New Onset of Acute and Chronic Hepatic Diseases Post-COVID-19 Infection: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection and Data Collection
2.4. Data Items
2.5. Risk of Bias and Quality Assessment
2.6. Data Analysis
3. Results
3.1. Types of Studies and Demographic Data
3.2. Clinical Data
3.2.1. Steatosis and NAFLD
3.2.2. Liver Fibrosis, Sclerosis, and Cirrhosis
3.2.3. Hepatitis
3.2.4. Acute Liver Failure
3.2.5. Liver Inflammation by Imaging
3.2.6. Hepatomegaly
3.2.7. Other Parenchymal Liver Diseases
4. Discussion
4.1. Post-COVID-19 Steatosis and NAFLD
4.2. Post-COVID-19 Liver Fibrosis, Sclerosis, and Cirrhosis
4.3. Post-COVID-19 Hepatitis
4.4. Post-COVID-19 Acute Liver Failure
4.5. Post-COVID-19 Liver Inflammation by Imaging
4.6. Post-COVID-19 Hepatomegaly
4.7. Other Post-COVID-19 Parenchymal Liver Disorders
4.8. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fung, M.; Babik, J.M. COVID-19 in Immunocompromised Hosts: What We Know So Far. Clin. Infect. Dis. 2021, 72, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, M.; Wang, R.C.; Yu, H.; Spatz, E.S.; Montoy, J.C.C.; Rodriguez, R.M.; Chang, A.M.; Elmore, J.G.; Hannikainen, P.A.; Hill, M.; et al. Severe Fatigue and Persistent Symptoms at 3 Months Following Severe Acute Respiratory Syndrome Coronavirus 2 Infections During the Pre-Delta, Delta, and Omicron Time Periods: A Multicenter Prospective Cohort Study. Clin. Infect. Dis. 2023, 76, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-Term Complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022, 322, C1–C11. [Google Scholar] [CrossRef]
- Buonomano, P.; Di Stasio, G.D.; Sinisi, A.A.; Rambaldi, P.F.; Mansi, L. Gamma Emitters in the Primary or Secondary Pathologies of the Adrenal Cortex. In Nuclear Medicine and Molecular Imaging: Volume 1–4; Elsevier: Amsterdam, The Netherlands, 2022; Volume 2, pp. 224–238. [Google Scholar]
- Zhao, X.; Lei, Z.; Gao, F.; Xie, Q.; Jang, K.; Gong, J. The Impact of Coronavirus Disease 2019 (COVID-19) on Liver Injury in China: A Systematic Review and Meta-Analysis. Medicine 2021, 100, e24369. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses 2021. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 12 August 2024).
- Murad, M.H.; Sultan, S.; Haffar, S.; Bazerbachi, F. Methodological Quality and Synthesis of Case Series and Case Reports. BMJ Evid. Based Med. 2018, 23, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Ayoubkhani, D.; Khunti, K.; Nafilyan, V.; Maddox, T.; Humberstone, B.; Diamond, I.; Banerjee, A. Post-COVID Syndrome in Individuals Admitted to Hospital with COVID-19: Retrospective Cohort Study. BMJ 2021, 372, n693. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xu, J.; Chen, L.; Fu, C.; Kang, Y.; Zhang, W.; Fakhri, G.E.; Gu, J.; Shao, F.; Wang, M. Inflammatory Response in Lungs and Extrapulmonary Sites Detected by [18F] Fluorodeoxyglucose PET/CT in Convalescing COVID-19 Patients Tested Negative for Coronavirus. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2531–2542. [Google Scholar] [CrossRef]
