The Placenta as a Source of Human Material for Neuronal Repair
Abstract
:1. Introduction
2. P-MSC-Derived Neuron-like Cells
3. Placenta-Derived Extracellular Vesicles (P-EVs)
4. Placenta-Derived Extracellular Matrix (P-ECM)
5. Circumstantial Evidence of the Beneficial Effect Induced by In Vivo Administration of P-MSCs
5.1. Spinal Cord Injury (SCI) Models
5.2. Congenital Defects of Spinal Cord: Myelomeningocele
5.3. Optic Nerve Crush (ONC) Injury Models
5.4. Models of Neurodegenerative Disorder
5.5. Global Cerebral Ischemia (GCI)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, D.K.; Bonaguidi, M.A.; Ming, G.L.; Song, H. Adult Neural Stem Cells in the Mammalian Central Nervous System. Cell Res. 2009, 19, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, S.; Matsuda, T.; Nakashima, K. Regulation of Adult Mammalian Neural Stem Cells and Neurogenesis by Cell Extrinsic and Intrinsic Factors. Cells 2021, 10, 1145. [Google Scholar] [CrossRef] [PubMed]
- Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; et al. Neural Stem Cell Transplantation in Patients with Progressive Multiple Sclerosis: An Open-Label, Phase 1 Study. Nat. Med. 2023, 29, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Kaminska, A.; Radoszkiewicz, K.; Rybkowska, P.; Wedzinska, A.; Sarnowska, A. Interaction of Neural Stem Cells (NSCs) and Mesenchymal Stem Cells (MSCs) as a Promising Approach in Brain Study and Nerve Regeneration. Cells 2022, 11, 1464. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Gavasso, S.; Kråkenes, T.; Olsen, H.; Evjenth, E.C.; Ytterdal, M.; Haugsøen, J.B.; Kvistad, C.E. The Therapeutic Mechanisms of Mesenchymal Stem Cells in MS—A Review Focusing on Neuroprotective Properties. Int. J. Mol. Sci. 2024, 25, 1365. [Google Scholar] [CrossRef] [PubMed]
- Van den Bos, J.; El Ouaamari, Y.; Wouters, K.; Cools, N.; Wens, I. Are Cell-Based Therapies Safe and Effective in the Treatment of Neurodegenerative Diseases? A Systematic Review with Meta-Analysis. Biomolecules 2022, 12, 340. [Google Scholar] [CrossRef]
- Doblado, L.R.; Martínez-Ramos, C.; Pradas, M.M. Biomaterials for Neural Tissue Engineering. Front. Nanotechnol. 2021, 3, 643507. [Google Scholar] [CrossRef]
- Sun, P.; Li, C.; Yang, C.; Sun, M.; Hou, H.; Guan, Y.; Chen, J.; Liu, S.; Chen, K.; Ma, Y.; et al. A Biodegradable and Flexible Neural Interface for Transdermal Optoelectronic Modulation and Regeneration of Peripheral Nerves. Nat. Commun. 2024, 15, 4721. [Google Scholar] [CrossRef]
- Yari-Ilkhchi, A.; Mahkam, M.; Ebrahimi-Kalan, A.; Zangbar, H.S. Design and Synthesis of Nano-Biomaterials Based on Graphene and Local Delivery of Cerebrolysin into the Injured Spinal Cord of Mice, Promising Neural Restoration. Nanoscale Adv. 2024, 6, 990–1000. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Zhang, Y.; Lu, P.; Shi, N.; Zhu, W.; Cai, C.; He, N. Soft Integration of a Neural Cells Network and Bionic Interfaces. Front. Bioeng. Biotechnol. 2022, 10, 950235. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Fowden, A.L. The Placenta: A Multifaceted, Transient Organ. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140066. [Google Scholar] [CrossRef] [PubMed]
- Portmann-Lanz, C.B.; Schoeberlein, A.; Huber, A.; Sager, R.; Malek, A.; Holzgreve, W.; Surbek, D.V. Placental Mesenchymal Stem Cells as Potential Autologous Graft for Pre- and Perinatal Neuroregeneration. Am. J. Obs. Gynecol. 2006, 194, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Rajasekaran, R.; Saha, B.; Dixit, K.; Vaidya, P.V.; Ojha, A.K.; Dhara, S. Human Placenta/Umbilical Cord Derivatives in Regenerative Medicine—Prospects and Challenges. Biomater. Sci. 2023, 11, 4789–4821. [Google Scholar] [CrossRef] [PubMed]
- Innamorati, G.; Fontana, E.; Steccanella, F.; Gandhi, K.; Bassi, G.; Zandonà, V.; Giacomello, L. Pleiotropic Effects of Sphingosine-1-Phosphate Signaling to Control Human Chorionic Mesenchymal Stem Cell Physiology. Cell Death Dis. 2017, 8, e2930. [Google Scholar] [CrossRef]
- Li, C.D.; Zhang, W.Y.; Li, H.L.; Jiang, X.X.; Zhang, Y.; Tang, P.; Mao, N. Mesenchymal Stem Cells Derived from Human Placenta Suppress Allogeneic Umbilical Cord Blood Lymphocyte Proliferation. Cell Res. 2005, 15, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Bhartiya, D. Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding. Stem Cells Int. 2013, 2013, 547501. [Google Scholar] [CrossRef] [PubMed]
- Barnabé, G.F.; Schwindt, T.T.; Calcagnotto, M.E.; Motta, F.L.; Martinez, G.; de Oliveira, A.C.; Keim, L.M.N.; D’Almeida, V.; Mendez-Otero, R.; Mello, L.E. Chemically-Induced RAT Mesenchymal Stem Cells Adopt Molecular Properties of Neuronal-Like Cells but Do Not Have Basic Neuronal Functional Properties. PLoS ONE 2009, 4, e5222. [Google Scholar] [CrossRef] [PubMed]
