNA expression of IL-1β, iNOS, and MCP-1 Behavioral function |
| P4 exerted a neuroprotective effect by attenuating axonal dieback, reducing the accumulation of astrocytes and microglia, and inhibiting the release of pro-inflammatory cytokines | Yang et al. (2017) [99] |
Male rats with transitory occlusion of the proximal descending thoracic aorta | P4 (4 mg/kg) intra-arterial administration | Motor function Neuronal cell death in grey matter Apoptosis (Bcl-2 and annexin V) Necrosis (propidium iodide) |
| Acute P4 administration could not prevent or attenuate spinal cord ischemic injury based on functional and histological outcomes | Cavalcante et al. (2018) [104] |
Male rats with complete spinal cord transection at T9 | P4 s.c. administration (16 mg/kg/day) for 3 days. The first injection was given immediately after SCI | Expression of transcriptional inhibitors (Id2, Id4, hes5) and activators (Olig2, Nkx2.2, Sox10, and Mash1) Immunostaining of OPC, astrocytes, and microglial cells, and double labeling of TGFβ1 and Olig2 |
| P4 differentiating effects might involve TGFβ1, indirectly mediating these actions by releasing microglial and astrocytic TGFβ1 | Jure et al. (2019) [85] |
3.3. Neuroprotective Effects of Androgens on Spinal Cord Injury in Animal Models
SCI Animal Model | Treatment | Evaluated Parameters | Outcome vs. Controls | Conclusions | Authors (Year) [Ref] |
---|---|---|---|---|---|
Male and female rats with severe spinal cord contusions at T8 | No treatment | Functional recovery (locomotor hindlimb performance) |
| The better spontaneous recovery of female rats and mice after SCI than that of males is related to the suppressive effect of androgens on the ability to sustain a T-cell-mediated protective response to a CNS insult | Hauben et al. (2002) [46] |
Male and female rats with severe or mild spinal cord contusions at T8 | No treatment | Functional recovery (locomotor hindlimb performance) Neurological function Morphological analysis of the lesion site |
| The better functional recovery observed in females may be attributable to improved tissue preservation, possibly due to endogenous neuroprotective processes that do not occur in males | |
Male and female WT and nude Balb/c mice with SCI at T12 | No treatment | Functional recovery |
| T-cell immune response helps the body overcome the effects of destructive self-compounds that emerge from injured tissues | |
Male nude Balb/c mice with SCI at T12 | Castrated | Functional recovery |
| Sexual dimorphism observed in functional recovery from ISCI may, at least partially, be androgen-dependent | |
Male rats with mild SCI at T8 | Castrated | Functional recovery |
| ||
Female rats with severe SCI at T8 | DHT (100 mg) s.c pellet (21-day-release) 10 days post-injury | Functional recovery |
| DHT has an adverse impact on SCI recovery | |
Male rats with severe SCI at T8 | Flutamide (testosterone-antagonist) i.p. injection (25 mg/kg weight) immediately after SCI and 5 mg/kg every other day for ten days | Functional recovery |
| Testosterone has an adverse effect on SCI recovery | |
Male mice with spinal cord transection at T9/10 | No treatment | Serum levels of testosterone, GH, PTH, DHEA, insulin, and a complete immune cell count from blood and bone marrow samples | Two weeks after SCI:
| Significant changes occur rapidly (<1–2 weeks) in both the hormonal and immune systems after SCI | Rouleau et al. (2007) [106] |
Young adult female rats with SCI at T9 | Testosterone-filled Silastic capsules | Soma volume, motoneuron number, lesion volume, and tissue-sparing |
| Regressive changes in motoneuron and muscle morphology were observed with testosterone treatment | Byers et al. (2012) [113] |
Male rats with complete spinal cord transection | Low (2.8 mg/kg) or high (7.5 mg/kg) 24 h doses of testosterone provided with an Alzet pump | Expression of MAFbx, MuRF1, REDD1, and FOXO1 Weight of muscles with different fiber-type compositions | High-dose
| High-dose of testosterone partially protected against muscle atrophy and gene expression changes caused by MP | Wu et al. (2012) [112] |
Male rabbits with ischemia/reperfusion SCI | Testosterone i.p. injection (15 mg/kg) | Malondialdehyde and catalase levels Activities of caspase-3, myeloperoxidase, and xanthine oxidase Histopathological, ultrastructural, and neurological studies |
| Biochemical, histopathological, ultrastructural, and neurological examination findings showed that testosterone has neuroprotective effects on ischemia/reperfusion SCI | Gürer et al. (2015) [109] |
