Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demographic Characteristics of Study Participants
2.2. Isolation of Leukocytes and Monocytes from Peripheral Blood
2.3. Analysis of Leukocyte Telomere Length by Quantitative PCR (qPCR)
2.4. Statistics
3. Results
3.1. Cell Purity, DNA Integrity and Construction of Standard Curves
3.2. TLs in Different Subpopulations of Leukocytes from Control Patients
3.3. TLs in Leukocytes from Patients with Different Types of AMD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shay, J.W.; Wright, W.E. Telomeres and Telomerase: Three Decades of Progress. Nat. Rev. Genet. 2019, 20, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Ohki, R.; Tsurimoto, T.; Ishikawa, F. In Vitro Reconstitution of the End Replication Problem. Mol. Cell. Biol. 2001, 21, 5753–5766. [Google Scholar] [CrossRef]
- Pfeiffer, V.; Lingner, J. Replication of Telomeres and the Regulation of Telomerase. Cold Spring Harbor Perspect. Biol. 2013, 5, a010405. [Google Scholar] [CrossRef]
- Webb, C.J.; Wu, Y.; Zakian, V.A. DNA Repair at Telomeres: Keeping the Ends Intact. Cold Spring Harbor Perspect. Biol. 2013, 5, a012666. [Google Scholar] [CrossRef]
- Heidenreich, B.; Kumar, R. TERT Promoter Mutations in Telomere Biology. Mutat. Res. Rev. Mutat. Res. 2017, 771, 15–31. [Google Scholar] [CrossRef]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of Telomere Length across Human Tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef]
- Vaiserman, A.; Krasnienkov, D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front. Genet. 2020, 11, 630186. [Google Scholar] [CrossRef]
- Benetos, A.; Okuda, K.; Lajemi, M.; Kimura, M.; Thomas, F.; Skurnick, J.; Labat, C.; Bean, K.; Aviv, A. Telomere Length as an Indicator of Biological Aging: The Gender Effect and Relation with Pulse Pressure and Pulse Wave Velocity. Hypertension 2001, 37, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Calado, R.T.; Dumitriu, B. Telomere Dynamics in Mice and Humans. Semin. Hematol. 2013, 50, 165–174. [Google Scholar] [CrossRef]
- Gruber, H.-J.; Semeraro, M.D.; Renner, W.; Herrmann, M. Telomeres and Age-Related Diseases. Biomedicines 2021, 9, 1335. [Google Scholar] [CrossRef] [PubMed]
- Scheller Madrid, A.; Rasmussen, K.L.; Rode, L.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Bojesen, S.E. Observational and Genetic Studies of Short Telomeres and Alzheimer’s Disease in 67,000 and 152,000 Individuals: A Mendelian Randomization Study. Eur. J. Epidemiol. 2020, 35, 147–156. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, T.; Nawrot, T.; Bekaert, S.; De Buyzere, M.L.; Rietzschel, E.R.; Andrés, V. Telomere Length as Cardiovascular Aging Biomarker: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2018, 72, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, W.; Herrmann, M. The Importance of Telomere Shortening for Atherosclerosis and Mortality. J. Cardiovasc. Dev. Dis. 2020, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hu, H.; Lin, Y.; Huang, F.; Ji, H.; Li, Y.; Lin, S.; Chen, X.; Duan, S. Differences in Leukocyte Telomere Length between Coronary Heart Disease and Normal Population: A Multipopulation Meta-Analysis. BioMed Res. Int. 2019, 2019, 5046867. [Google Scholar] [CrossRef] [PubMed]
- Fragkiadaki, P.; Nikitovic, D.; Kalliantasi, K.; Sarandi, E.; Thanasoula, M.; Stivaktakis, P.D.; Nepka, C.; Spandidos, D.A.; Tosounidis, T.; Tsatsakis, A. Telomere Length and Telomerase Activity in Osteoporosis and Osteoarthritis. Exp. Ther. Med. 2020, 19, 1626–1632. [Google Scholar] [CrossRef]
