Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors as a New Treatment Option for Anemia in Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Anemia Treatment in CKD
4. Guidelines of Anemia Treatment in CKD
5. Hypoxia-Inducible Factor (HIF) System
6. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors (HIF-PHIs)
6.1. Roxadustat (FG-4592)
6.2. Vadadustat (AKB-6548)
6.3. Daprodustat (GSK-1278863)
6.4. Molidustat (BAY-85-3934)
7. Comparison of the Effectiveness of Different HIF-PHIs
8. Additional Actions of HIF-PHIs
9. Potential Adverse Effects of HIF-PHIs
9.1. Cardiovascular Complications
9.2. Tumorogenesis
9.3. Hyperkalemia
9.4. Retinopathy
10. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Lv, J.C.; Zhang, L.X. Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol. 2019, 1165, 3–15. [Google Scholar] [PubMed]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global prevalence of chronic kidney disease—A systematic review and meta-analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ortega, M.; Rayego-Mateos, S.; Lamas, S.; Ortis, A.; Rodrigues-Diez, R.R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 269–288. [Google Scholar] [CrossRef]
- Provenzano, M.; Coppolino, G.; Faga, T.; Garofalo, C.; Serra, R.; Andreucci, M. Epidemiology of cardiovascular risk in chronic kidney disease patients: The real silent killer. Rev. Cardiovasc. Med. 2019, 20, 209–220. [Google Scholar]
- Lefebvre, P.; Vekema, F.; Sarokhan, B.; Enny, C.; Provenzano, R.; Cremieux, P.Y. Relationship between hemoglobin level and quality of life in anemic patients with chronic kidney disease receiving epoetin alfa. Curr. Med. Res. Opin. 2006, 22, 1929–1937. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Trivedi, B.K.; Kalantar-Zadeh, K.; Anderson, J.E. Association of anemia with outcomes in men with moderate and severe chronic kidney disease. Kidney Int. 2006, 69, 560–564. [Google Scholar] [CrossRef]
- Stauffer, M.E.; Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 2014, 9, e84943. [Google Scholar] [CrossRef]
- Minutolo, R.; Locatelli, F.; Gallieni, M.; Bonofiglio, R.; Fuiano, G.; Oldrizzi, L.; Conte, G.; De Nicola, L.; Mangione, F.; Esposito, P.; et al. Anaemia management in non-dialysis chronic kidney disease (CKD) patients: A multicentre prospective study in renal clinics. Nephrol. Dial. Transplant. 2013, 28, 3035–3045. [Google Scholar] [CrossRef]
- Sofue, T.; Nakagawa, N.; Kanda, E.; Nagasu, H.; Matsushita, K.; Nangaku, M.; Maruyama, S.; Wada, T.; Terada, Y.; Yamagata, K.; et al. Prevalence of anemia in patients with chronic kidney disease in Japan: A nationwide, cross-sectional cohort study using data from the Japan Chronic Kidney Disease Database (J-CKD-DB). PLoS ONE 2020, 15, e0236132. [Google Scholar] [CrossRef] [PubMed]
- Farrington, D.K.; Sang, Y.; Grams, M.E.; Ballew, S.H.; Dunning, S.; Stempniewicz, N.; Coresh, J. Anemia Prevalence, Type, and Associated Risks in a Cohort of 5.0 Million Insured Patients in the United States by Level of Kidney Function. Am. J. Kidney Dis. 2023, 81, 201–209.e1. [Google Scholar] [CrossRef]
- Nangaku, M.; Eckardt, K.U. Pathogenesis of renal anemia. Semin. Nephrol. 2006, 26, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef]
- Pergola, P.E.; Fishbane, S.; Ganz, T. Novel oral iron therapies for iron deficiency anemia in chronic kidney disease. Adv. Chronic Kidney Dis. 2019, 6, 272–291. [Google Scholar] [CrossRef]
- Gluba-Brzóska, A.; Franczyk, B.; Olszewski, R.; Rysz, J. The influence of inflammation on anemia in CKD patients. Int. J. Mol. Sci. 2020, 21, 725. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Miyazaki, M.; Nakayama, M.; Yamada, G.; Matsushima, M.; Sato, M.; Sato, T.; Taguma, Y.; Sato, H.; Ito, S. Impact of hemoglobin levels on renal and non-renal clinical outcomes differs by chronic kidney stages: The Gonryo study. Clin. Exp. Nephrol. 2016, 20, 595–602. [Google Scholar] [CrossRef]
- Gouva, C.; Nikolopoulos, P.; Ioannidis, J.P.; Siamopoulos, K.C. Treating anemia early in renal failure patients slows the decline of renal function: A randomized controlled trail. Kidney Int. 2004, 66, 753–760. [Google Scholar] [CrossRef]
- Gupta, N.; Wish, J.B. Hypoxia-inducible factor prolyl hydroxylase inhibitors: A potential new treatment for anemia in patients with CKD. Am. J. Kidney Dis. 2017, 69, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Kurata, Y.; Tanaka, T.; Nangaku, M. Hypoxia-inducible factor prolyl hydroxylase inhibitor in the treatment of anemia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2020, 29, 414–422. [Google Scholar] [CrossRef]
- Eschbach, J.W.; Adamson, J.W. Recombinant human erythropoietin: Implications for nephrology. Am. J. Kidney Dis. 1988, 11, 203–209. [Google Scholar] [CrossRef]
- Winearls, C.G.; Oliver, D.O.; Pippard, M.J.; Reid, C.; Downing, M.R.; Coles, P.M. Effect of human erythropoietin derived from recombinant DNA on the anaemia of patients maintained by chronic haemodialysis. Lancet 1986, 2, 1175–1178. [Google Scholar] [CrossRef]