Young adult female rats with SCI at T9 | DHT-filled Silastic capsules | Functional recovery Lesion volume and tissue sparing, quadriceps muscle fiber cross-sectional area, and motoneuron dendritic morphology |
| DHT treatment ameliorated deficits in micturition and regressive changes in motoneuron and muscle morphology seen after SCI | Sengelaub et al. (2018) [49] |
Clinical studies | |||||
Men with SCI | No treatment | Serum levels of FSH, LH, testosterone, estradiol, and PRL The LHRH stimulation test Semen analysis and testicular volumes |
| SCI patients showed hypogonadotropism due to secondary neural or hormonal pathway alteration, leading to semen quality impairment | Naderi and Safarinejad (2003) [116] |
Men with SCI | No treatment | Testosterone and LH serum levels Free testosterone levels Level of disability (FIM instrument and ASIA exams) |
| A negative androgen status is notable, especially in the first year after a spinal cord injury Testosterone substitution therapy should be considered during the first year after injury to induce neural regeneration and preserve muscle strength | Celik et al. (2007) [117] |
Men with SCI | No treatment | Serum testosterone levels Time since SCI Selected laboratory values |
| Men with SCI are at risk of low serum testosterone | Clark et al. (2008) [118] |
Men with SCI | Testosterone-cypionate (200 mg) i.m. injection, monthly | Motor function (ASIA motor index discharge and FIM total discharge scores) |
| Muscle size and strength increased with testosterone | Clark et al. (2008) [119] |
Men with chronic SCI | No treatment | Serum total testosterone, albumin, LH, FSH, and prolactin levels |
| Testosterone levels were significantly associated with the severity of SCI | Dunga et al. (2011) [120] |
Men with SCI | No treatment | Serum testosterone, insulin, triglyceride levels HOMA-IR, BMI Hypogonadism-related symptoms (AMS questionnaire) LTPA |
| Poor LTPA, high BMI, and low sexual desire are independent predictors of low testosterone levels in men with chronic SCI | Barbonetti et al. (2014) [121] |
Men with SCI | No treatment | Testosterone levels by decade of life |
| Low serum total testosterone concentration occurs earlier in life in men with SCI, with a higher prevalence by a decade of life | Bauman et al. (2014) [122] |
4. Neuroprotective Effects of Sexual Hormones on Spinal Cord Injury in Humans
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donovan, W.H. Spinal cord injury—Past, present, and future. J. Spinal Cord Med. 2007, 30, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Pickelsimer, E.; Shiroma, E.J.; Wilson, D.A. Statewide investigation of medically attended adverse health conditions of persons with spinal cord injury. J. Spinal Cord. Med. 2010, 33, 221–231. [Google Scholar] [CrossRef]
- Cao, H.Q.; Dong, E.D. An update on spinal cord injury research. Neurosci. Bull. 2013, 29, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, S.; Das, A.; Matzelle, D.C.; Yu, S.P.; Wei, L.; Varma, A.; Ray, S.K.; Banik, N.L. Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cord injury in rats. J. Neurochem. 2016, 136, 1064–1073. [Google Scholar] [CrossRef]
- Bracken, M.B.; Holford, T.R. Neurological and functional status 1 year after acute spinal cord injury: Estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III. J. Neurosurg. 2002, 96, 259–266. [Google Scholar] [CrossRef]
- Silva, N.A.; Sousa, N.; Reis, R.L.; Salgado, A.J. From basics to clinical: A comprehensive review on spinal cord injury. Prog. Neurobiol. 2014, 114, 25–57. [Google Scholar] [CrossRef] [PubMed]
- Sengelaub, D.R.; Xu, X.M. Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury. Neural Regen. Res. 2018, 13, 971–976. [Google Scholar] [CrossRef]
- Sribnick, E.A.; Wingrave, J.M.; Matzelle, D.D.; Wilford, G.G.; Ray, S.K.; Banik, N.L. Estrogen attenuated markers of inflammation and decreased lesion volume in acute spinal cord injury in rats. J. Neurosci. Res. 2005, 82, 283–293. [Google Scholar] [CrossRef]
- Kachadroka, S.; Hall, A.M.; Niedzielko, T.L.; Chongthammakun, S.; Floyd, C.L. Effect of endogenous androgens on 17β-estradiol-mediated protection after spinal cord injury in male rats. J. Neurotrauma 2010, 27, 611–626. [Google Scholar] [CrossRef]
- Samantaray, S.; Smith, J.A.; Das, A.; Matzelle, D.D.; Varma, A.K.; Ray, S.K.; Banik, N.L. Low-dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: Effect of dosing, route of administration, and therapy delay. Neurochem. Res. 2011, 36, 1809–1816. [Google Scholar] [CrossRef]