- Khalangot, M.; Krasnienkov, D.; Vaiserman, A.; Avilov, I.; Kovtun, V.; Okhrimenko, N.; Koliada, A.; Kravchenko, V. Leukocyte Telomere Length Is Inversely Associated with Post-Load but Not with Fasting Plasma Glucose Levels. Exp. Biol. Med. 2017, 242, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Khalangot, M.; Krasnienkov, D.; Vaiserman, A. Telomere Length in Different Metabolic Categories: Clinical Associations and Modification Potential. Exp. Biol. Med. 2020, 245, 1115–1121. [Google Scholar] [CrossRef]
- Khalangot, M.D.; Krasnienkov, D.S.; Chizhova, V.P.; Korkushko, O.V.; Shatilo, V.B.; Kukharsky, V.M.; Kravchenko, V.I.; Kovtun, V.A.; Guryanov, V.G.; Vaiserman, A.M. Additional Impact of Glucose Tolerance on Telomere Length in Persons with and Without Metabolic Syndrome in the Elderly Ukraine Population. Front. Endocrinol. 2019, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, F.; Yan, A.; Xia, X. Explore the Molecular Mechanism of Angle-Closure Glaucoma in Elderly Patients Induced Telomere Shortening of Retinal Ganglion Cells through Oxidative Stress. Nucleosides Nucleotides Nucleic Acids 2022, 41, 1024–1035. [Google Scholar] [CrossRef]
- Dmitrenko, O.P.; Abramova, O.I.; Karpova, N.S.; Nurbekov, M.K.; Arshinova, E.S. Relative Telomere Length Is Associated with the Risk of Development and Severity of the Course of Age-Related Macular Degeneration in the Russian Population. Int. J. Mol. Sci. 2023, 24, 11360. [Google Scholar] [CrossRef]
- Brodzka, S.; Baszyński, J.; Rektor, K.; Hołderna-Bona, K.; Stanek, E.; Kurhaluk, N.; Tkaczenko, H.; Malukiewicz, G.; Woźniak, A.; Kamiński, P. The Role of Glutathione in Age-Related Macular Degeneration (AMD). Int. J. Mol. Sci. 2024, 25, 4158. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Qiao, L.; Du, M.; Qu, C.; Wan, L.; Li, J.; Huang, L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 2022, 9, 62–79. [Google Scholar] [CrossRef]
- Bhumika; Bora, N.S.; Bora, P.S. Genetic Insights into Age-Related Macular Degeneration. Biomedicines 2024, 12, 1479. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.; Hau, M. Telomere attrition: Metabolic regulation and signalling function? Biol. Lett. 2019, 15, 20180885. [Google Scholar] [CrossRef] [PubMed]
- Blasiak, J.; Szczepanska, J.; Fila, M.; Pawlowska, E.; Kaarniranta, K. Potential of Telomerase in Age-Related Macular Degeneration-Involvement of Senescence, DNA Damage Response and Autophagy and a Key Role of PGC-1α. Int. J. Mol. Sci. 2021, 22, 7194. [Google Scholar] [CrossRef]
- Immonen, I.; Seitsonen, S.; Saionmaa, O.; Fyhrquist, F. Leucocyte Telomere Length in Age-Related Macular Degeneration. Acta Ophthalmol. 2013, 91, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Zhang, H.; Kan, M.; Ye, J.; Liu, F.; Wang, T.; Deng, J.; Tan, Y.; He, L.; Liu, Y. Leukocyte Telomere Length Is Associated with Advanced Age-Related Macular Degeneration in the Han Chinese Population. Exp. Gerontol. 2015, 69, 36–40. [Google Scholar] [CrossRef]
- Vilkeviciute, A.; Gedvilaite, G.; Banevicius, M.; Kriauciuniene, L.; Zaliuniene, D.; Dobiliene, O.; Liutkeviciene, R. Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes and Serum Levels Role in Age-Related Macular Degeneration. Cells 2022, 11, 3847. [Google Scholar] [CrossRef]