- Palmer, S.C.; Saglimbene, V.; Craig, J.C.; Navaneethan, S.D.; Strippoli, G.F. Darbepoetin for the anaemia of chronic kidney disease. Cochrane Database Syst. Rev. 2014, 2014, CD009297. [Google Scholar] [CrossRef] [PubMed]
- Macdougall, I.C.; Robson, R.; Opatrna, S.; Liogier, X.; Pannier, A.; Jordan, P.; Dougherty, F.C.; Reigner, B. Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (C.E.R.A.) in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2006, 1, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Hörl, W.H. Differentiating factors between erythropoiesis-stimulating agents: An update to selection for anaemia of chronic kidney disease. Drugs 2013, 73, 117–130. [Google Scholar] [CrossRef]
- Bartnicki, P.; Stępień, M.; Rysz, J. Methoxy polyethylene glycol-epoetin beta as a novel erythropoiesis stimulating agent with possible nephroprotective and cardiovascular protective effects in non-dialysis chronic kidney disease patients. Curr. Pharm. Biotechnol. 2017, 18, 303–308. [Google Scholar]
- Sakagouchi, Y.; Hamano, T.; Wada, A.; Masakane, I. Types of erythropoietin-stimulating agents and mortality among patients undergoing hemodialysis. J. Am. Soc. Nephrol. 2019, 30, 1037–1048. [Google Scholar] [CrossRef]
- Minutolo, R.; Garofalo, C.; Chiodini, P.; Aucella, F.; Del Vecchio, L.; Locatelli, F.; Scaglione, F.; De Nicola, L. Types of erythropoiesis-stimulating agents and risk of end-stage chronic disease and death in patients with non-dialysis chronic kidney disease. Nephrol. Dial. Transplant. 2021, 36, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Saglimbene, V.; Mavridis, D.; Salanti, G.; Craig, J.C.; Tonelli, M.; Wiebe, N.; Strippoli, G.F. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: A network meta-analysis. Cochrane Database Sys. Rev. 2014, 2014, CD010590. [Google Scholar] [CrossRef]
- Hahn, D.; Esezobor, C.I.; Elseafy, N.; Webster, A.C.; Hodson, E.M. Short-acting erythropoiesis-stimulating agents for anaemia in predialysis patients. Cochrane Database Syst. Rev. 2017, 1, CD011690. [Google Scholar] [CrossRef]
- Johansen, K.L.; Finkelstein, F.O.; Revicki, D.A.; Evans, C.; Wan, S.; Gitlin, M.; Agodoa, I.L. Systematic review of the impact of erythropoiesis-stimulating agents on fatigue in dialysis patients. Nephrol. Dial. Transplant. 2012, 27, 2418–2425. [Google Scholar] [CrossRef] [PubMed]
- Drȕecke, T.B.; Locatelli, F.; Clyne, N.; Eckardt, K.U.; Macdougall, I.C.; Tsakiris, D.; Burger, H.U.; Scherhag, A.; CREATE Investigators. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 2006, 335, 2071–2084. [Google Scholar] [CrossRef]
- Singh, A.K.; Szczech, L.; Tang, K.L.; Barnhart, H.; Sapp, S.; Wolfson, M.; Reddan, D.; CHOIR Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N. Eng. J. Med. 2006, 355, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Zhou, X.J. Potential mechanisms of adverse outcomes in trails of anemia correction with erythropoietin in chronic kidney disease. Nephrol. Dial. Transplant. 2009, 24, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Gafter-Gvili, A.; Schechter, A.; Rozen-Zvi, B. Iron deficiency anemia in chronic kidney disease. Acta Hematol. 2019, 142, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Bazeley, J.W.; Wish, J.B. Recent and emerging therapies for iron deficiency in anemia of CKD: A review. Am. J. Kidney Dis. 2022, 79, 868–876. [Google Scholar] [CrossRef]
- KDIGO Anemia Working Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int. Suppl. 2012, 2, 279–335. [Google Scholar]
- Locatelli, F.; Covic, A.; Eckardt, K.U.; Więcek, A.; Vanholder, R. ERA-EDTA Advisory Board: Anaemia management in patients with chronic kidney disease: A position statement by the Anaemia Working Group of European Renal Best Practice (ERBP). Nephrol. Dial. Transplant. 2009, 24, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.M.Y.; Tu, C.; Li, Y.; Perlman, R.L.; Pecotis-Filho, R.; Lopes, A.A.; Narita, I.; Reichel, H.; Port, F.K.; Sukul, N.; et al. Anemia and iron deficiency among chronic kidney disease stages 3-5ND patients in the chronic kidney disease outcomes and practice patterns study: Often unmeasured, variably treated. Clin. Kidney J. 2019, 13, 613–624. [Google Scholar] [CrossRef]
- Babitt, J.L.; Eisenga, M.F.; Haase, V.H.; Kshirsagar, A.V.; Levin, A.; Locatelli, F.; Małyszko, J.; Swinkels, D.W.; Tang, D.C.; Cheung, M.; et al. Controversies in optimal anemia management: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2021, 99, 1280–1295. [Google Scholar] [CrossRef]
- Ku, E.; Del Vecchio, L.; Echardt, K.U.; Haase, V.H.; Johansen, K.L.; Nangaku, M.; Tangri, N.; Waikar, S.S.; Więcek, A.; Cheung, M.; et al. Novel anemia therapies in chronic kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 2023, 104, 655–680. [Google Scholar] [CrossRef]