- Papait, A.; Silini, A.R.; Gazouli, M.; Malvicini, R.; Muraca, M.; O’Driscoll, L.; Pacienza, N.; Toh, W.S.; Yannarelli, G.; Ponsaerts, P.; et al. Perinatal Derivatives: How to Best Validate Their Immunomodulatory Functions. Front. Bioeng. Biotechnol. 2022, 10, 981061. [Google Scholar] [CrossRef]
- Hou, L.; Cao, H.; Wang, D.; Wei, G.; Bai, C.; Zhang, Y.; Pei, X. Induction of Umbilical Cord Blood Mesenchymal Stem Cells into Neuron-Like Cells In Vitro. Int. J. Hematol. 2003, 78, 256–261. [Google Scholar] [CrossRef]
- Rooney, G.E.; Howard, L.; O’Brien, T.; Windebank, A.J.; Barry, F.P. Elevation of CAMP in Mesenchymal Stem Cells Transiently Upregulates Neural Markers Rather than Inducing Neural Differentiation. Stem Cells Dev. 2009, 18, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Innamorati, G.; Ridolfi, G.; Steccanella, F.; Bormetti, A.; Dallatana, A.; Bozzetto, C.; Ottoboni, L.; Di Chio, M.; Giacomello, L. CAMP Response Element-Binding Protein Controls the Appearance of Neuron-Like Traits in Chorion Mesenchymal Cells. Front. Biosci.—Landmark 2022, 27, 249. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, K.; Angelopoulos, I.; Gakis, G.; Karantzelis, N.; Spyroulias, G.A.; Lygerou, Z.; Taraviras, S. 3D Reconstitution of the Neural Stem Cell Niche: Connecting the Dots. Front. Bioeng. Biotechnol. 2021, 9, 705470. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Acosta, M.A.; Hernández, L.J.R.; Cristerna, M.L.P.; Tapia-Ramírez, J.; Meraz-Ríos, M.A.; Jiménez-Acosta, M.A.; Hernández, L.J.R.; Cristerna, M.L.P.; Tapia-Ramírez, J.; Meraz-Ríos, M.A. Review: Neuronal Differentiation Protocols of Mesenchymal Stem Cells. Adv. Biosci. Biotechnol. 2022, 13, 15–71. [Google Scholar] [CrossRef]
- Chen, L.; He, D.M.; Zhang, Y. The Differentiation of Human Placenta-Derived Mesenchymal Stem Cells into Dopaminergic Cells in Vitro. Cell Mol. Biol. Lett. 2009, 14, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Talwadekar, M.; Fernandes, S.; Kale, V.; Limaye, L. Valproic Acid Enhances the Neural Differentiation of Human Placenta Derived-Mesenchymal Stem Cells in Vitro. J. Tissue Eng. Regen. Med. 2017, 11, 3111–3123. [Google Scholar] [CrossRef]
- Portmann-Lanz, B.; Schoeberlein, A.; Portmann, R.; Mohr, S.; Rollini, P.; Sager, R.; Surbek, D.V. Turning Placenta into Brain: Placental Mesenchymal Stem Cells Differentiate into Neurons and Oligodendrocytes. Am. J. Obstet. Gynecol. 2010, 202, e1–e294. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Medina, L.V.; Pasantes-Morales, H.; Aguilera-Castrejon, A.; Picones, A.; Lara-Figueroa, C.O.; Luis, E.; Montesinos, J.J.; Cortés-Morales, V.A.; De la Rosa Ruiz, M.P.; Hernández-Estévez, E.; et al. Neuronal Transdifferentiation Potential of Human Mesenchymal Stem Cells from Neonatal and Adult Sources by a Small Molecule Cocktail. Stem Cells Int. 2019, 2019, 7627148. [Google Scholar] [CrossRef]
- Park, S.; Koh, S.E.; Maeng, S.; Lee, W.D.; Lim, J.; Lee, Y.J. Neural Progenitors Generated from the Mesenchymal Stem Cells of First-Trimester Human Placenta Matured in the Hypoxic-Ischemic Rat Brain and Mediated Restoration of Locomotor Activity. Placenta 2011, 32, 269–276. [Google Scholar] [CrossRef]
- Zammit, V.; Brincat, M.R.; Cassar, V.; Muscat-Baron, Y.; Ayers, D.; Baron, B. MiRNA Influences in Mesenchymal Stem Cell Commitment to Neuroblast Lineage Development. Noncoding RNA Res. 2018, 3, 232–242. [Google Scholar] [CrossRef]
- Martini, M.M.; Jeremias, T.D.S.; Kohler, M.C.; Marostica, L.L.; Trentin, A.G.; Alvarez-Silva, M. Human Placenta-Derived Mesenchymal Stem Cells Acquire Neural Phenotype Under the Appropriate Niche Conditions. DNA Cell Biol. 2013, 32, 58–65. [Google Scholar] [CrossRef]
- Fu, Y.S.; Shih, Y.T.; Cheng, Y.C.; Min, M.Y. Transformation of Human Umbilical Mesenchymal Cells into Neurons in Vitro. J. Biomed. Sci. 2004, 11, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-S.; Cheng, Y.-C.; Lin, M.-Y.A.; Cheng, H.; Chu, P.-M.; Chou, S.-C.; Shih, Y.-H.; Ko, M.-H.; Sung, M.-S. Conversion of Human Umbilical Cord Mesenchymal Stem Cells in Wharton’s Jelly to Dopaminergic Neurons In Vitro: Potential Therapeutic Application for Parkinsonism. Stem Cells 2006, 24, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Farivar, S.; Mohamadzade, Z.; Shiari, R.; Fahimzad, A. Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells by Cerebrospinal Fluid. Iran. J. Child. Neurol. 2015, 9, 87. [Google Scholar]