- Kustrimovic, N.; Comi, C.; Magistrelli, L.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Minafra, B.; Riboldazzi, G.; et al. Parkinson’s Disease Patients Have a Complex Phenotypic and Functional Th1 Bias: Cross-Sectional Studies of CD4+ Th1/Th2/T17 and Treg in Drug-Naïve and Drug-Treated Patients. J. Neuroinflamm. 2018, 15, 205. [Google Scholar] [CrossRef]
- Blinova, V.G.; Gladilina, Y.A.; Abramova, A.A.; Eliseeva, D.D.; Vtorushina, V.V.; Shishparenok, A.N.; Zhdanov, D.D. Modulation of Suppressive Activity and Proliferation of Human Regulatory T Cells by Splice-Switching Oligonucleotides Targeting FoxP3 Pre-MRNA. Cells 2023, 13, 77. [Google Scholar] [CrossRef]
- LeBien, T.W.; Tedder, T.F. B Lymphocytes: How They Develop and Function. Blood 2008, 112, 1570–1580. [Google Scholar] [CrossRef]
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T Cells in Health and Disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; Mildner, A.; Yona, S. Developmental and Functional Heterogeneity of Monocytes. Immunity 2018, 49, 595–613. [Google Scholar] [CrossRef] [PubMed]
- Yordi, S.; Cakir, Y.; Kalra, G.; Cetin, H.; Hu, M.; Abraham, J.; Reese, J.; Srivastava, S.K.; Ehlers, J.P. Ellipsoid Zone Integrity and Visual Function in Dry Age-Related Macular Degeneration. J. Pers. Med. 2024, 14, 543. [Google Scholar] [CrossRef]
- Domalpally, A.; Danis, R.P.; Trane, R.; Blodi, B.A.; Clemons, T.E.; Chew, E.Y. Atrophy in Neovascular Age-Related Macular Degeneration: Age-Related Eye Disease Study 2 Report Number 15. Ophthalmol. Retina 2018, 2, 1021–1027. [Google Scholar] [CrossRef]
- Ricardi, F.; Borrelli, E.; Boscia, G.; Gelormini, F.; Marica, V.; Conte, F.; Viggiano, P.; Marolo, P.; Bandello, F.; Reibaldi, M. Relationship of Topographic Distribution of Macular Atrophy Secondary to Neovascular AMD and Reading Performance. Investig. Ophth. Vis. Sci. 2024, 65, 44. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, N.J.; Fenech, M. A Quantitative PCR Method for Measuring Absolute Telomere Length. Biol. Proced. Online 2011, 13, 3. [Google Scholar] [CrossRef]
- Cawthon, R.M. Telomere Measurement by Quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef]
- Gil, M.E.; Coetzer, T.L. Real-Time Quantitative PCR of Telomere Length. Mol. Biotechnol. 2004, 27, 169–172. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Aiken, C.E.; Dearden, L.; Fernandez-Twinn, D.S.; Ozanne, S. Exploring Telomere Dynamics in Aging Male Rat Tissues: Can Tissue-Specific Differences Contribute to Age-Associated Pathologies? Gerontology 2021, 67, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.T.; Harley, C.B. Evaluation of an Oral Telomerase Activator for Early Age-Related Macular Degeneration—A Pilot Study. Clin. Ophthalmol. 2016, 10, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Bassnett, S.; Šikić, H. The Lens Growth Process. Prog. Retin. Eye Res. 2017, 60, 181–200. [Google Scholar] [CrossRef]
- Rambhatla, L.; Chiu, C.-P.; Glickman, R.D.; Rowe-Rendleman, C. In Vitro Differentiation Capacity of Telomerase Immortalized Human RPE Cells. Investig. Ophth. Vis. Sci. 2002, 43, 1622–1630. [Google Scholar]
- Banevicius, M.; Gedvilaite, G.; Vilkeviciute, A.; Kriauciuniene, L.; Zemaitiene, R.; Liutkeviciene, R. Association of Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes (TERT, TERT-CLPTM1, TRF1, TNKS2, TRF2) with Atrophic Age-Related Macular Degeneration. Ophthalmic Genet. 2021, 42, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Koller, A.; Brandl, C.; Lamina, C.; Zimmermann, M.E.; Summerer, M.; Stark, K.J.; Würzner, R.; Heid, I.M.; Kronenberg, F. Relative Telomere Length Is Associated with Age-Related Macular Degeneration in Women. Investig. Ophth. Vis. Sci. 2022, 63, 30. [Google Scholar] [CrossRef]