- Letaif, O.; Cristante, A.; Barros Filho, T.; Ferreira, R.; Santos, G.; Rocha, I.; Marcon, R.M. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats. Clinics 2015, 70, 700–705. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, A.F.; Gonzalez, S.L.; Labombarda, F.; González Deniselle, M.C.; Garay, L.; Guennoun, R.; Schumacher, M. Progesterone treatment of spinal cord injury: Effects on receptors, neurotrophins, and myelination. J. Mol. Neurosci. 2006, 28, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Gonzalez, S.; Gonzalez Deniselle, M.C.; Garay, L.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord. J. Neurotrauma 2006, 23, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Sribnick, E.A.; Samantaray, S.; Das, A.; Smith, J.; Matzelle, D.D.; Ray, S.K.; Banik, N.L. Post-injury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J. Neurosci. Res. 2010, 88, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Sun, H.; Zhang, Q.; Chen, J.; Wu, N.; Meng, H.; Cui, G.; Hu, S.; Li, F.; Lin, J.; et al. G-protein coupled estrogen receptor 1 mediated estrogenic neuroprotection against spinal cord injury. Crit. Care Med. 2012, 40, 3230–3237. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, L.; Colón, J.M.; Santiago, J.M.; Torrado, A.I.; Meléndez, M.; Segarra, A.C.; Rodríguez-Orengo, J.F.; Miranda, J.D. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: Their antioxidant effect and role of estrogen receptor alpha. Brain Res. 2014, 1561, 11–22. [Google Scholar] [CrossRef]
- González, S.L.; Labombarda, F.; González Deniselle, M.C.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 2004, 125, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Jure, I.; Gonzalez, S.; Lima, A.; Roig, P.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J. Steroid Biochem. Mol. Biol. 2015, 154, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Tator, C.H. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 1995, 5, 407–413. [Google Scholar] [CrossRef]
- McDonald, J.W.; Sadowsky, C. Spinal-cord injury. Lancet 2002, 359, 417–425. [Google Scholar] [CrossRef]
- Ackery, A.; Tator, C.; Krassioukov, A. A global perspective on spinal cord injury epidemiology. J. Neurotrauma 2004, 21, 1355–1370. [Google Scholar] [CrossRef]
- Norenberg, M.D.; Smith, J.; Marcillo, A. The pathology of human spinal cord injury: Defining the problems. J. Neurotrauma 2004, 1, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Yip, P.K.; Malaspina, A. Spinal cord trauma and the molecular point of no return. Mol. Neurodegener. 2012, 7, 6. [Google Scholar] [CrossRef]
- Cramer, S.C.; Lastra, L.; Lacourse, M.G.; Cohen, M.J. Brain motor system function after chronic, complete spinal cord injury. Brain 2005, 128, 2941–2950. [Google Scholar] [CrossRef] [PubMed]
- Yiu, G.; He, Z. Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 2006, 7, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Ulndreaj, A.; Chio, J.C.; Ahuja, C.S.; Fehlings, M.G. Modulating the immune response in spinal cord injury. Expert. Rev. Neurother. 2016, 16, 1127–1129. [Google Scholar] [CrossRef]
- Tator, C.H.; Fehlings, M.G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 1991, 75, 15–26. [Google Scholar] [CrossRef]
- Tator, C.H. Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie 1991, 37, 291–302. [Google Scholar]
- Bareyre, F.M.; Schwab, M.E. Inflammation, degeneration and regeneration in the injured spinal cord: Insights from DNA microarrays. Trends Neurosci. 2003, 26, 555–563. [Google Scholar] [CrossRef]
- Jamme, I.; Petit, E.; Divoux, D.; Gerbi, A.; Maixent, J.M.; Nouvelot, A. Modulation of mouse cerebral Na+, K (+)-ATPase activity by oxygen free radicals. Neuroreport 1995, 7, 333–337. [Google Scholar]
- Hall, E.D.; Braughler, J.M. Thyrotropin-releasing hormone for spinal trauma. N. Engl. J. Med. 1982, 306, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Tao, Y.; Zhang, S.; Wang, J.; Feng, X. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 2014, 266, 91–101. [Google Scholar] [CrossRef]
- Liu, M.; Wu, W.; Li, H.; Li, S.; Huang, L.T.; Yang, Y.Q.; Sun, Q.; Wang, C.X.; Yu, Z.; Hang, C.H. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J. Spinal Cord Med. 2015, 38, 745–753. [Google Scholar] [CrossRef]
- Li, S.; Stys, P.K. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J. Neurosci. 2000, 20, 1190–1198. [Google Scholar] [CrossRef]
- Crowe, M.J.; Bresnahan, J.C.; Shuman, S.L.; Masters, J.N.; Beattie, M.S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 1997, 3, 73–76. [Google Scholar] [CrossRef]
- Dong, H.; Fazzaro, A.; Xiang, C.; Korsmeyer, S.J.; Jacquin, M.F.; McDonald, J.W. Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration. J. Neurosci. 2003, 23, 8682–8691. [Google Scholar] [CrossRef] [PubMed]
- Shuman, S.L.; Bresnahan, J.C.; Beattie, M.S. Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J. Neurosci. Res. 1997, 50, 798–808. [Google Scholar] [CrossRef]