- Dennis, A.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Eichert, N.; Mouchti, S.; Pansini, M.; Roca-Fernandez, A.; Thomaides-Brears, H.; et al. Multi-Organ Impairment and Long COVID: A 1-Year Prospective, Longitudinal Cohort Study. J. R. Soc. Med. 2023, 116, 97–112. [Google Scholar] [CrossRef]
- Dennis, A.; Wamil, M.; Alberts, J.; Oben, J.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Brady, M.; Hishmeh, L.; et al. Multiorgan Impairment in Low-Risk Individuals with Post-COVID-19 Syndrome: A Prospective, Community-Based Study. BMJ Open 2021, 11, e048391. [Google Scholar] [CrossRef]
- Drăgănescu, A.C.; Săndulescu, O.; Bilașco, A.; Kouris, C.; Streinu-Cercel, A.; Luminos, M.; Streinu-Cercel, A. Transient Immune Hepatitis as Post-Coronavirus Disease Complication: A Case Report. World J. Clin. Cases 2021, 9, 4032–4039. [Google Scholar] [CrossRef]
- Cooper, S.; Tobar, A.; Konen, O.; Orenstein, N.; Kropach Gilad, N.; Landau, Y.E.; Mozer-Glassberg, Y.; Bar-Lev, M.R.; Shaoul, R.; Shamir, R.; et al. Long COVID-19 Liver Manifestation in Children. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Green, S.R.; Sundar, D. Dilated Cardiomyopathy with Congestive Hepatopathy in Post COVID-19 PatientA Case Report. J. Clin. Diagn. Res. 2022, 16, 4. [Google Scholar] [CrossRef]
- Sai, B.V.K.; Kumar, H.; Arun Babu, T.; Chaitra, R.; Satapathy, D.; Kalidoss, V.K. Clinical Profile and Outcome of Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19 Infection: A Single-Center Observational Study from South India. Egypt. Pediatr. Assoc. Gaz. 2023, 71, 4. [Google Scholar] [CrossRef]
- Kolesova, O.; Vanaga, I.; Laivacuma, S.; Derovs, A.; Kolesovs, A.; Radzina, M.; Platkajis, A.; Eglite, J.; Hagina, E.; Arutjunana, S.; et al. Intriguing Findings of Liver Fibrosis Following COVID-19. BMC Gastroenterol. 2021, 21, 370. [Google Scholar] [CrossRef]
- Daid, S.S.; Toribio, A.D.; Lakshmanan, S.; Sadda, A.; Epstein, A. Spontaneous Intraparenchymal Hepatic Hemorrhage as a Sequela of COVID-19. Cureus 2020, 12, e10447. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, L.; Wei, R.; Dai, W.; Zeng, R.; Luo, D.; Jiang, R.; Wu, H.; Zhuo, Z.; Yang, Q.; et al. Risks of Digestive Diseases in Long COVID: Evidence from a Large-Scale Cohort Study. MedRxiv 2023. [Google Scholar] [CrossRef]
- Anguiano-Albarran, R.; Cain, D.; Ashfaq, M.; Modi, A.; Gautam, S. Multiorgan Failure and Omicron: A Suspected Case of Post-COVID-19 Cholangiopathy. Cureus 2023, 15, e35010. [Google Scholar] [CrossRef]
- Soldera, J.; Bosi, G.R. Haemophagocytic Lymphohistiocytosis Following a COVID-19 Infection: Case Report. J. Infect. Dev. Ctries. 2023, 17, 302–303. [Google Scholar] [CrossRef]
- Radzina, M.; Putrins, D.S.; Micena, A.; Vanaga, I.; Kolesova, O.; Platkajis, A.; Viksna, L. Post-COVID-19 Liver Injury: Comprehensive Imaging with Multiparametric Ultrasound. J. Ultrasound Med. 2022, 41, 935–949. [Google Scholar] [CrossRef]