- Hobeika, E.; Nielsen, P.J.; Medgyesi, D. Signaling Mechanisms Regulating B-Lymphocyte Activation and Tolerance. J. Mol. Med. 2015, 93, 143–158. [Google Scholar] [CrossRef]
- Hwang, J.-R.; Byeon, Y.; Kim, D.; Park, S.-G. Recent Insights of T Cell Receptor-Mediated Signaling Pathways for T Cell Activation and Development. Exp. Mol. Med. 2020, 52, 750–761. [Google Scholar] [CrossRef]
- Goldmann, O.; Nwofor, O.V.; Chen, Q.; Medina, E. Mechanisms Underlying Immunosuppression by Regulatory Cells. Front. Immunol. 2024, 15, 1328193. [Google Scholar] [CrossRef]
- Effros, R.B. Telomerase Induction in T Cells: A Cure for Aging and Disease? Exp. Gerontol. 2007, 42, 416–420. [Google Scholar] [CrossRef]
- Weng, N.P.; Hathcock, K.S.; Hodes, R.J. Regulation of Telomere Length and Telomerase in T and B Cells: A Mechanism for Maintaining Replicative Potential. Immunity 1998, 9, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, F.; Nayar, S.K.; Rani, A.; Sakellariou, C.A.; Elhage, O.; Papaevangelou, E.; Dasgupta, P.; Galustian, C. IL-15 Upregulates Telomerase Expression and Potently Increases Proliferative Capacity of NK, NKT-Like, and CD8 T Cells. Front. Immunol. 2020, 11, 594620. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, D.D.; Gladilina, Y.A.; Grishin, D.V.; Grachev, V.A.; Orlova, V.S.; Pokrovskaya, M.V.; Alexandrova, S.S.; Pokrovsky, V.S.; Sokolov, N.N. Contact-Independent Suppressive Activity of Regulatory T Cells Is Associated with Telomerase Inhibition, Telomere Shortening and Target Lymphocyte Apoptosis. Mol. Immunol. 2018, 101, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, D.D.; Gladilina, Y.A.; Pokrovsky, V.S.; Grishin, D.V.; Grachev, V.A.; Orlova, V.S.; Pokrovskaya, M.V.; Alexandrova, S.S.; Sokolov, N.N. Murine Regulatory T Cells Induce Death of Effector T, B, and NK Lymphocytes through a Contact-Independent Mechanism Involving Telomerase Suppression and Telomere-Associated Senescence. Cell. Immunol. 2018, 331, 146–160. [Google Scholar] [CrossRef] [PubMed]
- DeMaio, A.; Mehrotra, S.; Sambamurti, K.; Husain, S. The Role of the Adaptive Immune System and T Cell Dysfunction in Neurodegenerative Diseases. J. Neuroinflamm. 2022, 19, 251. [Google Scholar] [CrossRef] [PubMed]
- Ascunce, K.; Dhodapkar, R.M.; Huang, D.; Hafler, B.P. Innate Immune Biology in Age-Related Macular Degeneration. Front. Cell Dev. Biol. 2023, 11, 1118524. [Google Scholar] [CrossRef] [PubMed]
- Keino, H.; Horie, S.; Sugita, S. Immune Privilege and Eye-Derived T-Regulatory Cells. J. Immunol. Res. 2018, 2018, 1679197. [Google Scholar] [CrossRef]
- Morohoshi, K.; Goodwin, A.M.; Ohbayashi, M.; Ono, S.J. Autoimmunity in Retinal Degeneration: Autoimmune Retinopathy and Age-Related Macular Degeneration. J. Autoimmun. 2009, 33, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Hector, S.M.; Sørensen, T.L. Circulating Monocytes and B-Lymphocytes in Neovascular Age-Related Macular Degeneration. Clin. Ophthalmol. 2017, 11, 179–184. [Google Scholar] [CrossRef]
- Khan, A.H.; Chowers, I.; Lotery, A.J. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells 2023, 12, 1708. [Google Scholar] [CrossRef]
