Mortality-Associated Factors in a Traumatic Brain Injury Population in Mexico
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassett, L. Physiotherapy management of moderate-to-severe traumatic brain injury. J. Physiother. 2023, 69, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.K.; Schwab, K.; Wright, D.W.; Maas, A.I. Position Statement: Definition of Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2010, 91, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Pozzato, I.; Tate, R.L.; Rosenkoetter, U.; Cameron, I.D. Epidemiology of hospitalised traumatic brain injury in the state of New South Wales, Australia: A population-based study. Aust. N. Z. J. Public Health 2019, 43, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Soto-Páramo, D.G.; Pérez-Nieto, O.R.; Deloya-Tomás, E.; Rayo-Rodríguez, S.; Castillo-Gutiérrez, G.; Olvera-Ramos, M.G.; Carrión-Moya, J.; López-Fermín, J.; Zamarrón-López, E.I.; Guerrero-Gutiérrez, M.A.; et al. Pathophysiology, diagnosis and treatment of traumatic brain injury. Neurol. Neurocir. Psiquiatr. 2022, 50, 4–15. [Google Scholar]
- TCE—Traumatismo Craneoencefálico—RELACSIS. Available online: https://www3.paho.org/relacsis/index.php/es/foros-relacsis/foro-becker-fci-oms/61-foros/consultas-becker/938-tce-traumatismo-craneoencefalico/ (accessed on 26 August 2023).
- Nguyen, R.; Fiest, K.M.; McChesney, J.; Kwon, C.S.; Jette, N.; Frolkis, A.D.; Atta, C.; Mah, S.; Dhaliwal, H.; Reid, A.; et al. The international incidence of traumatic brain injury: A systematic review and meta-analysis. Can. J. Neurol. Sci. 2016, 43, 774–785. [Google Scholar] [CrossRef]
- World Health Organization. Traumatismos y Violencia: Datos. Organización Mundial de la Salud. 2010. Available online: https://iris.who.int/handle/10665/44335 (accessed on 26 August 2023).
- Instituto Nacional de Estadística y Geografía. Comunicado de Prensa. Estadística de Defunciones Registradas de Enero a Junio de 2022 (Preliminar). 2023. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2023/EDR/EDR2022.pdf (accessed on 26 August 2023).
- Alberdi, F.; García, I.; Atutxa, L.; Zabarte, M. Epidemiology of severe trauma. Med. Intensiv. 2014, 38, 580–588. [Google Scholar] [CrossRef]
- Gordillo-Escobar, E.; Egea-Guerrero, J.J.; Rodríguez-Rodríguez, A.; Murillo-Cabezas, F. Utilidad de los biomarcadores en el pronóstico del traumatismo craneoencefálico grave. Med. Intensiv. 2016, 40, 105–112. [Google Scholar] [CrossRef]
- Soler, M.C.; León, P.D.; Larrondo, M.H.; Agustín, G.D. Respuesta bioquímica y molecular ante el daño cerebral agudo. Rev. Cuba. Med. 2014, 53, 76–90. [Google Scholar]
- Ortiz-Prado, E.; León, A.B.; Unigarro, L.; Santillan, P. Oxigenación y Flujo Sanguíneo Cerebral, Revisión Comprensiva de la Literatura. Rev. Ecuat. Neurol. 2018, 27, 80–89. [Google Scholar]
- Rodríguez-Boto, G.; Rivero-Garvía, M.; Gutiérrez-González, R.; Márquez-Rivas, J. Conceptos básicos sobre la fisiopatología cerebral y la monitorización de la presión intracraneal. Neurología 2015, 30, 16–22. [Google Scholar] [CrossRef]