- Stoumpos, S.; Crowe, K.; Sarafidis, P.; Barratt, J.; Bolignano, D.; Del Vecchio, L.; Małyszko, J.; Więcek, A.; Ortiz, A.; Cozzolino, M. Hypoxia-inducible factor prolyl hydroxylase inhibitors for anaemia in chronic kidney disease: A document by the European Renal Best Practice board of the European Renal Association. Nephrol. Dial. Transplant. 2024, 4, gfae075. [Google Scholar] [CrossRef] [PubMed]
- Portoles, J.; Martin, L.; Broseta, J.J.; Cases, A. Anemia in chronic kidney disease: From pathophysiology and current treatments, to future agents. Front. Med. 2021, 8, 642296. [Google Scholar] [CrossRef]
- Pan, X.; Suzuki, N.; Hirano, I.; Yamazaki, S.; Minegishi, N.; Yamamoto, M. Isolation and characterization of renal erythropoietin—Producing cells from genetically produced anemia mice. PLoS ONE 2011, 6, e25839. [Google Scholar] [CrossRef]
- Semenza, G.L.; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site requires for transcriptional activation. Mol. Cell. Biol. 1992, 12, 5447–5454. [Google Scholar]
- Tacchini, L.; Bianchi, L.; Bernelli-Zazzera, A.; Cairo, G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 1999, 274, 24142–24146. [Google Scholar] [CrossRef]
- Rankin, E.B.; Rha, J.; Selak, M.A.; Unger, T.L.; Keith, B.; Liu, Q.; Haase, V.H. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol. Cell. Biol. 2009, 29, 4527–4538. [Google Scholar] [CrossRef] [PubMed]
- Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. HIF transcription factors, inflammation and immunity. Immunity 2014, 41, 518–528. [Google Scholar] [CrossRef]
- Marsch, E.; Demandt, J.A.; Theelen, T.L.; Tullemans, B.M.; Wouters, K.; Boon, M.R.; van Dijk, T.H.; Gijbels, M.J.; Dubois, L.J.; Meex, S.J.R.; et al. Deficiency of the oxygen sensor prolyl hydroxylase 1 attenuates hypercholesterolemia, atherosclerosis and hyperglycemia. Eur. Heart J. 2016, 37, 2993–2997. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.T.; Scholz, C.C. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 2022, 18, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Wiesener, M.S.; Jürgensen, J.S.; Rosenberger, C.; Scholze, C.K.; Hörstrup, J.H.; Warnecke, C.; Mandriota, S.; Bechmann, I.; Frei, U.A.; Pugh, C.W.; et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003, 17, 271–273. [Google Scholar] [CrossRef]
- Fong, G.H.; Takeda, K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008, 15, 635–641. [Google Scholar] [CrossRef]
- Drevytska, T.; Gavenauskas, B.; Drozdovska, S.; Nosar, V.; Dosenko, V.; Mankovska, I. HIF-3α mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise. Pathophisiology 2012, 19, 205–214. [Google Scholar] [CrossRef] [PubMed]
- West, J.B. Physiological effects of chronic hypoxia. N. Engl. J. Med. 2017, 376, 1965–1971. [Google Scholar] [CrossRef]
- Li, J.; Haase, V.H.; Hao, C.M. Updates on hypoxia-inducible factor prolyl hydroxylase inhibitors in the treatment of renal anemia. Kidney Dis. 2022, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, K.U. The noblesse of kidney physiology. Kidney Int. 2019, 96, 1250–1253. [Google Scholar] [CrossRef]
- Besarab, A.; Provenzano, R.; Hertel, J.; Zabaneh, R.; Klaus, S.J.; Lee, T.; Leong, R.; Hemmerich, S.; Yu, K.H.; Neff, T.B. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol. Dial. Transplant. 2015, 30, 1665–1673. [Google Scholar] [CrossRef]
- Provenzano, R.; Tumlin, J.; Zabaneh, R.; Chou, J.; Hemmerich, S.; Neff, T.B.; Yu, K.P. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for treatment of anemia in chronic kidney disease: A placebo-controlled study of pharmacokinetic and pharmacodynamic profiles in hemodialysis patients. J. Clin. Pharmacol. 2020, 60, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Besarab, A.; Chernyavskaya, E.; Motylev, I.; Shutov, E.; Kumbar, L.M.; Gurevich, K.; Chan, D.T.M.; Leong, R.; Poole, L.; Zhong, M.; et al. Roxadustat (FG-4592): Correction of anemia in incident dialysis patients. J. Am. Soc. Nephrol. 2016, 27, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, R.; Besarab, A.; Wright, S.; Dua, S.; Zeig, S.; Nguyen, P.; Poole, L.; Saikali, K.G.; Saha, G.; Hemmerich, S.; et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: A phase 2, randomized, 6- to 19-week, open-label, active comparator, dose-ranging, safety and exploratory efficacy study. Am. J. Kidney Dis. 2016, 67, 912–924. [Google Scholar] [CrossRef]
- Provenzano, R.; Besarab, A.; Sun, C.H.; Diamond, S.A.; Durham, J.K.; Cangiano, J.L.; Aiello, J.R.; Novak, J.E.; Lee, T.; Leong, R.; et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 982–991. [Google Scholar] [CrossRef]
- Fishbane, S.; Pollock, C.A.; El-Shahawy, M.A.; Escudero, E.T.; Rastogi, A.; Van, B.P.; Frison, L.; Houser, M.; Pola, M.; Little, D.J.; et al. Roxadustat versus epoetin alfa for treating anemia in patients with chronic kidney disease on dialysis: Results from the randomized phase 3 ROCKIES Study. J. Am. Soc. Nephrol. 2022, 33, 850–866. [Google Scholar] [CrossRef]
- Csiky, B.; Schömig, M.; Esposito, C.; Barratt, J.; Reusch, M.; Valluri, U.; Sulowicz, W. Roxadustat for the maintenance treatment of anemia in patients with end-stage kidney disease on stable dialysis: A European phase 3, randomized, open-label, active-controlled (PYRENEES). Adv. Ther. 2021, 38, 5361–5380. [Google Scholar] [CrossRef]