- Augustine, R.; Dan, P.; Hasan, A.; Khalaf, I.M.; Prasad, P.; Ghosal, K.; Gentile, C.; McClements, L.; Maureira, P. Stem Cell-Based Approaches in Cardiac Tissue Engineering: Controlling the Microenvironment for Autologous Cells. Biomed. Pharmacother. 2021, 138, 111425. [Google Scholar] [CrossRef]
- Mukai, T.; Nagamura-Inoue, T.; Shimazu, T.; Mori, Y.; Takahashi, A.; Tsunoda, H.; Yamaguchi, S.; Tojo, A. Neurosphere Formation Enhances the Neurogenic Differentiation Potential and Migratory Ability of Umbilical Cord-Mesenchymal Stromal Cells. Cytotherapy 2015, 18, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Calzarossa, C.; Bossolasco, P.; Besana, A.; Manca, M.P.; De Grada, L.; De Coppi, P.; Giardino, D.; Silani, V.; Cova, L. Neurorescue Effects and Stem Properties of Chorionic Villi and Amniotic Progenitor Cells. Neuroscience 2013, 234, 158–172. [Google Scholar] [CrossRef]
- Gaggi, G.; Di Credico, A.; Guarnieri, S.; Mariggiò, M.A.; Ballerini, P.; Di Baldassarre, A.; Ghinassi, B. Human Fetal Membrane-Mesenchymal Stromal Cells Generate Functional Spinal Motor Neurons in Vitro. iScience 2022, 25, 105197. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, E.; Koh, S.E.; Maeng, S.; Lee, W.D.; Lim, J.; Shim, I.; Lee, Y.J. Dopaminergic Differentiation of Neural Progenitors Derived from Placental Mesenchymal Stem Cells in the Brains of Parkinson’s Disease Model Rats and Alleviation of Asymmetric Rotational Behavior. Brain Res. 2012, 1466, 158–166. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, H.-S.; Kang, J.M.; Bae, S.-H.; Kim, C.; Lee, S.-H.; Schwarz, J.; Kim, G.J.; Kim, J.-S.; Cha, D.H.; et al. Dual Effects of Human Placenta-Derived Neural Cells on Neuroprotection and the Inhibition of Neuroinflammation in a Rodent Model of Parkinson’s Disease. Cell Transpl. 2018, 27, 814–830. [Google Scholar] [CrossRef]
- Salomon, C.; Torres, M.J.; Kobayashi, M.; Scholz-Romero, K.; Sobrevia, L.; Dobierzewska, A.; Illanes, S.E.; Mitchell, M.D.; Rice, G.E. A Gestational Profile of Placental Exosomes in Maternal Plasma and Their Effects on Endothelial Cell Migration. PLoS ONE 2014, 9, e98667. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, A.; Nair, S.; Ormazabal, V.; Elfeky, O.; Garvey, C.E.; Longo, S.; Salomon, C. Circulating Placental Extracellular Vesicles and Their Potential Roles During Pregnancy. Ochsner J. 2020, 20, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Silva, M.; Feng, C.; Zhao, S.; Liu, L.; Li, S.; Zhong, J.; Zheng, W. Exosomes Derived from Human Placental Mesenchymal Stem Cells Enhanced the Recovery of Spinal Cord Injury by Activating Endogenous Neurogenesis. Stem Cell Res. Ther. 2021, 12, 174. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Zhang, S.; Barthe, S.; Kumar, P.; Pivetti, C.; Kreutzberg, N.; Reed, C.; Wang, Y.; Paxton, Z.; Farmer, D.; et al. Placental Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Myelin Regeneration in an Animal Model of Multiple Sclerosis. Cells 2019, 8, 1497. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Khalatbary, A.R.; Taghiloo, S.; Mirzaie, M.S.; Nazar, E.; Poorhassan, M.; Akbari, E.; Asadzadeh, M.; Raoofi, A.; Nasiry, D. Exosomes Derived from Human Placental Mesenchymal Stem Cells in Combination with Hyperbaric Oxygen Synergically Alleviates Spinal Cord Ischemia-Reperfusion Injury. Regen. Ther. 2023, 24, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, A.; Oraee Yazdani, S.; Pedram, M.; Saadinam, F.; Rasaee, M.J.; Soleimani, M. Intrathecal Injection of Human Placental Mesenchymal Stem Cells Derived Exosomes Significantly Improves Functional Recovery in Spinal Cord Injured Rats. Mol. Biol. Rep. 2024, 51, 193. [Google Scholar] [CrossRef] [PubMed]
- Seong, H.-R.; Noh, C.H.; Park, S.; Cho, S.; Hong, S.-J.; Lee, A.-Y.; Geum, D.; Hong, S.-C.; Park, D.; Kim, T.M.; et al. Intraocular Pressure-Lowering and Retina-Protective Effects of Exosome-Rich Conditioned Media from Human Amniotic Membrane Stem Cells in a Rat Model of Glaucoma. Int. J. Mol. Sci. 2023, 24, 8073. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liang, Z.; Rao, J.; Lin, F.; Lin, Y.; Xu, X.; Wang, C.; Chen, C. Mesenchymal Stem Cell-Derived Extracellular Vesicles Therapy in Traumatic Central Nervous System Diseases: A Systematic Review and Meta-Analysis. Neural Regen. Res. 2023, 18, 2406–2412. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Becker, J.C.; Gao, K.; Carney, R.P.; Lankford, L.; Keller, B.A.; Herout, K.; Lam, K.S.; Farmer, D.L.; Wang, A. Neuroprotective Effect of Placenta-Derived Mesenchymal Stromal Cells: Role of Exosomes. FASEB J. 2019, 33, 5836–5849. [Google Scholar] [CrossRef]