- Cabrera, R.A.; Martínez, O.O.; Ibarra, G.A.; Morales, S.R.; Laguna, H.G.; Sánchez, P.H. Traumatismo craneoencefálico severo. Rev. Asoc. Mex. Med. Crit. Ter. Int. 2009, 24, 94–101. [Google Scholar]
- Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 2007, 99, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Velásquez, H.A.; Cáñamo-Villafañe, P.A.; Fontalvo-Mendoza, M.F.; Florez Perdomo, W.A. Autorregulación cerebral: Fisiología y fisiopatología esenciales para el manejo neurocrítico. Rev. Arg. Med. 2020, 8, 305–310. [Google Scholar]
- McCredie, V.A.; Chavarría, J.; Baker, A.J. How do we identify the crashing traumatic brain injury patient—The intensivist’s view. Curr. Opin. Crit. Care 2021, 27, 320–327. [Google Scholar] [CrossRef]
- Meyfroidt, G.; Bouzat, P.; Casaer, M.P.; Chesnut, R.; Hamada, S.R.; Helbok, R.; Hutchinson, P.; Maas, A.I.; Manley, G.; Menon, D.K. Management of moderate to severe traumatic brain injury: An update for the intensivist. Intensive Care Med. 2022, 40, 649–666. [Google Scholar] [CrossRef]
- Hawryluk, G.W.; Aguilera, S.; Buki, A.; Bulger, E.; Citerio, G.; Cooper, D.J.; Arrastia, R.D.; Diringer, M.; Figaji, A.; Gao, G.; et al. A management algorithm for patients with intracranial pressure monitoring: The Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019, 45, 1783–1794. [Google Scholar] [CrossRef]
- Dreier, J.P.; Fabricius, M.; Ayata, C.; Sakowitz, O.W.; William Shuttleworth, C.; Dohmen, C.; Graf, R.; Vajkoczy, P.; Helbok, R.; Suzuki, M.; et al. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. J. Cereb. Blood Flow. Metab. 2017, 37, 1595–1625. [Google Scholar] [CrossRef]
- Capizzi, A.; Woo, J.; Verduzco-Gutierrez, M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management. Med. Clin. N. Am. 2020, 104, 213–238. [Google Scholar] [CrossRef] [PubMed]
- Mauritz, W.; Brazinova, A.; Majdan, M.; Leitgeb, J. Epidemiology of traumatic brain injury in Austria. Wien. Klin. Wochenschr. 2014, 126, 42–52. [Google Scholar] [CrossRef]
- Brazinova, A.; Rehorcikova, V.; Taylor, M.S.; Buckova, V.; Majdan, M.; Psota, M.; Peeters, W.; Feigin, V.; Theadom, A.; Holkovic, L. Epidemiology of Traumatic Brain Injury in Europe: A Living Systematic Review. J. Neurotrauma 2021, 38, 1411–1440. [Google Scholar] [CrossRef]
- Wu, X.; Hu, J.; Zhuo, L.; Fu, C.; Hui, G.; Wang, Y.; Yang, W.; Teng, L.; Lu, S.; Xu, G. Epidemiology of traumatic brain injury in eastern China, 2004: A prospective large case study. J. Trauma 2008, 64, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Giner, J.; Galán, L.M.; Teruel, S.Y.; Espallargas, M.G.; López, C.P.; Guerrero, A.I.; Frade, J.R. Traumatic brain injury in the new millennium: New population and new management. Neurología 2022, 37, 383–389. [Google Scholar] [CrossRef]