- Charytan, C.; Manllo-Karim, R.; Martin, E.R.; Steer, D.; Bernardo, M.; Dua, S.L.; Moustafa, M.A.; Saha, G.; Bradley, C.; Eyassu, M.; et al. A randomized trial of roxadustat in anemia of kidney failure: SIERRAS Study. Kidney Int. Rep. 2021, 17, 1829–1839. [Google Scholar] [CrossRef]
- Provenzano, R.; Shutov, E.; Eremeeva, L.; Korneyeva, S.; Poole, L.; Saha, G.; Bradley, C.; Eyassu, M.; Besarab, A.; Leong, R.; et al. Roxadustat for anemia in patients with end-stage renal disease incident to dialysis. Nephrol. Dial. Transplant. 2021, 36, 1717–1730. [Google Scholar] [CrossRef] [PubMed]
- Shutov, E.; Sulowicz, W.; Esposito, C.; Tataradze, A.; Andric, B.; Reusch, M.; Valluri, U.; Dimkovic, N. Roxadustat for the treatment of anemia in chronic kidney disease patients not on dialysis: A phase 3, randomized, double-blind, placebo-controlled study (ALPS). Nephrol. Dial. Transplant. 2021, 36, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Coyne, D.W.; Roger, S.D.; Shin, S.K.; Kim, S.G.; Cadena, A.A.; Moustafa, M.A.; Chan, T.M.; Besarab, A.; Chou, W.; Bradley, C.; et al. Roxadustat for CKD-related anemia in non-dialysis patients. Kidney Int. Rep. 2020, 6, 624–635. [Google Scholar] [CrossRef]
- Fishbane, S.; El-Shahawy, M.A.; Pecoits-Filho, R.; Van, B.P.; Houser, M.T.; Frison, L.; Little, D.J.; Guzman, N.J.; Pergola, P.E. Roxadustat for treating anemia in patients with CKD not on dialysis: Results from a randomized phase 3 study. J. Am. Soc. Nephrol. 2021, 32, 737–755. [Google Scholar] [CrossRef]
- Barratt, J.; Andric, B.; Tataradze, A.; Schömig, M.; Reusch, M.; Valluri, U.; Mariat, C. Roxadustat for the treatment of anaemia in chronic kidney disease patients not on dialysis: A phase 3, randomized, open-label, active-controlled study (DOLOMITES). Nephrol. Dial. Transplant. 2021, 36, 1616–1628. [Google Scholar] [CrossRef]
- Hou, Y.P.; Mao, X.Y.; Wang, C.; Xu, Z.H.; Bu, Z.H.; Xu, M.; Li, B. Roxadustat treatment for anemia in peritoneal dialysis patients: A randomized controlled trial. J. Formos. Med. Assoc. 2022, 121, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Abdelazeem, B.; Shehata, J.; Abbas, K.S.; El-Shahat, N.A.; Malik, B.; Savarapu, P.; Eltobgy, M.; Kunadi, A. The efficacy and safety of roxadustat for the treatment of anemia in non-dialysis dependent chronic kidney disease patients: A updated systematic review and meta-analysis of randomized clinical trials. PLoS ONE 2022, 17, e0266243. [Google Scholar] [CrossRef] [PubMed]
- Pergola, P.E.; Charytan, C.; Little, D.J.; Tham, S.; Szczech, L.; Leong, R.; Fishbane, S. Changes in iron availability with roxadustat in nondialysis- and dialysis-dependent patients. Kidney360 2022, 3, 1511–1528. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Li, H.; Wang, S. Efficacy and safety of roxadustat in patients with chronic kidney disease: An update meta-analysis of randomized controlled trials including 6,518 patients. Biomed Res. Int. 2022, 2022, 2413176. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, H.; Wang, C.; Yao, L.; Qin, S.; Zuo, L.; Hu, Z.; Zhang, C.; Wu, Y.; Hofherr, A.; et al. Roxadustat and oral iron absorption in Chinese patients with anemia of chronic kidney disease: A randomized, open-label, phase 4 study (ALTAI). Adv. Ther. 2024, 41, 1168–1183. [Google Scholar] [CrossRef] [PubMed]
- Zuk, A.; Zhihai, S.; Loi, S.; Bommegowda, S.; Hoivik, D.; Danthi, S.; Molnar, G.; Csizmadia, V.; Rabinowitz, M. Preclinical characterization of vadadustat (AKB-6548), an oral small molecule hypoxia-inducible factor prolyl-4-hydroxylase inhibitor, for the potential treatment of renal anemia. J. Pharmacol. Exp. Ther. 2022, 383, 11–24. [Google Scholar] [CrossRef]
- Pergola, P.E.; Spinowitz, B.S.; Hartman, C.S.; Maroni, B.J.; Haase, V.H. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 2016, 90, 1115–1122. [Google Scholar] [CrossRef]
- Koury, M.J.; Agarwal, R.; Chertow, G.M.; Eckardt, K.U.; Fishbane, S.; Ganz, T.; Haase, V.H.; Hanudel, M.R.; Parfrey, P.S.; Pergola, P.E.; et al. Erythropoietic effects of vadadustat in patients with anemia associated with chronic kidney disease. Am. J. Hematol. 2022, 97, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Agarwal, R.; Boudville, N.; Chowdhury, P.C.P.; Eckardt, K.U.; Gonzalez, C.R.; Kooienga, L.A.; Koury, M.J.; Ntoso, K.A.; Luo, W.; et al. Vadadustat for treatment of anemia in patients with dialysis-dependent chronic kidney disease receiving peritoneal dialysis. Nephrol. Dial. Transplant. 2023, 38, 2358–2367. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Takahashi, N.; Wakamatsu, A.; Caltabiano, S. Pharmacokinetics, pharmacodynamics and safety of single, oral doses of GSK1278863, a novel HIF-prolyl hydroxylase inhibitor, in healthy Japanese and Caucasian subjects. Drug Metab. Pharmacokinet. 2015, 30, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Holdstock, L.; Meadowcroft, A.M.; Maier, R.; Johnson, B.M.; Jones, D.; Rastogi, A.; Zeig, S.; Lepore, J.J.; Cobitz, A.R. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J. Am. Soc. Nephrol. 2016, 27, 1234–1244. [Google Scholar] [CrossRef]