- Pesti, A.; Danics, K.; Glasz, T.; Várkonyi, T.; Barbai, T.; Reszegi, A.; Kovalszky, I.; Vályi-Nagy, I.; Dobi, D.; Lotz, G.; et al. Liver Alterations and Detection of SARS-CoV-2 RNA and Proteins in COVID-19 Autopsies. GeroScience 2023, 45, 1015–1031. [Google Scholar] [CrossRef]
- Liemarto, A.K.; Budiono, B.P.; Chionardes, M.A.; Oliviera, I.; Rahmasiwi, A. Liver Abscess with Necrosis in Post COVID-19: A Case Report. Ann. Med. Surg. 2021, 72, 103107. [Google Scholar] [CrossRef] [PubMed]
- Roman, A.; Moldovan, S.; Stoian, M.; Tilea, B.; Dobru, D. SARS-CoV-2 Associated Liver Injury: A Six-Month Follow-up Analysis of Liver Function Recovery. Med. Pharm. Rep. 2022, 95, 393–399. [Google Scholar] [CrossRef]
- Milic, J.; Barbieri, S.; Gozzi, L.; Brigo, A.; Beghé, B.; Verduri, A.; Bacca, E.; Iadisernia, V.; Cuomo, G.; Dolci, G.; et al. Metabolic-Associated Fatty Liver Disease Is Highly Prevalent in the Postacute COVID Syndrome. Open Forum Infect. Dis. 2022, 9, ofac003. [Google Scholar] [CrossRef] [PubMed]
- Bende, F.; Tudoran, C.; Sporea, I.; Fofiu, R.; Bâldea, V.; Cotrău, R.; Popescu, A.; Sirli, R.; Ungureanu, B.S.; Tudoran, M. A Multidisciplinary Approach to Evaluate the Presence of Hepatic and Cardiac Abnormalities in Patients with Post-Acute COVID-19 Syndrome—A Pilot Study. J. Clin. Med. 2021, 10, 2507. [Google Scholar] [CrossRef]
- Shorbagi, A.I.; Obaideen, A.; Jundi, M. Post-COVID-19 Polyautoimmunity—Fact or Coincidence: A Case Report. Front. Med. 2023, 10, 1013125. [Google Scholar] [CrossRef]
- Lai, P.-H.; Ding, D.-C. Acute Liver Injury in a COVID-19 Infected Woman with Mild Symptoms: A Case Report. World J. Clin. Cases 2023, 11, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Daga, M.; Mawari, G.; Singh, S.; Hussain, M.; Srivastava, S.; Sonika, U.; Sakhuja, P. A Case of Hepatitis: Post—Acute Sequelae of Asymptomatic COVID-19 Infection. J. Int. Med. Sci. Acad. 2021, 34, 322–325. [Google Scholar]
- Han, S.K.; Baik, S.K.; Kim, M.Y. Non-Alcoholic Fatty Liver Disease: Definition and Subtypes. Clin. Mol. Hepatol. 2023, 29, S5–S16. [Google Scholar] [CrossRef]
- Hong, T.; Chen, Y.; Li, X.; Lu, Y. The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. Oxidative Med. Cell. Longev. 2021, 2021, 6889533. [Google Scholar] [CrossRef]
- Jothimani, D.; Venugopal, R.; Abedin, M.F.; Kaliamoorthy, I.; Rela, M. COVID-19 and the Liver. J. Hepatol. 2020, 73, 1231–1240. [Google Scholar] [CrossRef]
- Glowacka, I.; Bertram, S.; Herzog, P.; Pfefferle, S.; Steffen, I.; Muench, M.O.; Simmons, G.; Hofmann, H.; Kuri, T.; Weber, F.; et al. Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63. J. Virol. 2010, 84, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.; Tomaszewski, M.; Guzik, T.J. Binding of SARS-CoV-2 and Angiotensin-Converting Enzyme 2: Clinical Implications. Cardiovasc. Res. 2020, 116, e87–e89. [Google Scholar] [CrossRef]