- Styrke, J.; Stålnacke, B.M.; Sojka, P.; Björnstig, U. Traumatic brain injuries in a well-defined population: Epidemiological aspects and severity. J. Neurotrauma 2007, 24, 1425–1436. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, S.; Johnson, P.; Moriarty, J. Prevalence, management and outcomes of traumatic brain injury patients admitted to an Irish intensive care unit. Ir. J. Med. Sci. 2011, 180, 423–427. [Google Scholar] [CrossRef]
- Ma, C.; Wu, X.; Shen, X.; Yang, Y.; Chen, Z.; Sun, X.; Wang, Z. Sex differences in traumatic brain injury: A multi-dimensional exploration in genes, hormones, cells, individuals, and society. Chin. Neurosurg. J. 2019, 5, 24. [Google Scholar] [CrossRef]
- Munivenkatappa, A.; Agrawal, A.; Shukla, D.P.; Kumaraswamy, D.; Devi, B.I. Traumatic brain injury: Does gender influence outcomes? Int. J. Crit. Illn. Inj. Sci. 2016, 6, 70–73. [Google Scholar] [CrossRef]
- Kalpakjian, C.Z.; Hanks, R.; Quint, E.H.; Millis, S.; Sander, A.M.; Lequerica, A.H.; Bushnik, T.; Brunner, R.; Rapport, L. Assessing menopause symptoms in women with traumatic brain injury: The development and initial testing of a new scale. Women Health 2023, 64, 51–64. [Google Scholar] [CrossRef]
- Ranganathan, P.; Kumar, R.G.; Davis, K.; McCullough, E.H.; Berga, S.L.; Wagner, A.K. Longitudinal sex and stress hormone profiles among reproductive age and post-menopausal women after severe TBI: A case series analysis. Brain Inj. 2016, 30, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Biscardi, M.; Shafi, R.; Cullen, N.; Einstein, G.; Colantonio, A. Menopause, anti-Müllerian hormone and cognition in a cohort of women with persistent symptoms following TBI: A case for future research. Brain Inj. 2021, 35, 934–942. [Google Scholar] [CrossRef]
- Yue, J.K.; Krishnan, N.; Chyall, L.; Vega, P.; Hamidi, S.; Etemad, L.; Tracey, J.X.; Tarapore, P.E.; Huang, M.C.; Manley, G.T.; et al. Socioeconomic and clinical factors associated with prolonged hospital length of stay after traumatic brain injury. Injury 2023, 54, 110815. [Google Scholar] [CrossRef]
- Haines, K.L.; Nguyen, B.P.; Vatsaas, C.; Alger, A.; Brooks, K.; Agarwal, S.K. Socioeconomic Status Affects Outcomes After Severity-Stratified Traumatic Brain Injury. J. Surg. Res. 2019, 235, 131–140. [Google Scholar] [CrossRef]
- Meo, N.; Liao, J.M.; Reddy, A. Hospitalized After Medical Readiness for Discharge: A Multidisciplinary Quality Improvement Initiative to Identify Discharge Barriers in General Medicine Patients. Am. J. Med. Qual. 2020, 35, 23–28. [Google Scholar] [CrossRef]
- McQuistion, K.; Zens, T.; Jung, H.S.; Beems, M.; Leverson, G.; Liepert, A.; Scarborough, J.; Agarwal, S. Insurance status and race affect treatment and outcome of traumatic brain injury. J. Surg. Res. 2016, 205, 261–271. [Google Scholar] [CrossRef]
- Rauch, S.; Marzolo, M.; Cappello, T.D.; Ströhle, M.; Mair, P.; Pietsch, U.; Brugger, H.; Strapazzon, G. Severe traumatic brain injury and hypotension is a frequent and lethal combination in multiple trauma patients in mountain areas—An analysis of the prospective international Alpine Trauma Registry. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 61. [Google Scholar] [CrossRef]