- Pulido-Escribano, V.; Torrecillas-Baena, B.; Camacho-Cardenosa, M.; Dorado, G.; Gálvez-Moreno, M.Á.; Casado-Díaz, A. Role of Hypoxia Preconditioning in Therapeutic Potential of Mesenchymal Stem-Cell-Derived Extracellular Vesicles. World J. Stem Cells 2022, 14, 453–472. [Google Scholar] [CrossRef]
- de Laorden, E.H.; Simón, D.; Milla, S.; Portela-Lomba, M.; Mellén, M.; Sierra, J.; de la Villa, P.; Moreno-Flores, M.T.; Iglesias, M. Human Placenta-Derived Mesenchymal Stem Cells Stimulate Neuronal Regeneration by Promoting Axon Growth and Restoring Neuronal Activity. Front. Cell Dev. Biol. 2023, 11, 1328261. [Google Scholar] [CrossRef] [PubMed]
- Joerger-Messerli, M.S.; Oppliger, B.; Spinelli, M.; Thomi, G.; di Salvo, I.; Schneider, P.; Schoeberlein, A. Extracellular Vesicles Derived from Wharton’s Jelly Mesenchymal Stem Cells Prevent and Resolve Programmed Cell Death Mediated by Perinatal Hypoxia-Ischemia in Neuronal Cells. Cell Transpl. 2018, 27, 168–180. [Google Scholar] [CrossRef]
- Pipino, C.; Shangaris, P.; Resca, E.; Zia, S.; Deprest, J.; Sebire, N.J.; David, A.L.; Guillot, P.V.; De Coppi, P. Placenta as a Reservoir of Stem Cells: An Underutilized Resource? Br. Med. Bull. 2013, 105, 43–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, G.; Cui, K.; Chai, Z.; Huang, Z.; Liu, Y.; Chen, S.; Huang, H.; Zhang, K.; Han, Z.; et al. Sulfated Glycosaminoglycans in Decellularized Placenta Matrix as Critical Regulators for Cutaneous Wound Healing. Acta Biomater. 2021, 122, 199–210. [Google Scholar] [CrossRef]
- Lobo, S.E.; Leonel, L.C.P.C.; Miranda, C.M.F.C.; Coelho, T.M.; Ferreira, G.A.S.; Mess, A.; Abrão, M.S.; Miglino, M.A. The Placenta as an Organ and a Source of Stem Cells and Extracellular Matrix: A Review. Cells Tissues Organs 2016, 201, 239–252. [Google Scholar] [CrossRef]
- Ripellino, J.A.; Klinger, M.M.; Margolis, R.U.; Margolis, R.K. The Hyaluronic Acid Binding Region as a Specific Probe for the Localization of Hyaluronic Acid in Tissue Sections. Application to Chick Embryo and Rat Brain. J. Histochem. Cytochem. 1985, 33, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, H.K.; Sephel, G.C.; Tashiro, K.; Weeks, B.S.; Burrous, B.A.; Adler, S.H.; Yamada, Y.; Martin, G.R. Laminin in Neuronal Development. Ann. N. Y. Acad. Sci. 1990, 580, 302–310. [Google Scholar] [CrossRef]
- Schneider, K.H.; Aigner, P.; Holnthoner, W.; Monforte, X.; Nürnberger, S.; Rünzler, D.; Redl, H.; Teuschl, A.H. Decellularized Human Placenta Chorion Matrix as a Favorable Source of Small-Diameter Vascular Grafts. Acta Biomater. 2016, 29, 125–134. [Google Scholar] [CrossRef]
- Barros, D.; Amaral, I.F.; Pêgo, A.P. Laminin-Inspired Cell-Instructive Microenvironments for Neural Stem Cells. Biomacromolecules 2020, 21, 276–293. [Google Scholar] [CrossRef]
- Nurcombe, V. Laminin in Neural Development. Pharmacol. Ther. 1992, 56, 247–264. [Google Scholar] [CrossRef]
- Yoshii, S.; Yamamuro, T.; Ito, S.; Hayashi, M. In Vivo Guidance of Regenerating Nerve by Laminin-Coated Filaments. Exp. Neurol. 1987, 96, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Shan, N.; Zhang, X.; Xiao, X.; Zhang, H.; Tong, C.; Luo, X.; Chen, Y.; Liu, X.; Yin, N.; Deng, Q.; et al. Laminin A4 (LAMA4) Expression Promotes Trophoblast Cell Invasion, Migration, and Angiogenesis, and Is Lowered in Preeclamptic Placentas. Placenta 2015, 36, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Klaffky, E.; Williams, R.; Yao, C.C.; Ziober, B.; Kramer, R.; Sutherland, A. Trophoblast-Specific Expression and Function of the Integrin Alpha 7 Subunit in the Peri-Implantation Mouse Embryo. Dev. Biol. 2001, 239, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Hall, P.E.; Lathia, J.D.; Caldwell, M.A.; Ffrench-Constant, C. Laminin Enhances the Growth of Human Neural Stem Cells in Defined Culture Media. BMC Neurosci. 2008, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Xue, J.F.; Zheng, Z.Y.; Shuhaidi, M.; Thu, H.E.; Hussain, Z. Hyaluronic Acid, an Efficient Biomacromolecule for Treatment of Inflammatory Skin and Joint Diseases: A Review of Recent Developments and Critical Appraisal of Preclinical and Clinical Investigations. Int. J. Biol. Macromol. 2018, 116, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.A.; Brown, K.K.; Meletis, C.D.; Zabriskie, N. Inflammation and Hyaluronic Acid. Altern. Complement. Ther. 2008, 14, 78–84. [Google Scholar] [CrossRef]
- Sunderland, C.A.; Bulmer, J.N.; Luscombe, M.; Redman, C.W.G.; Stirrat, G.M. Immunohistological and Biochemical Evidence for a Role for Hyaluronic Acid in the Growth and Development of the Placenta. J. Reprod. Immunol. 1985, 8, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Sherman, L.S. Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int. J. Mol. Sci. 2020, 21, 5988. [Google Scholar] [CrossRef] [PubMed]