- Gallo, V.; Bertolotto, A.; Levi, G. The proteoglycan chondroitin sulfate is present in a subpopulation of cultured astrocytes and in their precursors. Dev. Biol. 1987, 123, 282–285. [Google Scholar] [CrossRef]
- Katoh-Semba, R.; Matsuda, M.; Kato, K.; Oohira, A. Chondroitin sulfate proteoglycans in the rat brain: Candidates for axon barriers of sensory neurons and the possible modification by laminin of their actions. Eur. J. Neurosci. 1995, 7, 613–621. [Google Scholar] [CrossRef]
- Jones, D.G.; Anderson, E.R.; Galvin, K.A. Spinal cord regeneration: Moving tentatively towards new perspectives. Neurorehabilitation 2003, 18, 339–351. [Google Scholar] [CrossRef]
- Schumacher, M.; Weill-Engerer, S.; Liere, P.; Robert, F.; Franklin, R.J.M.; Garcia-Segura, L.M.; Lambert, J.J.; Mayo, W.; Melcangi, R.C.; Parducz, A.; et al. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog. Neurobiol. 2003, 71, 3–29. [Google Scholar] [CrossRef]
- Meffre, D.; Labombarda, F.; Delespierre, B.; Chastre, A.; De Nicola, A.F.; Stein, D.G.; Schumacher, M.; Guennoun, R. Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience 2013, 231, 111–124. [Google Scholar] [CrossRef]
- Persky, R.W.; Liu, F.; Xu, Y.; Weston, G.; Levy, S.; Roselli, C.E.; McCullough, L.D. Neonatal testosterone exposure protects adult male rats from stroke. Neuroendocrinology 2013, 97, 271–282. [Google Scholar] [CrossRef]
- Schumacher, M.; Mattern, C.; Ghoumari, A.; Oudinet, J.P.; Liere, P.; Labombarda, F.; Sitruk-Ware, R.; De Nicola, A.F.; Guennoun, R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: Resurgence of the progesterone receptors. Prog. Neurobiol. 2014, 113, 6–39. [Google Scholar] [CrossRef]
- Dominguez, R.; Zitting, M.; Liu, Q.; Patel, A.; Babadjouni, R.; Hodis, D.M.; Chow, R.H.; Mack, W.J. Estradiol protects white matter of male C57BL6J mice against experimental chronic cerebral hypoperfusion. J. Stroke Cerebrovasc. Dis. 2018, 27, 1743–1775. [Google Scholar] [CrossRef]
- Hauben, E.; Mizrahi, T.; Agranov, E.; Schwartz, M. Sexual dimorphism in the spontaneous recovery from spinal cord injury: A gender gap in beneficial autoimmunity? Eur. J. Neurosci. 2002, 16, 1731–1740. [Google Scholar] [CrossRef]
- Farooque, M.; Suo, Z.; Arnold, P.M.; Wulser, M.J.; Chou, C.T.; Vancura, R.W.; Fowler, S.; Festoff, B.W. Gender-related differences in recovery of locomotor function after spinal cord injury in mice. Spinal Cord 2006, 44, 182–187. [Google Scholar] [CrossRef]
- Brotfain, E.; Gruenbaum, S.E.; Boyko, M.; Kutz, R.; Zlotnik, A.; Klein, M. Neuroprotection by estrogen and progesterone in traumatic brain injury and spinal cord injury. Curr. Neuropharmacol. 2016, 14, 641–653. [Google Scholar] [CrossRef]
- Sengelaub, D.R.; Han, Q.; Liu, N.K.; Maczuga, M.A.; Szalavari, V.; Valencia, S.A.; Xu, X.M. Protective effects of estradiol and dihydrotestosterone following spinal cord injury. J. Neurotrauma 2018, 35, 825–841. [Google Scholar] [CrossRef]
- Ludwig, P.E.; Patil, A.A.; Chamczuk, A.J.; Agrawal, D.K. Hormonal therapy in traumatic spinal cord injury. Am. J. Transl. Res. 2017, 9, 3881–3895. [Google Scholar] [PubMed] [PubMed Central]
- Hammes, S.R.; Levin, E.R. Extranuclear steroid receptors: Nature and actions. Endocr. Rev. 2007, 28, 726–741. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Meffre, D.; Delespierre, B.; Krivokapic-Blondiaux, S.; Chastre, A.; Thomas, P.; Pang, Y.; Lydon, J.P.; Gonzalez, S.L.; De Nicola, A.F.; et al. Membrane progesterone receptors localization in the mouse spinal cord. Neuroscience 2010, 166, 94–106. [Google Scholar] [CrossRef]
- Barth, C.; Villringer, A.; Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 2015, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Despaigne, D.A. Selective estrogen receptor modulators: Their benefit in postmenopausal women. Rev. Cuba. Endocrinol. 2001, 2, 124–127. (In Spanish) [Google Scholar]
- Diez-Perez, A. Selective estrogen receptor modulators (SERMS). Arq. Bras. Endocrinol. Metab. 2006, 50, 720–734. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol. Sci. 1991, 12, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Lösel, R.; Wehling, M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 2003, 4, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Cornil, C.A.; Ball, G.F.; Balthazart, J. Functional significance of the rapid regulation of brain estrogen action: Where do the estrogens come from? Brain Res. 2006, 1126, 2–26. [Google Scholar] [CrossRef] [PubMed]
- Gundlah, C.; Lu, N.Z.; Mirkes, S.J.; Bethea, C.L. Estrogen receptor beta (ERbeta) mRNA and protein in serotonin neurons of macaques. Brain Res. Mol. Brain Res. 2001, 91, 14–22. [Google Scholar] [CrossRef]
