Effects of Exhaustive Exercise on Adiponectin and High-Molecular-Weight Oligomer Levels in Male Amateur Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Collection, Anthropometric, and Body Composition Parameters
2.3. Exercise Protocol
2.4. ELISA
2.5. Western Blotting
2.6. Statistical Analysis
3. Results
3.1. Anthropometric Characteristics and Physical Exercise Parameters of Study Participants
3.2. Total Serum Adiponectin Levels Increase after Acute Exercise
3.3. Adiponectin Levels Correlate with VO2peak and Powerpeak Following Acute Exercise
3.4. HMW Adiponectin Oligomers Increase after a Single Bout of Exhaustive Exercise
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, Y.; Fernández-García, B.; Lehmann, H.I.; Li, G.; Kroemer, G.; López-Otín, C.; Xiao, J. Exercise sustains the hallmarks of health. J. Sport Health Sci. 2023, 12, 8–35. [Google Scholar] [CrossRef] [PubMed]
- Rusanova, O.M.; Huang, Z. Cardiorespiratory System in the Context of Regular Exercise in Kayaking. Phys. Act. Health 2022, 6, 124–135. [Google Scholar]
- Cabral-Santos, C.; Gerosa-Neto, J.; Inoue, D.S.; Panissa, V.L.; Gobbo, L.A.; Zagatto, A.M.; Campos, E.Z.; Lira, F.S. Similar Anti-Inflammatory Acute Responses from Moderate-Intensity Continuous and High-Intensity Intermittent Exercise. J. Sports Sci. Med. 2015, 14, 849–856. [Google Scholar] [PubMed]
- Wadley, A.J.; Chen, Y.W.; Lip, G.Y.; Fisher, J.P.; Aldred, S. Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. J. Sports Sci. 2016, 34, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. From the discovery of myokines to exercise as medicine. Dan. Med. J. 2023, 70, A12220766. [Google Scholar] [PubMed]
- Neto, J.C.; Lira, F.S.; de Mello, M.T.; Santos, R.V. Importance of exercise immunology in health promotion. Amino Acids 2011, 41, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Mika, A.; Macaluso, F.; Barone, R.; Di Felice, V.; Sledzinski, T. Effect of Exercise on Fatty Acid Metabolism and Adipokine Secretion in Adipose Tissue. Front. Physiol. 2019, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.H.; Stanya, K.J.; Hyde, A.L.; Chalom, M.M.; Alexander, R.K.; Liou, Y.H.; Starost, K.A.; Gangl, M.R.; Jacobi, D.; Liu, S.; et al. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 2020, 368, eaat3987. [Google Scholar] [CrossRef] [PubMed]
- Forti, L.N.; Van Roie, E.; Njemini, R.; Coudyzer, W.; Beyer, I.; Delecluse, C.; Bautmans, I. Effects of resistance training at different loads on inflammatory markers in young adults. Eur. J. Appl. Physiol. 2017, 117, 511–519. [Google Scholar] [CrossRef]
- Cox, A.J.; Pyne, D.B.; Saunders, P.U.; Callister, R.; Gleeson, M. Cytokine responses to treadmill running in healthy and illness-prone athletes. Med. Sci. Sports Exerc. 2007, 39, 1918–1926. [Google Scholar] [CrossRef]
- Mallardo, M.; Daniele, A.; Musumeci, G.; Nigro, E. A Narrative Review on Adipose Tissue and Overtraining: Shedding Light on the Interplay among Adipokines, Exercise and Overtraining. Int. J. Mol. Sci. 2024, 25, 4089. [Google Scholar] [CrossRef]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef] [PubMed]
- van Andel, M.; Heijboer, A.C.; Drent, M.L. Adiponectin and Its Isoforms in Pathophysiology. Adv. Clin. Chem. 2018, 85, 115–147. [Google Scholar]