- Brigandi, R.A.; Johnson, B.; Oei, C.; Westerman, M.; Olbina, G.; de Zoysa, M.; Roger, S.D.; Sahay, M.; Cross, N.; McMahon, L.; et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: A 28-day phase 2A randomized trial. Am. J. Kidney Dis. 2016, 67, 861–871. [Google Scholar] [CrossRef]
- Johansen, K.L.; Cobitz, A.R.; Singh, A.K.; Macdougall, I.C.; Lopes, R.D.; Obrador, G.T.; Kovesdy, C.P.; Israni, R.; Jha, V.; Okoro, T.; et al. The ASCED-NHQ randomized trial found positive effects of daprodustat on hemoglobin and quality of life in patients with non-dialysis chronic kidney disease. Kidney Int. 2023, 103, 1180–1192. [Google Scholar] [CrossRef]
- Singh, A.K.; Cizman, B.; Carroll, K.; McMurray, J.J.V.; Perkovic, V.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; et al. Efficacy and safety of daprodustat for treatment od anemia of chronic kidney disease in incident dialysis patients: A randomized clinical trial. JAMA Intern. Med. 2022, 182, 592–602. [Google Scholar] [CrossRef]
- Fatima, K.; Ahmed, W.; Fatimi, A.S.; Mahmud, O.; Mahar, M.U.; Ali, A.; Aamir, S.R.; Nasim, M.T.; Islam, M.B.; Maniya, M.T.; et al. Evaluating the safety and efficacy of daprodustat for anemia of chronic kidney disease: A meta-analysis of randomized clinical trials. Eur. J. Clin. Pharmacol. 2022, 78, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Flamme, I.; Oehme, F.; Ellinghaus, P.; Jeske, M.; Keldenich, J.; Thuss, U. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (molidustat) stimulates erythropoietin production without hypertensive effects. PLoS ONE 2014, 9, e111838. [Google Scholar] [CrossRef]
- Beck, H.; Jeske, M.; Thede, K.; Stoll, F.; Flamme, I.; Akbaba, M.; Ergüden, J.K.; Karig, G.; Keldenich, J.; Oehme, F.; et al. Discovery of molidustat (BAY 85-3934): A small-molecule oral HIF-prolyl hydroxylase (HIF-PH) inhibitor for the treatment of renal anemia. Chem. Med. Chem. 2018, 13, 988–1003. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Akizawa, T.; Berns, J.S.; Bernhardt, T.; Krueger, T. Effects of molidustat in the treatment of anemia in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Nobori, K.; Matsuda, Y.; Hayashi, Y.; Hayasaki, T.; Akizawa, T. Molidustat for renal anemia in nondialysis patients previously treated with erythropoiesis-stimulating agents: A randomized, open-label, phase 3 study. Am. J. Nephrol. 2021, 52, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cheng, Q.; Wang, J.; Zhao, X.; Zhu, S. Long-term efficacy and safety of hypoxia- inducible factor prolyl hydroxylase inhibitors in anaemia of chronic kidney disease: A meta- analysis including 13,146 patients. J. Clin. Pharm. Ther. 2021, 46, 999–1009. [Google Scholar] [CrossRef]
- Singh, A.K.; Carroll, K.; McMurray, J.J.V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N. Engl. J. Med. 2021, 385, 2313–2324. [Google Scholar] [CrossRef]
- Winkelmayer, W.C.; Arnold, S.; Burke, S.K.; Chertow, G.M.; Eckardt, K.U.; Jardine, A.G.; Lewis, E.F.; Luo, W.; Matsushita, K.; McCullough, P.A.; et al. Safety endpoints with vadadustat versus darbepoetin alfa in patients with non-dialysis-dependent CKD: A post hoc regional analysis of the PRO2TECT randomized clinical trial of ESA-naïve patients. Kidney Med. 2023, 5, 100666. [Google Scholar] [CrossRef]
- Singh, A.K.; Carroll, K.; Perkovic, V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for the treatment of anemia in patients undergoing dialysis. N. Engl. J. Med. 2021, 385, 2325–2335. [Google Scholar] [CrossRef]
- Eckardt, K.U.; Agarwal, R.; Aswad, A.; Awad, A.; Block, G.A.; Bacci, M.R.; Farag, Y.M.K.; Fishbane, S.; Hubert, H.; Jardine, A.; et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N. Engl. J. Med. 2021, 384, 1601–1612. [Google Scholar] [CrossRef]
- Ren, S.; Yao, X.; Li, Y.; Zhang, Y.; Tong, C.; Feng, Y. Efficacy and safety of hypoxia-inducible factor-prolyl hydroxylase inhibitor treatment for anemia in chronic kidney disease: An umbrella review of meta-analyses. Front. Pharmacol. 2023, 14, 1296702. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Zoccali, C. Hypoxia inducible factor prolyl hydroxylase inhibitors: What a meta-analysis could tell us. Clin. Kidney J. 2024, 1, sfad229. [Google Scholar] [CrossRef] [PubMed]