- Mitra, S.W.; Hoskin, E.; Yudkovitz, J.; Pear, L.; Wilkinson, H.A.; Hayashi, S.; Pfaff, D.W.; Ogawa, S.; Rohrer, S.P.; Schaeffer, J.M.; et al. Immunolocalization of estrogen receptor beta in the mouse brain: Comparison with estrogen receptor alpha. Endocrinology 2003, 144, 2055–2067. [Google Scholar] [CrossRef]
- Brinton, R.D.; Thompson, R.F.; Foy, M.R.; Baudry, M.; Wang, J.; Finch, C.E.; Morgan, T.E.; Pike, C.J.; Mack, W.J.; Stanczyk, F.Z.; et al. Progesterone receptors: Form and function in the brain. Front. Neuroendocrinol. 2008, 29, 313–339. [Google Scholar] [CrossRef]
- Pang, Y.; Dong, J.; Thomas, P. Characterization, neurosteroid binding and brain distribution of human membrane progesterone receptors δ and ε (mPRδ and mPRε) and mPRδ involvement in neurosteroid inhibition of apoptosis. Endocrinology 2013, 154, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.F.; McKenna, S.E.; Cologer-Clifford, A.; Nau, E.A.; Simon, N.G. Androgen receptor in mouse brain: Sex differences and similarities in autoregulation. Endocrinology 1998, 139, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.A.; Schroeder, D.M.; Abel, R.A.; Richardson, S.C.; Bigsby, R.M.; Nephew, K.P. Immunohistochemical detection of estrogen receptor alpha in male rat spinal cord during development. J. Neurosci. Res. 2000, 61, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Papka, R.E.; Storey-Workley, M.; Shughrue, P.J.; Merchenthaler, I.; Collins, J.J.; Usip, S.; Saunders, P.T.; Shupnik, M. Estrogen receptor-alpha and beta-immunoreactivity and mRNA in neurons of sensory and autonomic ganglia and spinal cord. Cell Tissue Res. 2001, 304, 193–214. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Guennoun, R.; Gonzalez, S.; Roig, P.; Lima, A.; Schumacher, M.; De Nicola, A.F. Immunocytochemical evidence for a progesterone receptor in neurons and glial cells of the rat spinal cord. Neurosci. Lett. 2000, 288, 29–32. [Google Scholar] [CrossRef]
- Guennoun, R.; Meffre, D.; Labombarda, F.; Gonzalez, S.L.; Deniselle, M.C.; Stein, D.G.; De Nicola, A.F.; Schumacher, M. The membrane-associated progesterone-binding protein 25-Dx: Expression, cellular localization and up-regulation after brain and spinal cord injuries. Brain Res. Rev. 2008, 57, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Gonzalez, S.L.; Deniselle, M.C.; Vinson, G.P.; Schumacher, M.; De Nicola, A.F.; Guennoun, R. Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-Dx expression in the rat spinal cord. J. Neurochem. 2003, 87, 902–913. [Google Scholar] [CrossRef]
- Freeman, L.M.; Padgett, B.A.; Prins, G.S.; Breedlove, S.M. Distribution of androgen receptor immunoreactivity in the spinal cord of wild-type, androgen-insensitive and gonadectomized male rats. J. Neurobiol. 1995, 27, 51–59. [Google Scholar] [CrossRef]
- Ray, S.K.; Samantaray, S.; Smith, J.A.; Matzelle, D.D.; Das, A.; Banik, N.L. Inhibition of cysteine proteases in acute and chronic spinal cord injury. Neurotherapeutics 2011, 8, 180–186. [Google Scholar] [CrossRef]
- Hurlbert, R.J. Methylprednisolone for acute spinal cord injury: An inappropriate standard of care. J. Neurosurg. 2000, 93, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pointillart, V.; Petitjean, M.E.; Wiart, L.; Vital, J.M.; Lassié, P.; Thicoipé, M.; Dabadie, P. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 2000, 38, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Choi, H.Y.; Na, W.H.; Ju, B.G.; Yune, T.Y. 17β-Estradiol inhibits MMP-9 and SUR1/TrpM4 expression and activation and thereby attenuates BSCB disruption/hemorrhage after spinal cord injury in male rats. Endocrinology 2015, 156, 1838–1850. [Google Scholar] [CrossRef] [PubMed]
- Benyi, E.; Kieler, H.; Linder, M.; Ritzén, M.; Carlstedt-Duke, J.; Tuvemo, T.; Westphal, O.; Sävendahl, L. Risks of malignant and non-malignant tumours in tall women treated with high-dose oestrogen during adolescence. Horm. Res. Paediatr. 2014, 82, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, E.; Schellhammer, P.; Wassersug, R.J. Role of estrogen in normal male function: Clinical implications for patients with prostate cancer on androgen deprivation therapy. J. Urol. 2011, 185, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.; Varma, A.; Barry, J.; Vertegel, A.; Banik, N. Nanoparticle estrogen in rat spinal cord injury elicits rapid anti-inflammatory effects in plasma, cerebrospinal fluid, and tissue. J. Neurotrauma 2015, 32, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, S.; Das, A.; Matzelle, D.C.; Yu, S.P.; Wei, L.; Varma, A.; Ray, S.K.; Banik, N.L. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats. J. Neurochem. 2016, 137, 604–617. [Google Scholar] [CrossRef]