- Obata, Y.; Yamada, Y.; Takahi, Y.; Baden, M.Y.; Saisho, K.; Tamba, S.; Yamamoto, K.; Umeda, M.; Furubayashi, A.; Matsuzawa, Y. Relationship between serum adiponectin levels and age in healthy subjects and patients with type 2 diabetes. Clin. Endocrinol. 2013, 79, 204–210. [Google Scholar] [CrossRef]
- Tomono, Y.; Hiraishi, C.; Yoshida, H. Age and sex differences in serum adiponectin and its association with lipoprotein fractions. Ann. Clin. Biochem. 2018, 55, 165–171. [Google Scholar] [CrossRef]
- Vilarrasa, N.; Vendrell, J.; Maravall, J.; Broch, M.; Estepa, A.; Megia, A.; Soler, J.; Simón, I.; Richart, C.; Gómez, J.M. Distribution and determinants of adiponectin, resistin and ghrelin in a randomly selected healthy population. Clin. Endocrinol. 2005, 63, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Staiger, H.; Tschritter, O.; Machann, J.; Thamer, C.; Fritsche, A.; Maerker, E.; Schick, F.; Häring, H.-U.; Stumvoll, M. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes. Res. 2003, 11, 368–372. [Google Scholar] [CrossRef]
- Moghadasi, M.; Mohebbi, H.; Rahmani-Nia, F.; Hassan-Nia, S.; Noroozi, H.; Pirooznia, N. High-intensity endurance training improves adiponectin mRNA and plasma concentrations. Eur. J. Appl. Physiol. 2012, 112, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Mallardo, M.; D’Alleva, M.; Lazzer, S.; Giovanelli, N.; Graniero, F.; Billat, V.; Fiori, F.; Marinoni, M.; Parpinel, M.; Daniele, A.; et al. Improvement of adiponectin in relation to physical performance and body composition in young obese males subjected to twenty-four weeks of training programs. Heliyon 2023, 9, 15790. [Google Scholar] [CrossRef]
- Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur. J. Appl. Physiol. 2013, 113, 2531–2540. [Google Scholar] [CrossRef]
- Saunders, T.J.; Palombella, A.; McGuire, K.A.; Janiszewski, P.M.; Després, J.P.; Ross, R. Acute exercise increases adiponectin levels in abdominally obese men. J. Nutr. Metab. 2012, 2012, 148729. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.; Keshtkar, A.; Hasani-Ranjbar, S.; Soleymani Far, E.; Tabatabaei-Malazy, O.; Omidfar, K.; Larijani, B. The impact of one session resistance exercise on plasma adiponectin and RBP4 concentration in trained and untrained healthy young men. Endocr. J. 2011, 58, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Varady, K.A.; Bhutani, S.; Church, E.C.; Phillips, S.A. Adipokine responses to acute resistance exercise in trained and untrained men. Med. Sci. Sports Exerc. 2010, 42, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, H.Ş.; Uzun, Y.E.; Kutlu, O.; Pençe, H.H.; Özçelik, F.; Çil, E.Ö.; Irak, L.; Altun, Ö.; Özcan, M.; Özsoy, N.; et al. The effects of high intensity-interval training on vaspin, adiponectin and leptin levels in women with polycystic ovary syndrome. Arch. Physiol. Biochem. 2022, 128, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Nigro, E.; Sangiorgio, D.; Scudiero, O.; Monaco, M.L.; Polito, R.; Villone, G.; Daniele, A. Gene molecular analysis and Adiponectin expression in professional Water Polo players. Cytokine 2016, 81, 88–93. [Google Scholar] [CrossRef]