- Seo, T.B.; Han, I.S.; Yoon, J.H.; Seol, I.C.; Kim, Y.S.; Jo, H.K.; An, J.J.; Hong, K.E.; Seo, Y.B.; Kim, D.H.; et al. Growth-Promoting Activity of Hominis Placenta Extract on Regenerating Sciatic Nerve. Acta Pharmacol. Sin. 2006, 27, 50–58. [Google Scholar] [CrossRef]
- Farhadi, M.; Gorji, A.; Mirsalehi, M.; Müller, M.; Poletaev, A.B.; Mahboudi, F.; Asadpour, A.; Ebrahimi, M.; Beiranvand, M.; Khaftari, M.D.; et al. The Human Neuroprotective Placental Protein Composition Suppressing Tinnitus and Restoring Auditory Brainstem Response in a Rodent Model of Sodium Salicylate-Induced Ototoxicity. Heliyon 2023, 9, e19052. [Google Scholar] [CrossRef]
- Park, J.Y.; Byeon, J.H.; Park, S.W.; Eun, S.H.; Chae, K.Y.; Eun, B.L. Neuroprotective Effect of Human Placental Extract on Hypoxic-Ischemic Brain Injury in Neonatal Rats. Brain Dev. 2013, 35, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, C.; Saleem, S.; Das, S.; Biswas, S.C.; Bhattacharyya, D. Human Placental Laminin: Role in Neuronal Differentiation, Cell Adhesion and Proliferation. J. Biosci. 2020, 45, 93. [Google Scholar] [CrossRef]
- Nguyen, B.P.; Gil, S.G.; Carter, W.G. Deposition of Laminin 5 by Keratinocytes Regulates Integrin Adhesion and Signaling. J. Biol. Chem. 2000, 275, 31896–31907. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Hirano, E.; Sugimoto, K.; Hanada, K.; Kaku, T.; Manda, N.; Tsuchida, K. A Farewell to Phlebotomy-Use of Placenta-Derived Drugs Laennec and Porcine for Improving Hereditary Hemochromatosis without Phlebotomy: A Case Report. J. Med. Case Rep. 2022, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Park, S.B. Effect of Human Placental Extract on Health Status in Elderly Koreans. Evid. Based Complement. Altern. Med. 2012, 2012, 732915. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Mantay, M.; Brannan, C.; Griffiths, S. Placental Tissues as Biomaterials in Regenerative Medicine. Biomed. Res. Int. 2022, 2022, 6751465. [Google Scholar] [CrossRef] [PubMed]
- Kogure, C.; Tohda, C. Human Placenta Extract Ameliorates Memory Dysfunction and Dendritic Atrophy in a 5XFAD Mouse Model of Alzheimer’s Disease. Tradit. Kampo Med. 2017, 4, 94–104. [Google Scholar] [CrossRef]
- Jazayeri, M.H.; Barzaman, K.; Nedaeinia, R.; Aghaie, T.; Motallebnezhad, M. Human Placental Extract Attenuates Neurological Symptoms in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis-a Putative Approach in MS Disease? Auto. Immun. Highlights 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Shende, P.; Subedi, M. Pathophysiology, Mechanisms and Applications of Mesenchymal Stem Cells for the Treatment of Spinal Cord Injury. Biomed. Pharmacother. 2017, 91, 693–706. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Liu, W.; Zhou, Y.; Jia, J.; Yang, L. Transplantation of Placenta-Derived Mesenchymal Stem Cell-Induced Neural Stem Cells to Treat Spinal Cord Injury. Neural Regen. Res. 2014, 9, 2197. [Google Scholar] [CrossRef]
- Han, S.; Xiao, Z.; Li, X.; Zhao, H.; Wang, B.; Qiu, Z.; Li, Z.; Mei, X.; Xu, B.; Fan, C.; et al. Human Placenta-Derived Mesenchymal Stem Cells Loaded on Linear Ordered Collagen Scaffold Improves Functional Recovery after Completely Transected Spinal Cord Injury in Canine. Sci. China Life Sci. 2018, 61, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, M.; Meng, F.; Liu, Z.; Wang, S.; Zhang, Y.; Li, M.; Li, Z.; Zhang, L.; Tang, P. 3D Spheroids of Human Placenta-Derived Mesenchymal Stem Cells Attenuate Spinal Cord Injury in Mice. Cell Death Dis. 2021, 12, 1096. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Brown, E.G.; Lankford, L.; Keller, B.A.; Pivetti, C.D.; Sitkin, N.A.; Beattie, M.S.; Bresnahan, J.C.; Farmer, D.L. Placental Mesenchymal Stromal Cells Rescue Ambulation in Ovine Myelomeningocele. Stem Cells Transl. Med. 2015, 4, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Kabagambe, S.; Keller, B.; Becker, J.; Goodman, L.; Pivetti, C.; Lankford, L.; Chung, K.; Lee, C.; Chen, Y.J.; Kumar, P.; et al. Placental Mesenchymal Stromal Cells Seeded on Clinical Grade Extracellular Matrix Improve Ambulation in Ovine Myelomeningocele. J. Pediatr. Surg. 2018, 53, 178–182. [Google Scholar] [CrossRef]