- Tian, D.S.; Liu, J.L.; Xie, M.J.; Zhan, Y.; Qu, W.S.; Yu, Z.Y.; Tang, Z.P.; Pan, D.J.; Wang, W. Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J. Neurochem. 2009, 109, 1658–1667. [Google Scholar] [CrossRef]
- Sánchez-Torres, S.; Orozco-Barrios, C.; Salgado-Ceballos, H.; Segura-Uribe, J.J.; Guerra-Araiza, C.; León-Cholula, Á.; Morán, J.; Coyoy-Salgado, A. Tibolone improves locomotor function in a rat model of spinal cord injury by modulating apoptosis and autophagy. Int. J. Mol. Sci. 2023, 24, 15285. [Google Scholar] [CrossRef]
- Meffre, D.; Delespierre, B.; Gouézou, M.; Leclerc, P.; Vinson, G.P.; Schumacher, M.; Stein, D.G.; Guennoun, R. The membrane-associated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is up-regulated after traumatic brain injury. J. Neurochem. 2005, 93, 1314–1326. [Google Scholar] [CrossRef]
- De Nicola, A.F.; Labombarda, F.; Gonzalez Deniselle, M.C.; Gonzalez, S.L.; Garay, L.; Meyer, M.; Gargiulo, G.; Guennoun, R.; Schumacher, M. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front. Neuroendocrinol. 2009, 30, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Gonzalez, S.L.; Lima, A.; Roig, P.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia 2009, 57, 884–897. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Gonzalez, S.; Lima, A.; Roig, P.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp. Neurol. 2011, 231, 135–146. [Google Scholar] [CrossRef]
- Guennoun, R.; Benmessahel, Y.; Delespierre, B.; Gouézou, M.; Rajkowski, K.M.; Baulieu, E.E.; Schumacher, M. Progesterone stimulates Krox-20 gene expression in Schwann cells. Mol. Brain Res. 2001, 90, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Jure, I.; De Nicola, A.F.; Labombarda, F. Progesterone effects on oligodendrocyte differentiation in injured spinal cord. Brain Res. 2019, 1708, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Mitew, S.; Hay, C.M.; Peckham, H.; Xiao, J.; Koenning, M.; Emery, B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014, 276, 29–47. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhu, Q.; Zheng, K.; Li, H.; Qi, Y.; Cao, Q.; Qiu, M. Co-localization of Nkx6.2 and Nkx2.2 homeodomain proteins in differentiated myelinating oligodendrocytes. Glia 2010, 58, 458–468. [Google Scholar] [CrossRef]
- Sugimori, M.; Nagao, M.; Parras, C.M.; Nakatani, H.; Lebel, M.; Guillemot, F.; Nakafuku, M. Ascl1 is required for oligodendrocyte development in the spinal cord. Development 2008, 135, 1271–1281. [Google Scholar] [CrossRef]
- Emery, B.; Agalliu, D.; Cahoy, J.D.; Watkins, T.A.; Dugas, J.C.; Mulinyawe, S.B.; Ibrahim, A.; Ligon, K.L.; Rowitch, D.H.; Barres, B.A. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 2009, 138, 172–185. [Google Scholar] [CrossRef]
- Hornig, J.; Frob, F.; Vogl, M.R.; Hermans-Borgmeyer, I.; Tamm, E.R.; Wegner, M. The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes. PLoS Genet. 2013, 9, e1003907. [Google Scholar] [CrossRef]
- García-Ovejero, D.; González, S.; Paniagua-Torija, B.; Lima, A.; Molina-Holgado, E.; De Nicola, A.F.; Labombarda, F. Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J. Neurotrauma 2014, 31, e857–e871. [Google Scholar] [CrossRef] [PubMed]
- Garay, L.; Tüngler, V.; Deniselle, M.C.; Lima, A.; Roig, P.; De Nicola, A.F. Progesterone attenuates demyelination and microglial reaction in the lysolecithin-injured spinal cord. Neuroscience 2011, 192, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T.; Nakamura, Y.; Tsuji, K.; Shibata, T.; Kataoka, K. Steroid hormones protect spinal cord neurons from glutamate toxicity. Neuroscience 1993, 55, 445–449. [Google Scholar] [CrossRef]
- Thomas, A.J.; Nockels, R.P.; Pan, H.Q.; Shaffrey, C.I.; Chopp, M. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 1999, 24, 2134–2138. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Gonzalez, S.L.; Gonzalez, D.M.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Cellular basis for progesterone neuroprotection in the injured spinal cord. J. Neurotrauma 2002, 19, 343–355. [Google Scholar] [CrossRef] [PubMed]
- González, S.L.; Labombarda, F.; Gonzalez Deniselle, M.C.; Mougel, A.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. J. Steroid Biochem. Mol. Biol. 2005, 94, 143–149. [Google Scholar] [CrossRef]
- González, S.L.; López-Costa, J.J.; Labombarda, F.; Gonzalez Deniselle, M.C.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Progesterone effects on neuronal ultrastructure and expression of microtubule-associated protein 2 (MAP2) in rats with acute spinal cord injury. Cell Mol. Neurobiol. 2009, 29, 27–39. [Google Scholar] [CrossRef]