- Missaglia, S.; Tommasini, E.; Vago, P.; Pecci, C.; Galvani, C.; Silvestrini, A.; Mordente, A.; Tavian, D. Salivary and serum irisin in healthy adults before and after exercise. Eur. J. Transl. Myol. 2023, 33, 11093. [Google Scholar] [CrossRef] [PubMed]
- Tommasini, E.; Missaglia, S.; Vago, P.; Galvani, C.; Pecci, C.; Rampinini, E.; Bosio, A.; Morelli, A.; Bonanomi, A.; Silvestrini, A.; et al. The time course of irisin release after an acute exercise: Relevant implications for health and future experimental designs. Eur. J. Transl. Myol. 2024, 34, 12693. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.R.; Gibson, A.L. Health-Related Physical Fitness Testing and Interpretation. In ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Liguori, G., Ed.; Wolters Kluwer: Philadelphia, PA, USA, 2021; pp. 116–182. [Google Scholar]
- Bouassida, A.; Chamari, K.; Zaouali, M.; Feki, Y.; Zbidi, A.; Tabka, Z. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br. J. Sports Med. 2010, 44, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, T.; Wegewitz, U.; Brechtel, L.; Freudenberg, M.; Mai, K.; Möhlig, M.; Diederich, S.; Ristow, M.; Rochlitz, H.; Pfeiffer, A.F.; et al. Adiponectin oligomers in human serum during acute and chronic exercise: Relation to lipid metabolism and insulin sensitivity. Int. J. Sports Med. 2007, 28, 1–8. [Google Scholar] [CrossRef]
- Kraemer, R.R.; Aboudehen, K.; Carruth, A.; Durand, R.; Acevedo, E.; Hebert, E. Adiponectin responses to continuous and progressively intense intermittent exercise. Med. Sci. Sports Exerc. 2003, 35, 1320–1325. [Google Scholar] [CrossRef]
- Jamurtas, A.Z.; Theocharis, V.; Koukoulis, G.; Stakias, N.; Fatouros, I.G.; Kouretas, D.; Koutedakis, Y. The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur. J. Appl. Physiol. 2006, 97, 122–126. [Google Scholar] [CrossRef]
- Numao, S.; Suzuki, M.; Matsuo, T.; Nomata, Y.; Nakata, Y.; Tanaka, K. Effects of acute aerobic exercise on high-molecular-weight adiponectin. Med. Sci. Sports Exerc. 2008, 40, 1271–1276. [Google Scholar] [CrossRef]
- Ando, D.; Hosaka, Y.; Suzuki, K.; Yamagata, Z. Effects of exercise training on circulating high molecular weight adiponectin and adiponectin oligomer composition: A randomized controlled trial. J. Atheroscler. Thromb. 2009, 16, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Higaki, Y.; Taguchi, N.; Hara, M.; Nakamura, K.; Nanri, H.; Imaizumi, T.; Sakamoto, T.; Shimanoe, C.; Horita, M.; et al. Intensity-Specific and Modified Effects of Physical Activity on Serum Adiponectin in a Middle-Aged Population. J. Endocr. Soc. 2019, 3, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.R.; Blaszczak, A.; Haus, J.M.; Patrick-Melin, A.; Fealy, C.E.; Solomon, T.P.; Kalinski, M.I.; Kirwan, J.P. A 7-d exercise program increases high-molecular weight adiponectin in obese adults. Med. Sci. Sports Exerc. 2012, 44, 69–74. [Google Scholar] [CrossRef]
- ELsaied, M.A.; Masallat, D.; Abdel-Hamid, I.A. Correlation of Adiponectin with Testosterone in Patients with and Without Type 2 Diabetes and Erectile Dysfunction. Am. J. Mens Health 2019, 13, 1557988318807049. [Google Scholar] [CrossRef]