- Lafta, G.; Sbahi, H. Factors associated with the severity of traumatic brain injury. Med. Pharm. Rep. 2023, 96, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Tolonen, A.; Turkka, J.; Salonen, O.; Ahoniemi, E.; Alaranta, H. Traumatic brain injury is under-diagnosed in patients with spinal cord injury. J. Rehabil. Med. 2007, 39, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Macciocchi, S.; Seel, R.T.; Thompson, N.; Byams, R.; Bowman, B. Spinal Cord Injury and Co-Occurring Traumatic Brain Injury: Assessment and Incidence. Arch. Phys. Med. Rehabil. 2008, 89, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.E. Alcohol and trauma: The perfect storm. J. Trauma 2005, 59, S53–S56. [Google Scholar] [CrossRef]
- VanderVeen, J.D. TBI as a Risk Factor for Substance Use Behaviors: A Meta-analysis. Arch. Phys. Med. Rehabil. 2021, 102, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Leijdesdorff, H.A.; Legué, J.; Krijnen, P.; Rhemrev, S.; Kleinveld, S.; Schipper, I.B. Traumatic brain injury and alcohol intoxication: Effects on injury patterns and short-term outcome. Eur. J. Trauma Emerg. Surg. 2021, 47, 2065–2072. [Google Scholar] [CrossRef]
- Madan, A.K.; Yu, K.; Beech, D.J.; Derrick, J. Alcohol and drug use in victims of life-threatening trauma. J. Trauma Acute Care Surg. 1999, 47, 568–571. [Google Scholar] [CrossRef]
- Dams-O’Connor, K.; Gibbons, L.E.; Landau, A.; Larson, E.B.; Crane, P.K. Health Problems Precede Traumatic Brain Injury in Older Adults. J. Am. Geriatr. Soc. 2016, 64, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.F.; Stulc, J.L.; Skolarus, L.E.; Sears, E.D.; Zahuranec, D.B.; Morgenstern, L.B. Traumatic brain injury may be an independent risk factor for stroke. Neurology 2013, 81, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Hammond, F.M.; Corrigan, J.D.; Ketchum, J.M.; Malec, J.F.; Dams-O’Connor, K.; Hart, T.; Novack, T.A.; Bogner, J.; Dahdah, M.N.; Whiteneck, G.G. Prevalence of Medical and Psychiatric Comorbidities Following Traumatic Brain Injury. J. Head Trauma Rehabil. 2019, 34, E1–E10. [Google Scholar] [CrossRef]
- Tohme, S.; Delhumeau, C.; Zuercher, M.; Haller, G.; Walder, B. Prehospital risk factors of mortality and impaired consciousness after severe traumatic brain injury: An epidemiological study. Scand. J. Trauma Resusc. Emerg. Med. 2014, 22, 1. [Google Scholar] [CrossRef]
- Berry, C.; Ley, E.J.; Bukur, M.; Malinoski, D.; Margulies, D.R.; Mirocha, J.; Salim, A. Redefining hypotension in traumatic brain injury. Injury 2012, 43, 1833–1837. [Google Scholar] [CrossRef] [PubMed]
- Barton, C.W.; Hemphill, J.C.; Morabito, D.; Manley, G. A novel method of evaluating the impact of secondary brain insults on functional outcomes in traumatic brain-injured patients. Acad. Emerg. Med. 2005, 12, 1–6. [Google Scholar] [CrossRef]