- Sackeyfio, A.; Lopes, R.D.; Kovesdy, C.P.; Cases, A.; Mallett, S.A.; Ballew, N.; Keeley, T.J.; Garcia-Horton, V.; Ayyagari, R.; Camejo, R.R. Comparison of outcomes on hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) in anaemia associated with chronic kidney disease: Network meta-analyses in dialysis and non-dialysis dependent populations. Clin. Kidney J. 2024, 1, sfad298. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shou, X.; Xu, Y.; Jin, L.; Zhu, C.; Ye, X.; Mei, Z.; Chen, P. A network meta-analysis of the efficacy of hypoxia-inducible factor prolyl-hydroxylase inhibitors in dialysis chronic kidney disease. Aging 2023, 15, 2237–2274. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Hao, C.; Peng, X.; Lin, H.; Yin, A.; Hao, L.; Tao, Y.; Liang, X.; Liu, Z.; Xing, C.; et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N. Engl. J. Med. 2019, 381, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Sanghani, N.S.; Haase, V.H. Hypoxia-inducible factor activators in renal anemia: Current clinical experience. Adv. Chronic Kidney Dis. 2019, 26, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Nobori, K.; Matsuda, Y.; Hayashi, Y.; Hayashi, T.; Akizawa, T. Efficacy and safety of molidustat for anemia in ESA-naive nondialysis patients: A randomized, phase 3 trial. Am. J. Nephrol. 2021, 52, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; You, M.; Huang, W.; Chen, J.; Zeng, Q.; Jiang, L.; Du, X.; Liu, X.; Hong, M.; Wang, J. Comparative effectiveness and acceptability of HIF prolyl-hydroxylase inhibitors versus for anemia patients with chronic kidney disease undergoing dialysis: A systematic review and network meta-analysis. Front. Pharmacol. 2023, 14, 1050412. [Google Scholar] [CrossRef]
- Chen, N.; Hao, C.; Liu, B.C.; Lin, H.; Wang, C.; Xing, C.; Liang, X.; Jiang, G.; Liu, Z.; Li, X.; et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N. Engl. J. Med. 2019, 381, 1011–1022. [Google Scholar] [CrossRef]
- Tian, L.; Wang, M.; Liu, M.; Pang, Y.; Zhao, J.; Zheng, B.; Wang, Y.; Zhao, W. Cardiovascular and renal safety outcomes of hypoxia-inducible factor prolyl-hydroxylase inhibitor roxadustat for anemia patients with chronic kidney disease: A systematic review and meta-analysis. Ren. Fail. 2024, 46, 2313864. [Google Scholar] [CrossRef] [PubMed]
- Mima, A. Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: Advantages and disadvantages. Eur. J. Pharmacol. 2021, 912, 174583. [Google Scholar] [CrossRef]
- Phromminikikul, A.; Haas, S.J.; Elsik, M.; Krum, H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: A meta-analysis. Lancet 2007, 369, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Barratt, J.; Sulowicz, W.; Schömig, M.; Esposito, C.; Reusch, M.; Young, J.; Csiky, B. Efficacy and cardiovascular safety of roxadustat in dialysis-dependent chronic kidney disease: Pooled analysis of four phase 3 studies. Adv. Ther. 2021, 38, 5345–5360. [Google Scholar] [CrossRef]
- Provenzano, R.; Szczech, L.; Leong, R.; Saikali, K.G.; Zhong, M.; Lee, T.T.; Little, D.J.; Houser, M.T.; Frison, L.; Houghton, J.; et al. Efficacy and cardiovascular safety of roxadustat for treatment of anemia in patients with non-dialysis-dependent CKD: Pooled results of three randomized clinical trials. Clin. J. Am. Soc. Nephrol. 2021, 16, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Parfrey, P.S.; Burke, S.K.; Chertow, G.M.; Eckardt, K.U.; Jardine, A.G.; Lewis, E.F.; Luo, W.; Matsushita, K.; McCullough, P.A.; Minga, T.; et al. Safety endpoints with vadadustat versus darbepoetin alfa in patients with non-dialysis-dependent CKD: A post hoc regional analysis of the PRO2TECT randomized clinical trial of ESA-treated patients. Kidney Med. 2023, 5, 100667. [Google Scholar] [CrossRef]
- Barratt, J.; Dellanna, F.; Portoles, J.; Choukroun, G.; De Nicola, L.; Young, J.; Dimković, N.; Reusch, M. Safety of Roxadustat Versus Erythropoiesis-Stimulating Agents in Patients with Anemia of Non-dialysis-Dependent or Incident-to-Dialysis Chronic Kidney Disease: Pooled Analysis of Four Phase 3 Studies. Adv. Ther. 2023, 40, 1546–1559. [Google Scholar] [CrossRef]
- Tan, W.; Wang, X.; Sun, Y.; Wang, X.; He, J.; Zhong, L.; Jiang, X.; Sun, Y.; Tian, E.; Li, Z.; et al. Roxadustat reduces left ventricular mass index compared to rHuEPO in haemodialysis patients in a randomized controlled trial. J. Intern. Med. 2024, 295, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, M.G.M.; Tapioca, F.P.M.; Neves, F.C.; Moura-Neto, J.A.; Passos, L.C.S. Association of hypoxia-inducible factor prolyl hydroxylase inhibitors with cardiovascular events and death in dialysis patients: A systematic review and meta-analysis. Blood Purif. 2023, 52, 721–728. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, Y.; Yang, H.; Sun, L.; Zhang, P.; Zhang, X.; Guo, J.; Liu, Y.N.; Liu, W.J. Cardiac and kidney adverse effects of HIF prolyl-hydroxylase inhibitors for anemia in patients with CKD not receiving dialysis: A systematic review and meta-analysis. Am. J. Kidney Dis. 2023, 81, 434–445.e1. [Google Scholar] [CrossRef]
- Hamano, T.; Yamaguchi, Y.; Goto, K.; Martin, S.; Jiletcovici, A.; Dellanna, F.; Akizawa, T.; Barratt, J. Risk factors for thrombotic events in patients with dialysis-dependent CKD: Pooled analysis of four global roxadustat phase 3 trials. Adv. Ther. 2024, 41, 1553–1575. [Google Scholar] [CrossRef]
- Wicks, E.E.; Semenza, G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Investig. 2022, 132, e159839. [Google Scholar] [CrossRef]