- Labombarda, F.; Ghoumari, A.M.; Liere, P.; De Nicola, A.F.; Schumacher, M.; Guennoun, R. Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: A key role for progesterone receptors and steroidal modulators of GABA(A) receptors. Neuropharmacology 2013, 71, 46–55. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, W.; Ju, F.; Khan, A.; Zhang, S. In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice. Neuropharmacology 2017, 116, 30–37. [Google Scholar] [CrossRef]
- Coronel, M.F.; Labombarda, F.; Villar, M.J.; De Nicola, A.F.; González, S.L. Progesterone prevents allodynia after experimental spinal cord injury. J. Pain 2011, 12, 71–83. [Google Scholar] [CrossRef]
- Coronel, M.F.; Labombarda, F.; De Nicola, A.F.; González, S.L. Progesterone reduces the expression of spinal cyclooxygenase-2 and inducible nitric oxide synthase and prevents allodynia in a rat model of central neuropathic pain. Eur. J. Pain 2014, 18, 348–359. [Google Scholar] [CrossRef]
- Coronel, M.F.; Raggio, M.C.; Adler, N.S.; De Nicola, A.F.; Labombarda, F.; González, S.L. Progesterone modulates pro-inflammatory cytokine expression profile after spinal cord injury: Implications for neuropathic pain. J. Neuroimmunol. 2016, 292, 85–92. [Google Scholar] [CrossRef]
- Coronel, M.F.; Villar, M.J.; Brumovsky, P.R.; González, S.L. Spinal neuropeptide expression and neuropathic behavior in the acute and chronic phases after spinal cord injury: Effects of progesterone administration. Peptides 2017, 88, 189–195. [Google Scholar] [CrossRef]
- Cavalcante, L.P.; Ferreira, S.G.; Pereira, D.R.; Moraes, S.R.; Simas, R.; Sannomiya, P.; Breithaupt-Faloppa, A.C.; Moreira, L.F.P. Acute administration of oestradiol or progesterone in a spinal cord ischaemia-reperfusion model in rats. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 196–201. [Google Scholar] [CrossRef]
- Fee, D.B.; Swartz, K.R.; Joy, K.M.; Roberts, K.N.; Scheff, N.N.; Scheff, S.W. Effects of progesterone on experimental spinal cord injury. Brain Res. 2007, 1137, 146–152. [Google Scholar] [CrossRef]
- Rouleau, P.; Ung, R.-V.; Lapointe, N.P.; Guertin, P.A. Hormonal and immunological changes in mice after spinal cord injury. J. Neurotrauma 2007, 24, 367–378. [Google Scholar] [CrossRef]
- Freyermuth-Trujillo, X.; Segura-Uribe, J.J.; Salgado-Ceballos, H.; Orozco-Barrios, C.E.; Coyoy-Salgado, A. Inflammation: A target for treatment in spinal cord injury. Cells 2022, 11, 2692. [Google Scholar] [CrossRef]
- Angele, M.K.; Schwacha, M.G.; Ayala, A.; Chaudry, I.H. Effect of gender and sex hormones on immune responses following shock. Shock 2000, 14, 81–90. [Google Scholar] [CrossRef]
- Gürer, B.; Kertmen, H.; Kasim, E.; Yilmaz, E.R.; Kanat, B.H.; Sargon, M.F.; Arikok, A.T.; Ergüder, B.I.; Sekerci, Z. Neuroprotective effects of testosterone on ischemia/reperfusion injury of the rabbit spinal cord. Injury 2015, 46, 240–248. [Google Scholar] [CrossRef]
- Yarrow, J.F.; Conover, C.F.; Beggs, L.A.; Beck, D.T.; Otzel, D.M.; Balaez, A.; Combs, S.M.; Miller, J.R.; Ye, F.; Aguirre, J.I.; et al. Testosterone dose dependently prevents bone and muscle loss in rodents after spinal cord injury. J. Neurotrauma 2014, 31, 834–845. [Google Scholar] [CrossRef]
- Yarrow, J.F.; Phillips, E.G.; Conover, C.F.; Bassett, T.E.; Chen, C.; Teurlings, T.; Vasconez, A.; Alerte, J.; Prock, H.; Jiron, J.M.; et al. Testosterone plus finasteride prevents bone loss without prostate growth in a rodent spinal cord injury model. J. Neurotrauma 2017, 34, 2972–2981. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, J.; Zhao, W.; Pan, J.; Bauman, W.A.; Cardozo, C.P. Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury. J. Neurotrauma 2012, 29, 1663–1675. [Google Scholar] [CrossRef]
- Byers, J.S.; Huguenard, A.L.; Kuruppu, D.; Liu, N.K.; Xu, X.M.; Sengelaub, D.R. Neuroprotective effects of testosterone on muscle and motoneurons morphology following spinal cord injury. J. Comp. Neurol. 2012, 520, 2683–2696. [Google Scholar] [CrossRef] [PubMed]
- Gregory, C.M.; Vandenborne, K.; Huang, H.F.; Ottenweller, J.E.; Dudley, G.A. Effects of testosterone replacement therapy on skeletal muscle after spinal cord injury. Spinal Cord 2003, 41, 23–28. [Google Scholar] [CrossRef]
- Yarrow, J.F.; Kok, H.J.; Phillips, E.G.; Conover, C.F.; Lee, J.; Bassett, T.E.; Buckley, K.H.; Reynolds, M.C.; Wnek, R.D.; Otzel, D.M.; et al. Locomotor training with adjuvant testosterone preserves cancellous bone and promotes muscle plasticity in male rats after severe spinal cord injury. J. Neurosci. Res. 2020, 98, 843–868. [Google Scholar] [CrossRef]