- Manley, G.; Knudson, M.M.; Morabito, D.; Damron, S.; Erickson, V.; Pitts, L. Hypotension, Hypoxia, and Head Injury Frequency, Duration, and Consequences. Arch. Surg. 2001, 136, 1118–1123. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Vavilala, M.S.; Mills, B.; Rowhani-Rahbar, A. Demographic and clinical risk factors associated with hospital mortality after isolated severe traumatic brain injury: A cohort study. J. Intensive Care 2015, 10, 46. [Google Scholar] [CrossRef]
- Hosomi, S.; Sobue, T.; Kitamura, T.; Hirayama, A.; Ogura, H.; Shimazu, T. Association between vasopressor use and mortality in patients with severe traumatic brain injury: A nationwide retrospective cohort study in Japan. Acute Med. Surg. 2021, 8, e695. [Google Scholar] [CrossRef]
- Toro, C.; Temkin, N.; Barber, J.; Manley, G.; Jain, S.; Ohnuma, T.; Komisarow, J.; Foreman, B.; Korley, F.K.; Vavilala, M.S.; et al. Association of Vasopressor Choice with Clinical and Functional Outcomes Following Moderate to Severe Traumatic Brain Injury: A TRACK-TBI Study. Neurocrit. Care 2022, 36, 180–191. [Google Scholar] [CrossRef]
- Brassard, P.; Seifert, T.; Secher, N.H. Is cerebral oxygenation negatively affected by infusion of norepinephrine in healthy subjects? Br. J. Anaesth. 2009, 102, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.E.; Christensen, R.E.; Baekgaard, J.; Steinmetz, J.; Rasmussen, L.S. Supplemental oxygen for traumatic brain injury: A systematic review. Anaesthesiol. Scand. 2022, 66, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Taran, S.; Cho, S.M.; Stevens, R.D. Mechanical Ventilation in Patients with Traumatic Brain Injury: Is it so Different? Neurocritical Care 2023, 38, 178–191. [Google Scholar] [CrossRef]
- Siig, H.H.; Nielsen, J.F.; Odgaard, L. Epilepsy after severe traumatic brain injury: Frequency and injury severity. Brain Inj 2020, 34, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Souter, M.J.; Kirschen, M. Brain death: Optimizing support of the traumatic brain injury patient awaiting organ procurement. Curr. Opin. Crit. Care 2020, 26, 155–161. [Google Scholar] [CrossRef]
- Heppekcan, D.; Ekin, S.; Çivi, M.; Tok, A.D. Impact of Secondary Insults in Brain Death After Traumatic Brain Injury. Transpl. Proc. 2019, 51, 2186–2188. [Google Scholar] [CrossRef]
Frequency | Percentage | 95% CI | Mean (S.D.) | 95% CI | ||
---|---|---|---|---|---|---|
Mortality | Age (years) | 37.81 (16.72) | 34.4–41.2 | |||
Alive | 75 | 77.30% | 0.69–0.87 | Weight (kg) | 78.29 (14.18) | 75.3–81.2 |
Deceased | 19 | 19.60% | 0.12–0.30 | Initial GCS (points) | 8.97 (3.67) | 8.2–9.7 |
Sex | SBP emergencies (mmHg) | 126.75 (25.81) | 121.3–132.1 | |||
Men | 82 | 87.20% | 0.77–0.92 | DBP emergencies (mmHg) | 72.69 (14.24) | 69.7–75.6 |
Women | 12 | 12.70% | 0.07–0.22 | Vasopressor dosage (mcg/kg/min) | 0.15 (0.12) | 0.09–0.21 |
Influence of illegal drugs at time of injury | Initial Sh (g/dL) | 13.24 (2.63) | 12.6–13.8 | |||
Present | 5 | 5.30% | 0.01–0.11 | Initial Sc (mg/dL) | 1.02 (0.41) | 0.9–1.1 |
Absent | 89 | 95.60% | 0.88–0.98 | Hospital stays (days) | 31.37 (30.49) | 25.1–37.5 |