- Iliopoulos, O.; Levy, A.P.; Jiang, C.; Kaelin Jr, W.G.; Goldberg, M.A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl. Acad. Sci. USA 1996, 93, 10595–10599. [Google Scholar] [CrossRef] [PubMed]
- Gossage, L.; Eisen, T.; Maher, E.R. VHL, the story of a tumor suppressor gene. Nat. Rev. Cancer 2015, 15, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Conaway, R.C.; Conaway, J.W. von Hippel-Lindau (VHL) protein. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 570–571. [Google Scholar]
- Chertow, G.M.; Pergola, P.E.; Farag, Y.M.K.; Agarwal, R.; Arnolg, S.; Bako, G.; Block, G.A.; Burke, S.; Castillo, F.P.; Jardine, A.G.; et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N. Engl. J. Med. 2021, 384, 1589–1600. [Google Scholar] [CrossRef]
- Zhao, H.; Li, P.; Zhang, H.L.; Jia, L. An updated meta-analysis on the efficacy and safety of hypoxia-inducible factor prolyl hydroxylase inhibitor treatment of anemia in nondialysis-dependent chronic kidney disease. Ren. Fail. 2023, 45, 2258986. [Google Scholar] [CrossRef]
- Akizawa, T.; Iwasaki, M.; Yamaguchi, Y.; Majikawa, Y.; Reusch, M. Phase 3, randomized, double-blind, active-comparator (Darbepoetin Alfa) study of oral roxadustat in CKD patients with anemia on hemodialysis in Japan. J. Am. Soc. Nephrol. 2020, 31, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Nangaku, M.; Yonekawa, T.; Okuda, N.; Kawamatsu, S.; Onoue, T.; Endo, Y.; Hara, K.; Cobitz, A.R. Efficacy and safety of daprodustat compared with darbepoetin alfa in Japanese hemodialysis patients with anemia: A randomized, double-blind, phase 3 Trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 1155–1165. [Google Scholar] [CrossRef]
- Lee, W.C.; Chiu, C.H.; Chu, T.H.; Chien, Y.S. WT1: The Hinge Between Anemia Correction and Cancer Development in Chronic Kidney Disease. Front. Cell Dev. Biol. 2022, 10, 876723. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Yamada, T.; Nobori, K.; Matsuda, Y.; Hayashi, Y.; Hayashi, T.; Yamamoto, H. Molidustat for Japanese patients with renal anemia receiving dialysis. Kidney Int. Rep. 2021, 6, 2604–2616. [Google Scholar] [CrossRef]
- Nangaku, M.; Kondo, K.; Kokado, Y.; Ueta, K.; Kaneko, G.; Tandai, Y.; Kawaguchi, Y.; Komatsu, Y. Phase 3 randomized study comparing vadadustat with darbepoetin alfa for anemia in Japanese patients with nondialysis-dependent CKD. J. Am. Soc. Nephrol. 2021, 32, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Nangaku, M.; Kondo, K.; Ueta, K.; Kokado, Y.; Kaneko, G.; Matsuda, H.; Kawaguchi, Y.; Komatsu, Y. Efficacy and safety of vadadustat compared with darbepoetin alfa in Japanese anemic patients on hemodialysis: A phase 3, multicenter, randomized, double-blind study. Nephrol. Dial. Transplant. 2021, 36, 1731–1741. [Google Scholar] [CrossRef] [PubMed]
- Yap, D.Y.H.; McMahon, L.P.; Hao, C.M.; Hu, N.; Okada, H.; Suzuki, Y.; Kim, S.G.; Lim, S.K.; Vareesangthip, K.; Hung, C.C.; et al. Recommendations by the Asian Pacific Society of Nephrology (APSN) on the appropriate use of HIF-PH inhibitors. Nephrology 2021, 26, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Iwasaki, M.; Otsuka, T.; Yamaguchi, Y.; Reusch, M. Phase 3 study of roxadustat to treat anemia in non-dialysis-dependent CKD. Kidney Int. Rep. 2021, 6, 1810–1828. [Google Scholar] [CrossRef] [PubMed]
- Sepah, Y.J.; Nguyen, Q.D.; Yamaguchi, Y.; Otsuka, T.; Majikawa, Y.; Reusch, M.; Akizawa, T. Two phase 3 studies on ophthalmologic effects of roxadustat versus darbepoetin. Kidney Int. Rep. 2022, 7, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, N.; Higashijima, F.; Wakuta, M.; Ogata, T.; Ohta, M.; Kimura, K. Exacerbation of diabetic retinopathy following hypoxia-inducible factor-prolyl hydroxylase inhibitor administration: A case report. Case Rep. Ophthalmol. 2024, 15, 256–264. [Google Scholar] [CrossRef]
- Chen, D.; Niu, Y.; Liu, F.; Yang, Y.; Wang, X.; Li, P.; Chen, X. Safety of HIF prolyl hydroxylase inhibitors for anemia in dialysis patients: A systematic review and network meta-analysis. Front. Pharmacol. 2023, 14, 1163908. [Google Scholar] [CrossRef]
Iron Deficiency Diagnosis | Iron Supply | EPO Treatment Start | Hb Target | SF and TSAT under Iron Treatment | |
---|---|---|---|---|---|
ERBP (2009) | SF < 100 ng/mL, TSAT < 20% if ESA naive; SF ≤ 300 ng/mL, TSAT ≤ 30% if ESA treated | Oral iron > 3 months (ND-CKD and mild-moderate anemia), iv iron (ND-CKD and severe anemia), or oral iron ineffective | Hb < 10 g/dL; Avoid Hb > 12 g/dL | 10–12 g/dL; high-risk patients Hb around 10 g/dL | Avoid SF > 500 ng/mL and TSAT > 30% |
KDIGO (2012) | SF ≤ 100 ng/mL, TSAT ≤ 20% | ND-CKD: a trial of iv iron or a 1–3-month trial of oral iron; DD-CKD: preference for iv iron | ND-CKD: Hb < 10 g/dL; DD-CKD: Hb 9–10 g/dL Avoid Hb < 9 g/dL | Hb ≤ 11.5 g/dL; Higher Hb if QoL improves and the patient accepts risks; Avoid > 13 g/dL | Stop iron supplementations if SF > 500 ng/mL |
Consider the Use of HIF-PHIs |
---|
NDD-CKD and PD patients |
|
Hemodialysis patients |
|
Use with caution |
|
Avoid or use with extreme caution |
|
Administration key points |