- Naderi, A.R.; Safarinejad, M.R. Endocrine profiles and semen quality in spinal cord injured men. Clin. Endocrinol. 2003, 58, 177–184. [Google Scholar] [CrossRef]
- Celik, B.; Sahin, A.; Caglar, N.; Erhan, B.; Gunduz, B.; Gultekin, O.; Karabulut, M. Sex hormone levels and functional outcomes: A controlled study of patients with spinal cord injury compared with healthy subjects. Am. J. Phys. Med. Rehabil. 2007, 86, 784–790. [Google Scholar] [CrossRef]
- Clark, M.J.; Schopp, L.H.; Mazurek, M.O.; Zaniletti, I.; Lammy, A.B.; Martin, T.A.; Thomas, F.P.; Acuff, M.E. Testosterone levels among men with spinal cord injury: Relationship between time since injury and laboratory values. Am. J. Phys. Med. Rehabil. 2008, 87, 758–767. [Google Scholar] [CrossRef]
- Clark, M.J.; Petroski, G.F.; Mazurek, M.O.; Hagglund, K.J.; Sherman, A.K.; Lammy, A.B.; Childers, M.K.; Acuff, M.E. Testosterone replacement therapy and motor function in men with spinal cord injury. Am. J. Phys. Med. Rehabil. 2008, 87, 281–284. [Google Scholar] [CrossRef]
- Durga, A.; Sepahpanah, F.; Regozzi, M.; Hastings, J.; Crane, D.A. Prevalence of testosterone deficiency after spinal cord injury. PM&R 2011, 3, 929–932. [Google Scholar] [CrossRef]
- Barbonetti, A.; Vassallo, M.R.C.; Pacca, F.; Cavallo, F.; Costanzo, M.; Felzani, G.; Francavilla, S.; Francavilla, F. Correlates of low testosterone in men with chronic spinal cord injury. Andrology 2014, 2, 721–728. [Google Scholar] [CrossRef]
- Bauman, W.A.; La Fountaine, M.F.; Spungen, A.M. Age-related prevalence of low testosterone in men with spinal cord injury. J. Spinal Cord Med. 2014, 37, 32–39. [Google Scholar] [CrossRef]
- Bianchi, V.E. The anti-inflammatory effects of testosterone. J. Endocr. Soc. 2018, 3, 91–107. [Google Scholar] [CrossRef]
- Podlasek, C.A.; Mulhall, J.; Davies, K.; Wingard, C.J.; Hannan, J.L.; Bivalacqua, T.J.; Musicki, B.; Khera, M.; González-Cadavid, N.F.; Burnett, A.L. Translational perspective on the role of testosterone in sexual function and dysfunction. J. Sex. Med. 2016, 13, 1183–1198. [Google Scholar] [CrossRef]
- Borst, S.E.; Yarrow, J.F. Injection of testosterone may be safer and more effective than transdermal administration for combating loss of muscle and bone in older men. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E1035–E1042. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.S.; Gray, H.; Schache, A.G.; Hoermann, R.; Lim, J.D.; Zajac, J.D.; Pandy, M.G.; Grossmann, M. Androgen deprivation causes selective deficits in the biomechanical leg muscle function of men during walking: A prospective case-control study. J. Cachexia Sarcopenia Muscle 2017, 8, 102–112. [Google Scholar] [CrossRef]
- Skinner, J.W.; Otzel, D.M.; Bowser, A.; Nargi, D.; Agarwal, S.; Peterson, M.D.; Zou, B.; Borst, S.E.; Yarrow, J.F. Muscular responses to testosterone replacement vary by administration route: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2018, 9, 465–481. [Google Scholar] [CrossRef]
- Snyder, P.J.; Bhasin, S.; Cunningham, G.R.; Matsumoto, A.M.; Stephens-Shields, A.J.; Cauley, J.A.; Gill, T.M.; Barrett-Connor, E.; Swerdloff, R.S.; Wang, C.; et al. Effects of testosterone treatment in older men. N. Engl. J. Med. 2016, 374, 611–624. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyoy-Salgado, A.; Segura-Uribe, J.; Salgado-Ceballos, H.; Castillo-Mendieta, T.; Sánchez-Torres, S.; Freyermuth-Trujillo, X.; Orozco-Barrios, C.; Orozco-Suarez, S.; Feria-Romero, I.; Pinto-Almazán, R.; et al. Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines 2024, 12, 1478. https://doi.org/10.3390/biomedicines12071478
Coyoy-Salgado A, Segura-Uribe J, Salgado-Ceballos H, Castillo-Mendieta T, Sánchez-Torres S, Freyermuth-Trujillo X, Orozco-Barrios C, Orozco-Suarez S, Feria-Romero I, Pinto-Almazán R, et al. Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines. 2024; 12(7):1478. https://doi.org/10.3390/biomedicines12071478
Chicago/Turabian StyleCoyoy-Salgado, Angélica, Julia Segura-Uribe, Hermelinda Salgado-Ceballos, Tzayaka Castillo-Mendieta, Stephanie Sánchez-Torres, Ximena Freyermuth-Trujillo, Carlos Orozco-Barrios, Sandra Orozco-Suarez, Iris Feria-Romero, Rodolfo Pinto-Almazán, and et al. 2024. "Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic?" Biomedicines 12, no. 7: 1478. https://doi.org/10.3390/biomedicines12071478
APA StyleCoyoy-Salgado, A., Segura-Uribe, J., Salgado-Ceballos, H., Castillo-Mendieta, T., Sánchez-Torres, S., Freyermuth-Trujillo, X., Orozco-Barrios, C., Orozco-Suarez, S., Feria-Romero, I., Pinto-Almazán, R., Moralí de la Brena, G., & Guerra-Araiza, C. (2024). Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines, 12(7), 1478. https://doi.org/10.3390/biomedicines12071478