- Goverdhan, S.V.; Khakoo, S.I.; Gaston, H.; Chen, X.; Lotery, A.J. Age-Related Macular Degeneration Is Associated with the HLA-Cw*0701 Genotype and the Natural Killer Cell Receptor AA Haplotype. Investig. Ophth. Vis. Sci. 2008, 49, 5077–5082. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Yin, X.; Chen, C.; Xing, Y. Identification of Diagnostic Biomarkers and Their Correlation with Immune Infiltration in Age-Related Macular Degeneration. Diagnostics 2021, 11, 1079. [Google Scholar] [CrossRef]
- Sharma, H.W.; Maltese, J.Y.; Zhu, X.; Kaiser, H.E.; Narayanan, R. Telomeres, Telomerase and Cancer: Is the Magic Bullet Real? Anticancer Res. 1996, 16, 511–515. [Google Scholar]
- Stout, R.D.; Suttles, J. Immunosenescence and Macrophage Functional Plasticity: Dysregulation of Macrophage Function by Age-Associated Microenvironmental Changes. Immunol. Rev. 2005, 205, 60–71. [Google Scholar] [CrossRef]
- Apple, D.J.; Goldberg, M.F.; Wyhinny, G. Histopathology and ultrastructure of the argon laser lesion in human retinal and choroidal vasculatures. Am. J. Ophthalmol. 1973, 75, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Lechner, J.; Chen, M.; Hogg, R.E.; Toth, L.; Silvestri, G.; Chakravarthy, U.; Xu, H. Alterations in Circulating Immune Cells in Neovascular Age-Related Macular Degeneration. Sci. Rep. 2015, 5, 16754. [Google Scholar] [CrossRef] [PubMed]
- Grunin, M.; Burstyn-Cohen, T.; Hagbi-Levi, S.; Peled, A.; Chowers, I. Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Investig. Ophthalmol Vis Sci. 2012, 53, 5292–5300. [Google Scholar] [CrossRef]
- Singh, A.; Faber, C.; Falk, M.; Nissen, M.H.; Hviid, T.V.; Sørensen, T.L. Altered expression of CD46 and CD59 on leukocytes in neovascular age-related macular degeneration. Am. J. Ophthalmol. 2012, 154, 193–199.e2. [Google Scholar] [CrossRef] [PubMed]
- Daftarian, N.; Zandi, S.; Piryaie, G.; Nikougoftar Zarif, M.; Ranaei Pirmardan, E.; Yamaguchi, M.; Behzadian Nejad, Q.; Hasanpour, H.; Samiei, S.; Pfister, I.B.; et al. Peripheral blood CD163(+) monocytes and soluble CD163 in dry and neovascular age-related macular degeneration. FASEB J. 2020, 34, 8001–8011. [Google Scholar] [CrossRef]
Leukocytes | Control (n = 22) | NVAMD MA (n = 21) | NVAMD No MA (n = 20) | GA (n = 21) |
---|---|---|---|---|
T cells | 3.83 (2.28–5.62) | 8.9 (6.94–9.98) | 8.13 (6.94–9.26) | 5.7 (2.9–7.44) |
B cells | 8.34 (7.39–10.39) | 4.27 (2.82–5.85) | 5.49 (3.83–6.92) | 5.1 (3.54–6.75) |
NK cells | 5.83 (4.52–6.83) | 6.08 (3.69–7.86) | 7.07 (5.32–8.66) | 6.44 (5.11–8.36) |
Monocytes | 9.41 (8.41–10.42) | 2.77 (2.31–4.78) | 3.62 (2.89–5.46) | 5.13 (3.79–6.89) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalatyan, A.S.; Shishparenok, A.N.; Avetisov, K.S.; Gladilina, Y.A.; Blinova, V.G.; Zhdanov, D.D. Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration. Biomedicines 2024, 12, 1893. https://doi.org/10.3390/biomedicines12081893
Khalatyan AS, Shishparenok AN, Avetisov KS, Gladilina YA, Blinova VG, Zhdanov DD. Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration. Biomedicines. 2024; 12(8):1893. https://doi.org/10.3390/biomedicines12081893
Chicago/Turabian StyleKhalatyan, Anait S., Anastasiya N. Shishparenok, Konstantin S. Avetisov, Yulia A. Gladilina, Varvara G. Blinova, and Dmitry D. Zhdanov. 2024. "Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration" Biomedicines 12, no. 8: 1893. https://doi.org/10.3390/biomedicines12081893
APA StyleKhalatyan, A. S., Shishparenok, A. N., Avetisov, K. S., Gladilina, Y. A., Blinova, V. G., & Zhdanov, D. D. (2024). Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration. Biomedicines, 12(8), 1893. https://doi.org/10.3390/biomedicines12081893