- Vanover, M.; Pivetti, C.; Lankford, L.; Kumar, P.; Galganski, L.; Kabagambe, S.; Keller, B.; Becker, J.; Chen, Y.J.; Chung, K.; et al. High Density Placental Mesenchymal Stromal Cells Provide Neuronal Preservation and Improve Motor Function Following in Utero Treatment of Ovine Myelomeningocele. J. Pediatr. Surg. 2019, 54, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Galganski, L.A.; Kumar, P.; Vanover, M.A.; Pivetti, C.D.; Anderson, J.E.; Lankford, L.; Paxton, Z.J.; Chung, K.; Lee, C.; Hegazi, M.S.; et al. In Utero Treatment of Myelomeningocele with Placental Mesenchymal Stromal Cells—Selection of an Optimal Cell Line in Preparation for Clinical Trials. J. Pediatr. Surg. 2020, 55, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, C.M.; Stokes, S.C.; Jackson, J.E.; Pivetti, C.D.; Kumar, P.; Yamashiro, K.J.; Paxton, Z.J.; Reynaga, L.; Hyllen, A.A.; Wang, A.; et al. Efficacy of Clinical-Grade Human Placental Mesenchymal Stromal Cells in Fetal Ovine Myelomeningocele Repair. J. Pediatr. Surg. 2022, 57, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Chung, K.; Pivetti, C.; Lankford, L.; Kabagambe, S.K.; Vanover, M.; Becker, J.; Lee, C.; Tsang, J.; Wang, A.; et al. Fetal Surgical Repair with Placenta-Derived Mesenchymal Stromal Cell Engineered Patch in a Rodent Model of Myelomeningocele. J. Pediatr. Surg. 2018, 53, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Rho, S.; Kim, G.; Kim, S.-R.; Baek, K.-H.; Kang, M.; Lew, H. Human Umbilical Cord Blood Mononuclear Cells and Chorionic Plate-Derived Mesenchymal Stem Cells Promote Axon Survival in a Rat Model of Optic Nerve Crush Injury. Int. J. Mol. Med. 2016, 37, 1170–1180. [Google Scholar] [CrossRef]
- Park, M.; Kim, H.C.; Kim, O.; Lew, H. Human Placenta Mesenchymal Stem Cells Promote Axon Survival Following Optic Nerve Compression through Activation of NF-ΚB Pathway. J. Tissue Eng. Regen. Med. 2018, 12, e1441–e1449. [Google Scholar] [CrossRef]
- Kwon, H.; Park, M.; Nepali, S.; Lew, H. Hypoxia-Preconditioned Placenta-Derived Mesenchymal Stem Cells Rescue Optic Nerve Axons Via Differential Roles of Vascular Endothelial Growth Factor in an Optic Nerve Compression Animal Model. Mol. Neurobiol. 2020, 57, 3362–3375. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, H.-M.; Shin, H.-A.; Lee, S.-H.; Hwang, D.-Y.; Lew, H. Human Pluripotent Stem Cell-Derived Neural Progenitor Cells Promote Retinal Ganglion Cell Survival and Axon Recovery in an Optic Nerve Compression Animal Model. Int. J. Mol. Sci. 2021, 22, 12529. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.-M.; Kim, H.S.; Park, K.-R.; Shin, J.M.; Kang, A.R.; il Lee, K.; Song, S.; Kim, Y.-B.; Han, S.B.; Chung, H.-M.; et al. Placenta-Derived Mesenchymal Stem Cells Improve Memory Dysfunction in an Aβ1–42-Infused Mouse Model of Alzheimer’s Disease. Cell Death Dis. 2013, 4, e958. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Suh, Y.H.; Chang, K.A. Therapeutic Effects of Human Amniotic Epithelial Stem Cells in a Transgenic Mouse Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 2658. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Shi, K.; Zhang, W.; Yang, L.; Yang, L.; Guan, F.; Yang, B. Therapeutic Potential of Human Amniotic Membrane-Derived Mesenchymal Stem Cells in APP Transgenic Mice. Oncol. Lett. 2016, 12, 1877–1883. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kim, H.S.; Park, J.M.; Kim, H.W.; Park, M.-K.; Lee, H.S.; Lim, D.S.; Lee, T.H.; Chopp, M.; Moon, J. Long-Term Immunomodulatory Effect of Amniotic Stem Cells in an Alzheimer’s Disease Model. Neurobiol. Aging 2013, 34, 2408–2420. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Hou, Z.; Yang, H.; Meng, M.; Li, P.; Zou, Q.; Yang, L.; Chen, Y.; Chai, H.; Zhong, H.; et al. Multiple Systemic Transplantations of Human Amniotic Mesenchymal Stem Cells Exert Therapeutic Effects in an ALS Mouse Model. Cell Tissue Res. 2014, 357, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Kho, A.R.; Kim, O.J.; Jeong, J.H.; Yu, J.M.; Kim, H.S.; Choi, B.Y.; Suh, S.W.; Chung, T.N. Administration of Placenta-Derived Mesenchymal Stem Cells Counteracts a Delayed Anergic State Following a Transient Induction of Endogenous Neurogenesis Activity after Global Cerebral Ischemia. Brain Res. 2018, 1689, 63–74. [Google Scholar] [CrossRef] [PubMed]
- González, P.L.; Carvajal, C.; Cuenca, J.; Alcayaga-Miranda, F.; Figueroa, F.E.; Bartolucci, J.; Salazar-Aravena, L.; Khoury, M. Chorion Mesenchymal Stem Cells Show Superior Differentiation, Immunosuppressive, and Angiogenic Potentials in Comparison With Haploidentical Maternal Placental Cells. Stem Cells Transl. Med. 2015, 4, 1109–1121. [Google Scholar] [CrossRef]
- Kmiecik, G.; Niklińska, W.; Kuć, P.; Pancewicz-Wojtkiewicz, J.; Fil, D.; Karwowska, A.; Karczewski, J.; Mackiewicz, Z. Fetal Membranes as a Source of Stem Cells. Adv. Med. Sci. 2013, 58, 185–195. [Google Scholar] [CrossRef]
Animal Models | Source of P-Biotools | P-MSC/EV Processing before Administration | Administration Route | Evaluation of Functional Recovery | Neuropathological Investigation | Engraftment/Differentiation Assessment | Ref. |