- Mancuso, P.; Bouchard, B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Front. Endocrinol. 2019, 10, 137. [Google Scholar] [CrossRef]
Young Adults (N.15) | Middle-Aged Adults (N.10) | p-Value | |
---|---|---|---|
Age, yrs | 25.3 ± 4.1 | 54.0 ± 5.9 | <0.001 * |
Height, m | 1.79 ± 0.06 | 1.81 ± 0.05 | 0.404 |
Weight, kg | 75.6 ± 8.2 | 77.3 ± 7.8 | 0.824 |
BMI, kg/m2 | 23.5 ± 2.3 | 23.6 ± 2.4 | 0.782 |
FM, % | 11.7 ± 6.0 | 16.9 ± 6.5 | 0.035 * |
HRpeak, bpm | 188 ± 10 | 168 ± 14 | 0.001 * |
VO2peak, mL/kg/min | 48.4 ± 6.8 | 44.2 ± 5.0 | 0.157 |
Powerpeak, W | 290 ± 59 | 329 ± 25 | 0.030 * |
Correlations | Age-Adjusted Correlations | |||
---|---|---|---|---|
Baseline Adiponectin Level (µg/mL) | Baseline Adiponectin Level (µg/mL) | |||
r | p-Value | r | p-Value | |
Age, years | 0.161 | 0.441 | - | - |
BMI, kg/m2 | −0.188 | 0.367 | −0.193 | 0.365 |
FM, % | 0.192 | 0.359 | 0.135 | 0.534 |
VO2peak, mL/kg/min | −0.495 | 0.012 * | −0.474 | 0.019 * |
Powerpeak, W | −0.507 | 0.010 * | −0.645 | <0.001 * |
Correlations | Age-Adjusted Correlations | |||
---|---|---|---|---|
Baseline Adiponectin Level (µg/mL) | Baseline Adiponectin Level (µg/mL) | |||
r | p-Value | r | p-Value | |
Age, years | −0.237 | 0.396 | - | - |
BMI, kg/m2 | −0.188 | 0.502 | −0.200 | 0.493 |
FM, % | 0.106 | 0.706 | −0.188 | 0.519 |
VO2peak, mL/kg/min | −0.487 | 0.066 | −0.498 | 0.070 * |
Powerpeak, W | −0.662 | 0.007 * | −0.651 | 0.012 * |
Correlations | Age-Adjusted Correlations | |||
---|---|---|---|---|
Baseline Adiponectin Level (µg/mL) | Baseline Adiponectin Level (µg/mL) | |||
r | p-Value | r | p-Value | |
Age, years | 0.211 | 0.558 | - | - |
BMI, kg/m2 | −0.243 | 0.499 | −0.257 | 0.505 |
FM, % | 0.205 | 0.571 | 0.142 | 0.716 |
VO2peak, mL/kg/min | −0.395 | 0.259 | −0.347 | 0.360 |
Powerpeak, W | −0.516 | 0.127 | −0.768 | 0.016 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallardo, M.; Tommasini, E.; Missaglia, S.; Pecci, C.; Rampinini, E.; Bosio, A.; Morelli, A.; Daniele, A.; Nigro, E.; Tavian, D. Effects of Exhaustive Exercise on Adiponectin and High-Molecular-Weight Oligomer Levels in Male Amateur Athletes. Biomedicines 2024, 12, 1743. https://doi.org/10.3390/biomedicines12081743
Mallardo M, Tommasini E, Missaglia S, Pecci C, Rampinini E, Bosio A, Morelli A, Daniele A, Nigro E, Tavian D. Effects of Exhaustive Exercise on Adiponectin and High-Molecular-Weight Oligomer Levels in Male Amateur Athletes. Biomedicines. 2024; 12(8):1743. https://doi.org/10.3390/biomedicines12081743
Chicago/Turabian StyleMallardo, Marta, Ester Tommasini, Sara Missaglia, Claudio Pecci, Ermanno Rampinini, Andrea Bosio, Andrea Morelli, Aurora Daniele, Ersilia Nigro, and Daniela Tavian. 2024. "Effects of Exhaustive Exercise on Adiponectin and High-Molecular-Weight Oligomer Levels in Male Amateur Athletes" Biomedicines 12, no. 8: 1743. https://doi.org/10.3390/biomedicines12081743
APA StyleMallardo, M., Tommasini, E., Missaglia, S., Pecci, C., Rampinini, E., Bosio, A., Morelli, A., Daniele, A., Nigro, E., & Tavian, D. (2024). Effects of Exhaustive Exercise on Adiponectin and High-Molecular-Weight Oligomer Levels in Male Amateur Athletes. Biomedicines, 12(8), 1743. https://doi.org/10.3390/biomedicines12081743