Influence of alcohol at time of injury | Hospital arrival time (days) | 7.78 (31.37) | 27.3–48.2 | |||
Present | 22 | 23.40% | 0.15–0.33 | |||
Absent | 72 | 76.50% | 0.66–0.84 | |||
Glasgow Coma Scale (points) | ||||||
Mild | 21 | 22.34% | 0.15–0.32 | |||
Moderate | 21 | 22.34% | 0.15–0.33 | |||
Severe | 52 | 55.31% | 0.43–0.64 | |||
Trauma mechanism | ||||||
Physical aggression | 6 | 6.30% | 0.02–0.13 | |||
Assault with weapon | 8 | 8.50% | 0.04–0.16 | |||
Falls | 31 | 32.90% | 0.23–0.43 | |||
Injured pedestrian | 5 | 5.31% | 0.01–0.12 | |||
Car accident | 11 | 11.70% | 0.06–0.20 | |||
Motorcycle accident | 33 | 35.10% | 0.25–0.45 |
Mean (SD) | p-Value | 95% CI | ||
---|---|---|---|---|
alive (n = 75) | deceased (n = 19) | |||
Age (years) | 36.9 (15.23) | 40.5 (19.3) | 0.09 | −13.54–6.28 |
Weight (kg) | 78.7(14.21) | 76 (14.81) | 0.78 | −5.47–10.91 |
SBP (mmHg) | 125 (26.01) | 131.6 (25.21) | 0.61 | −20.29–7 |
DBP (mmHg) | 71.7 (15.04) | 76 (11.09) | 0.054 | −11.8–3.23 |
Initial GCS (points) | 9 (3.63) | 9.3 (3.8) | 0.77 | −2.35–1.61 |
Vasopressor dosage (mcg/kg/min) | 0.15 (0.13) | 0.2 (0.05) | - | - |
Sh (g/dL) | 13.4 (2.72) | 12.6 (1.98) | 0.98 | −0.6–2.19 |
Sc (mg/dL) | 1.04 (0.42) | 0.91 (0.11) | 0.42 | −0.03–0.29 |
Hospital stays (days) | 33.1 (30.54) | 21.7 (27.9) | 0.35 | −3.4–26.37 |
Alive | Deceased | p-Value | OR | 95% CI | |
---|---|---|---|---|---|
Sex | |||||
Men | 66 | 16 | 0.314 | 0.51 | −1.9–0.7 |
Women | 9 | 3 | |||
Influence of illegal drugs at time of injury | |||||
Present | 4 | 1 | 0.817 | 1.31 | −2.7–2.3 |
Absent | 71 | 18 | |||
Influence of alcohol at time of injury | |||||
Present | 18 | 4 | 0.765 | 0.82 | −1.5–0.9 |
Absent | 56 | 16 | |||
Pupil state | |||||
Isochoric | 45 | 10 | 0.252 | 2.0 | −0.5–1.8 |
Anisochoric | 15 | 7 | 0.131 | 5.0 | −0.6–3.8 |
Mydriasis | 4 | 4 | 0.850 | 1.23 | −2.8–2.2 |
Miosis | 6 | 2 | 0.995 | 3.1 × 10−7 | -- |
Enucleation | 1 | 0 | 0.995 | 3.1 × 10−7 | -- |
Pupillary reflex | |||||
Reactive | 5 | 1 | 0.824 | 0.77 | −3.2–1.6 |
Unknown | 70 | 18 | |||
Complications | |||||
Present | 40 | 9 | 0.642 | 0.78 | −1.2–0.7 |
Absent | 35 | 10 | |||
Use of vasopressors | |||||
Present | 21 | 3 | 0.283 | 0.48 | −2.2–0.4 |
Absent | 54 | 16 | |||
Vasopressor type | |||||
Norepinephrine | 57 | 17 | 0.994 | 1.21 × 107 | -- |
Vasopressin | 5 | 0 | 1.000 | 1.0 | −98.8–98.8 |
Norepinephrine and vasopressin | 10 | 5 | 0.994 | 1.59 × 107 | -- |
Use of mechanical ventilation | |||||
Present | 48 | 9 | 0.189 | 0.50 | −1.7–0.3 |
Absent | 27 | 10 | |||
Use of hypertonic solution | |||||
Present | 16 | 5 | 0.663 | 1.29 | −0.9–1.3 |
Absent | 58 | 14 | |||
Marshall scale on entry | |||||
Diffuse type I lesion | 4 | 2 | |||
Diffuse type II lesion | 12 | 2 | 0.404 | 0.27 | −4.7–2.1 |
Diffuse type III lesion | 19 | 11 | 0.675 | 1.66 | −1.6–3.5 |
Diffuse type IV lesion | 21 | 5 | 0.689 | 0.60 | −2.8–2.6 |
Evacuated mass | 4 | 0 | 0.991 | 1.91 × 10−7 | -- |