---|---|---|---|---|---|---|---|
Spinal Cord Injury (SCI) | |||||||
Sprague–Dawley rat | Decidual tissue of term placenta ° | Differentiated (no details of medium provided) | In situ injection | - Somatosensory and motor evoked potentials in the rat hindlimbs - Evaluation of hindlimb functions (BBB scale) | H&E staining of injured spinal cords | Detection of P-MSC aggregates around the site of lesion | [80] |
Beagle dog | Cotyledons of term placenta ° | Seeded on LOCS | In situ injection | Improved locomotor hindlimb function recovery (Olby Scores) | Increased axonal regeneration and remyelination in the lesion area | N.A. | [81] |
C57BL/6 mouse | Chorionic tissue from term placenta ° | 2D and spheroids culture | Stereotactically injected | Improved functional outcomes (electrophysiology; BMS locomotion; CatWalk step for coordination) | - Reduced lesion cavity and astrogliosis - Decreased axonal retraction from the lesion site | Detection of 3D P-MSCs in the lesion area up to 4 WPT | [82] |
Sprague–Dawley rat | Term placenta ° | Isolated exosomes | Intravenous injection | Increased neurological function scores (Motor Deficit Index test: hind-paw placing and stepping reflex evaluations) | Increased number of neurons, levels of antioxidative factors, and levels of anti-inflammatory cytokine IL-10 Reduced number of glial cells, expression of caspase 3, level of oxidative factor MDA, and levels of inflammatory cytokines | N.A. | [45] |
Sprague–Dawley rat | Term placenta ° | Isolated exosomes | Intravenous injection | Increased hindlimb locomotor activity; recovery from the lesion-induced weight loss; improved neurogenic bladder dysfunction | Increased number of cells positive for SOX2, GFAP, PAX6, Nestin, SOX1, and Ki67 in the spinal cord | N.A. | [43] |
Multiple Sclerosis (MS) | |||||||
C57BL/6J Mouse | Chorioamniotic membrane of pre-term placenta ° | Untreated cells + isolated extracellular vesicles | Intravenous injection | Improved myelin regeneration and reduced DNA damage in oligodendroglia population in the spinal cord | - Reduced oligodendroglia degeneration (decreased expression of TUNEL and SOX10 double positive cells) in spinal cord tissue sections - Significant reduction in myelin loss in the spinal cord (Luxol Fast Blue staining) | N.A. | [44] |
Optic Nerve Crush (ONC) injury | |||||||
Sprague–Dawley rat | Chorioamniotic membrane of term placenta °; umbilical cord blood (UCBMSC) | Differentiated (aMEM + 10% FBS + hFGF4 + Heparin) | Injection (carotid artery) | N.A. | Slight effects in preserving the axon survival of UCBMSC | Evidence of human ERMN and SRGAP2 expression | [89] |
Sprague–Dawley rat | Chorioamniotic membrane of term placenta ° | Differentiated (DMEM/F12 + 10% FBS + hFGF4 + Heparin) | Injection (carotid artery) | N.A. | N.A. | N.A. | [90] |
Sprague–Dawley rat | Chorioamniotic membrane of term placenta ° | Differentiated (DMEM/F12 + 10% FBS + hFGF4 + Heparin) and hypoxic insult | Subtenon injection | N.A. | Increased gene expression of neuronal (GAP43) and glial (GFAP) markers in nerve extracts | Detection of P-MSCs in the optic nerve tissue 4 WPT | [91] |
Sprague–Dawley rat | Chorioamniotic membrane of term placenta ° | Differentiated (DMEM/F12 + 10% FBS + hFGF4 + Heparin) | Subtenon injection | N.A. | Increased GAP43 expression and reduced Iba1 expression in the optic nerve | N.A. | [92] |
Myelomeningocele (MMC) | |||||||
Sheep | Chorionic villus tissue of pre-term placenta ° | Seeded on collagen hydrogel | In situ application | Improved motor function (SLR scale); 4 out 6 animals which received the PDMSC were able to ambulate independently | Increased number of large neurons in spinal cord of treated lambs | No long-lasting engraftment of P-MSCs | [83] |
Sprague–Dawley rat | Chorionic villus tissue of pre-term placenta ° | Seeded on SIS-ECM circular discs | In situ application | N.A. | - Reduced compression of the spinal cord - Decreased density of apoptotic cells | N.A. | [65] |
Sheep | Chorionic villus tissue of pre-term placenta ° | Seeded on SIS-ECM circular discs § | In situ application | Improved motor function (SLR scale) | - Increased number of large neurons - Increased gray matter and spinal cord areas | N.A. | [84,85,86,87] |
Ischemic Encephalopathy | |||||||
Sprague–Dawley rat | Chorionic villus tissue of pre-term placenta °,* | - Spheroids culture - Differentiated (DMEM/F12, RA, N2) - Neuroblastoma-CM | Stereotactically injected (bilateral striata) | Improved motor and coordination abilities (Rotarod test) | Increased expression of neuronal dopaminergic (TH) and astrocytic (GFAP) markers in the sites of transplantation | Detection of P-MSCs in the lesion area up to 8 WPT | [29] |