|
Monitoring key points |
|
Study Name, Reference | HIF-PHI | Comparator | Baseline Hb (g/dL) | Hb Increase (g/dL) | Iron iv (%) | Transfusions (%) |
---|---|---|---|---|---|---|
ALPS [64] | roxadustat | placebo | 9.1 | 1.98 versus 0.4 | 5.4 versus 5.9 | 8 versus 16.7 |
ANDES [65] | roxadustat | placebo | 9.1 | 2.02 versus 0.18 | 2.5 versus 4.9 | 5.6 versus 15.4 |
ASCEND-ND [88] | daprodustat | darbepoietin α | 9.9 | 0.74 versus 0.66 | 11.7 versus 11.8 | 2.8 versus 13.5 |
PRO2TECT [89] | vadadustat | darbepoietin α | 9.1 | 1.43 versus 1.38 | 2.5 versus 2.3 | 5.1 versus 4.4 |
OLYMPUS [66] | roxadustat | placebo | 9.1 | 1.75 versus 0.4 | 4.3 versus 7.9 | 13 versus 23 |
DOLOMITES [67] | roxadustat | darbepoietin α | 9,5 | 2.5 versus 2.3 | NA | NA |
DIALOGUE 1 [85], Phase 2 study | molidustat | placebo | 9.5 | 1.8 versus 0.3 | NA | NA |
DIALOGUE 2 [85], Phase 2 study | molidustat | darbepoetin α | 10.8 versus 10.9 | 0.6 versus 0.1 | NA | NA |
Study Name, Reference | HIF-PHI | Comparator | Baseline Hb (g/dL) | Hb Increase (g/dL) | Iron iv (%) | Transfusions (%) |
---|---|---|---|---|---|---|
ROCKIES [60] | roxadustat | epoietin α | 10.2 versus 10.3 | 0.77 versus 0.68 | NA | 9.8 versus 13.2 |
PYRENEES [61] | roxadustat | epoietin α or darbepoietin α | 10.8 | 0.51 versus 0.29 | 25.2 versus 56 | 9.2 versus 12.9 |
SIERRAS [62] | roxadustat | epoietin α | 10.3 | 0.39 versus 0.09 | 17.1 versus 37 | 12.5 versus 21.1 |
ASCEND-ID [81] | daprodustat | darbepoietin α | 9.5 | 1.02 versus 1.12 | NA | 12 versus 14 |
HIMALAYAS [63] | roxadustat | epoietin α | 8.4 versus 8.5 | 2.57 versus 1.27 | 58 versus 89 | 7.3 versus 6.4 |
ASCEND-D [90] | daprodustat | epoietin α | 10.4 | 0.28 versus 0.1 | NA | 15.7 versus 18.3 |
INNO2VATE [91] | vadadustat | darbepoietin α | 9.4 versus 9.2 | 1.26 versus 1.58 | 10.5 versus 4,8 | 5.1 versus 4.4 |
DIALOGUE 4 [85], Phase 2 | molidustat | epoetin α | 10.5 versus 10.6 | −0.2 versus −0.1 | NA | NA |
HIF-PHI | Side Effects | Source |
---|---|---|
Roxadustat | The most common side effects of roxadustat (which may affect more than 1 in 10 people) are hypertension, vascular access thrombosis, diarrhea, peripheral edema (swelling especially of the ankles and feet), hyperkalemia, and nausea. The most common serious side effects (which may affect up to 1 in 10 people) are sepsis, hyperkalemia, hypertension, and deep vein thrombosis. Roxadustat must also not be used in women who are breastfeeding or during the third trimester of pregnancy. https://www.ema.europa.eu/en/medicines/human/EPAR/evrenzo (Accessed on 19 July 2024) | European Medicines Agency |
Vadadustat | Increased risk of death, myocardial infarction (MI), stroke, venous thromboembolism, and thrombosis of vascular access Hepatotoxicity Hypertension Seizures Gastrointestinal erosion Serious adverse reactions in patients with anemia due to chronic kidney disease and not on dialysis Malignancy https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/215192s000lbl.pdf (Accessed on 19 July 2024) | The US Food and Drug Administration |
Daprodust | Increased risk of death, myocardial infarction (MI), stroke, venous thromboembolism, and thrombosis of vascular access Risk of hospitalization for heart failure: increased in patients with a history of heart failure. Hypertension: worsening hypertension, including a possibility of hypertensive crisis occurring. Monitor blood pressure. Adjust antihypertensive therapy as needed. Gastrointestinal erosion: gastric or esophageal erosions and gastrointestinal bleeding have been reported. Not indicated for treatment of anemia of CKD in patients who are not dialysis-dependent Malignancy: may have unfavorable effects on cancer growth https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216951s000lbl.pdf (Accessed on 19 July 2024) | The US Food and Drug Administration |
Roxadustat | Thromboembolism Hypertension Hepatic dysfunction Malignant tumors Retinal hemorrhage https://www.pmda.go.jp/files/000234811.pdf (Accessed on 19 July 2024) | Pharmaceuticals and Medical Devices Agency of Japan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartnicki, P. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors as a New Treatment Option for Anemia in Chronic Kidney Disease. Biomedicines 2024, 12, 1884. https://doi.org/10.3390/biomedicines12081884
Bartnicki P. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors as a New Treatment Option for Anemia in Chronic Kidney Disease. Biomedicines. 2024; 12(8):1884. https://doi.org/10.3390/biomedicines12081884
Chicago/Turabian StyleBartnicki, Piotr. 2024. "Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors as a New Treatment Option for Anemia in Chronic Kidney Disease" Biomedicines 12, no. 8: 1884. https://doi.org/10.3390/biomedicines12081884
APA StyleBartnicki, P. (2024). Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors as a New Treatment Option for Anemia in Chronic Kidney Disease. Biomedicines, 12(8), 1884. https://doi.org/10.3390/biomedicines12081884