Mass not evacuated | 12 | 2 | 0.404 | 0.27 | −4.7–2.1 |
HR | SE | CI 95% | p-Value | |
---|---|---|---|---|
Encephalic-dead | 17.48 | 0.584 | 5.56–54.93 | *** |
Sex M | 0.5111 | 0.573 | 0.16–1.57 | 0.242 |
Additional trauma | ||||
thorax | 0.70 | 0.806 | 0.15–3.73 | 0.745 |
abdomen | 0 | 7860 | 0.00–inf | 0.998 |
neck | 1.98 | 0.828 | 0.39–10.07 | 0.407 |
neck and spine | 2.45 | 0.562 | 0.81–7.39 | 0.110 |
extremities | 7.11 | 0.813 | 1.44–35.01 | 0.015 * |
Convulsive crisis | 8.18 | 0.662 | 2.23–29.97 | 0.001 * |
Vasopressor administration | ||||
urgency | 7.55 × 107 | 8.04 × 103 | 0–Inf | 0.002 * |
surgery | 2.10 × 109 | 8.04 × 103 | 0–Inf | 0.003 * |
IMCU | 2.55 × 108 | 8.04 × 103 | 0–Inf | 0.002 * |
ICU | 1.66 × 108 | 8.04 × 103 | 0–Inf | 0.002 * |
Medical history | ||||
DM | 6.64 | 7.80 × 10−1 | 1.44–30.63 | 0.015 * |
SAH | 2.34 | 7.79 × 10−1 | 0.50–10.81 | 0.273 |
HD | 3.51 | 1.09 × 100 | 0.41–29.81 | 0.248 |
DM+SAH | 3.56 | 7.81 × 10−1 | 0.77–16.5 | 0.103 |
CC | 2.10 × 10−7 | 5.31 × 103 | 0.00–inf | 0.997 |
DM+SAH+PH+CHF | 11.3 | 1.07 × 100 | 1.38–92.91 | 0.023 * |
Cox’s Regression | Coefficient | Hazard Ratio | 95% CI | SE (Coefficient) | p-Value |
---|---|---|---|---|---|
Encephalic death | 2.589 | 13.3 | 3.90–45.47 | 0.626 | *** |
Seizures | 1.346 | 3.84 | 0.58–25.24 | 0.960 | 0.161 |
Age | −0.002 | 0.99 | 0.96–1.03 | 0.018 | 0.888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Herrera, E.; Galindo-Oseguera, E.; Castillo-Cruz, J.; Fuentes-Venado, C.E.; Gasca-López, G.A.; Calzada-Mendoza, C.C.; Ocharan-Hernández, E.; Zúñiga-Cruz, C.A.; Farfán-García, E.D.; Arellano-Ramírez, A.; et al. Mortality-Associated Factors in a Traumatic Brain Injury Population in Mexico. Biomedicines 2024, 12, 2037. https://doi.org/10.3390/biomedicines12092037
Martínez-Herrera E, Galindo-Oseguera E, Castillo-Cruz J, Fuentes-Venado CE, Gasca-López GA, Calzada-Mendoza CC, Ocharan-Hernández E, Zúñiga-Cruz CA, Farfán-García ED, Arellano-Ramírez A, et al. Mortality-Associated Factors in a Traumatic Brain Injury Population in Mexico. Biomedicines. 2024; 12(9):2037. https://doi.org/10.3390/biomedicines12092037
Chicago/Turabian StyleMartínez-Herrera, Erick, Evelyn Galindo-Oseguera, Juan Castillo-Cruz, Claudia Erika Fuentes-Venado, Gilberto Adrián Gasca-López, Claudia C. Calzada-Mendoza, Esther Ocharan-Hernández, Carlos Alberto Zúñiga-Cruz, Eunice D. Farfán-García, Alfredo Arellano-Ramírez, and et al. 2024. "Mortality-Associated Factors in a Traumatic Brain Injury Population in Mexico" Biomedicines 12, no. 9: 2037. https://doi.org/10.3390/biomedicines12092037
APA StyleMartínez-Herrera, E., Galindo-Oseguera, E., Castillo-Cruz, J., Fuentes-Venado, C. E., Gasca-López, G. A., Calzada-Mendoza, C. C., Ocharan-Hernández, E., Zúñiga-Cruz, C. A., Farfán-García, E. D., Arellano-Ramírez, A., & Pinto-Almazán, R. (2024). Mortality-Associated Factors in a Traumatic Brain Injury Population in Mexico. Biomedicines, 12(9), 2037. https://doi.org/10.3390/biomedicines12092037