Sprague–Dawley rat | Amniotic membrane of term placenta ° | Differentiated (aMEM + 10% FBS + hFGF4 + Heparin) | Intravenous injection | N.A. | Prolonged intrinsic neurogenesis (DCX+/BrdU+/Ki67+) and delayed anergic state | No direct evidence of differentiation in the tissue | [98] |
Parkinson Disease (PD) | |||||||
Sprague–Dawley rat | Wharton’s jelly from umbilical cord | Differentiated (DMEM + 10%FBS + NCM + Shh + FGF8) | Stereotactically injected (striatum) | TH immunocytochemistry in grafted striatum | Increased TH immunoreactivity in the lesioned side of striatum | - Detection of TH positive cells in the implantation area - Colocalization of TH positive cells and human-specific nuclear antigen | [33] |
Sprague–Dawley rat | Chorionic villus tissue of pre-term placenta °,* | - Spheroids culture - Differentiated (DMEM/F12, RA, N2) - Neuroblastoma-CM | Stereotactically injected (striatum) | - Amelioration of asymmetric rotational behavior - Partial recovery in dopaminergic function (18F-FP-CIT PET analysis) | Widespread TH expression in the injured striatum | Detection of human markers (hNA and hMT) and colocalization with neuronal markers (NeuN and TH) at 12 WPT | [39] |
Sprague–Dawley rat | Amniotic membrane of term placenta ° | Spheroids culture + hFGF4 | Stereotactically injected | - Amelioration of motor deficits (rotation test; Rotarod; cylinder test) - Partial recovery in dopaminergic function (18F-FP-CIT PET analysis) | Increased TH immunoreactivity in the lesioned side of striatum | - Detection of human marker (HN) and colocalization with neuronal markers (TH, GABA, glutamate) up to 12 WPT | [40] |
Alzheimer Disease (AD) | |||||||
Tg2576 transgenic (APPswe) Mouse | Amniotic membrane of term placenta ° | Amniotic epithelial cell media + 10% FBS | Stereotactically injected | Improved learning and memory capacities (Morris WMT; Y-maze test) | - Amyloid plaques in the brains of Tg2576 mice - Reduced β-secretase activity | N.A. | [94] |
C57BL/6J-APP mouse | Amniotic membrane of term placenta ° | DMEM + 10% FBS | Intravenous injection | Attenuation of spatial learning and memory function deficits (WMT) | - Reduction in Aβ deposition - Reduction in oxidative stress | N.A. | [95] |
Tg2576 transgenic (APPswe) Mouse | Amniotic membrane of term placenta ° | Differentiated (aMEM + 10% FBS + hFGF4 + Heparin) | Intravenous injection | Improved memory performance from the 3rd to 4th trials (WMT) | - Reduced number of Aβ plaques - Increased number of activated microglia cells with phagocytic activity (co-expression of Iba1 and ED1 markers) | No detection of human cells 1 week post-injection in the treated area | [96] |
ICR Mouse | Chorioamniotic membrane of term placenta ° | Differentiated (aMEM + 10% FBS + hFGF4 + Heparin) | Intravenous injection | Improved learning and memory capacities (water maze test; probe test) | - Reduced anti-amyloidogenic effects (decreased expression of Ab1–42, APP, BACE) in hippocampus - Decreased expression of microglial (Iba1), astrocytic (GFAP) and inflammatory markers (iNOS and COX-2) in hippocampus | No direct evidence of differentiation in the tissue | [93] |
Amyotrophic lateral sclerosis (ALS) | |||||||
hSOD1G93A transgenic mouse | Amniotic membrane of term placenta | α-MEM + 10% FBS + dexamethasone + linoleic acid + PDGF + bFGF for 24 h and then processed without serum for 5 h | Intravenous injection (multiple administrations) | - Significant extension of lifespan - Better motor performances (Rotarod, PaGE test, CatWalk gait analysis) | - Preservation of motor neurons in the spinal cord ventral horns - Reduced microgliosis and astrogliosis compared to PBS-treated mice | - Some cell clusters detected in the spinal cord - No differentiation of transplanted cells into neurons or glia | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallatana, A.; Cremonesi, L.; Pezzini, F.; Fontana, G.; Innamorati, G.; Giacomello, L. The Placenta as a Source of Human Material for Neuronal Repair. Biomedicines 2024, 12, 1567. https://doi.org/10.3390/biomedicines12071567
Dallatana A, Cremonesi L, Pezzini F, Fontana G, Innamorati G, Giacomello L. The Placenta as a Source of Human Material for Neuronal Repair. Biomedicines. 2024; 12(7):1567. https://doi.org/10.3390/biomedicines12071567
Chicago/Turabian StyleDallatana, Alessia, Linda Cremonesi, Francesco Pezzini, Gianluca Fontana, Giulio Innamorati, and Luca Giacomello. 2024. "The Placenta as a Source of Human Material for Neuronal Repair" Biomedicines 12, no. 7: 1567. https://doi.org/10.3390/biomedicines12071567