- Madeddu, P.; Emanueli, C.; El-Dahr, S. Mechanisms of Disease: The Tissue Kallikrein–Kinin System in Hypertension and Vascular Remodeling. Nat. Rev. Nephrol. 2007, 3, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Karmouty-Quintana, H.; Thandavarayan, R.A.; Keller, S.P.; Sahay, S.; Pandit, L.M.; Akkanti, B. Emerging Mechanisms of Pulmonary Vasoconstriction in SARS-CoV-2-Induced Acute Respiratory Distress Syndrome (ARDS) and Potential Therapeutic Targets. Int. J. Mol. Sci. 2020, 21, 8081. [Google Scholar] [CrossRef] [PubMed]
- Dawood, R.M.; El-Meguid, M.A.; Salum, G.M.; El Awady, M.K. Key Players of Hepatic Fibrosis. J. Interferon Cytokine Res. 2020, 40, 472–489. [Google Scholar] [CrossRef]
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver Cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef]
- Gregorio, G.V.; Mieli-Vergani, G.; Mowat, A.P. Viral Hepatitis. Arch. Dis. Child. 1994, 70, 343–348. [Google Scholar] [CrossRef]
- Vasques, F.; Cavazza, A.; Bernal, W. Acute Liver Failure. Curr. Opin. Crit. Care 2022, 28, 198–207. [Google Scholar] [CrossRef]
- Koyama, Y.; Brenner, D.A. Liver Inflammation and Fibrosis. J. Clin. Investig. 2017, 127, 55–64. [Google Scholar] [CrossRef]
- Walker, W.A.; Mathis, R.K. Hepatomegaly. An Approach to Differential Diagnosis. Pediatr. Clin. N. Am. 1975, 22, 929–942. [Google Scholar] [CrossRef]
- Fortea, J.I.; Puente, Á.; Cuadrado, A.; Huelin, P.; Pellón, R.; González Sánchez, F.J.; Mayorga, M.; Cagigal, M.L.; García Carrera, I.; Cobreros, M.; et al. Congestive Hepatopathy. Int. J. Mol. Sci. 2020, 21, 9420. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Nardo, A.D.; Schneeweiss-Gleixner, M.; Bakail, M.; Dixon, E.D.; Lax, S.F.; Trauner, M. Pathophysiological Mechanisms of Liver Injury in COVID-19. Liver Int. 2021, 41, 20–32. [Google Scholar] [CrossRef]
- Muhović, D.; Bojović, J.; Bulatović, A.; Vukčević, B.; Ratković, M.; Lazović, R.; Smolović, B. First Case of Drug-induced Liver Injury Associated with the Use of Tocilizumab in a Patient with COVID-19. Liver Int. 2020, 40, 1901–1905. [Google Scholar] [CrossRef]
- Zoref-Lorenz, A.; Ellis, M.; Jordan, M.B. Inpatient Recognition and Management of HLH. Hematology 2023, 2023, 259–266. [Google Scholar] [CrossRef]
Study | Study Type/County | N (Total)/Gender (%M) | n/N (%)/Type of LPD | * Age (Years) | Previous Liver Disease | COVID-19 Severity | Follow-Up Time/Outcome |
---|---|---|---|---|---|---|---|
[11] | Prospective longitudinal study/UK | Baseline 536/(27%M) | NR Liver steatosis | NR | NR | 13% hospitalized | 196 (182–209) days |
Follow-up (over 1 year) 331/(27%M) | NR | NR | NR | NA | |||
[19] ^ | Large-scale prospective population cohort study/UK | COVID-19 group 112,311/(45.2%M) | NR NAFLD | NR | NR | Non-hospitalized Hospitalized Severe | 254 (IQR 184–366) days |
Contemporary control group 359,671/(44.6%M) | NR NAFLD | NR | NR | NR | 254 (184–366) days | ||
Historical control group 370,979/(55%M) | NAFLD | 56.94 | NR | NR | 254 (IQR 184–367) days | ||
[22] | Observational cohort study/Latvia | Post-COVID-19 56/(50%M) | NR Steatosis | NR | NR | Moderate: 10/30 (33%) Severe: 7/30 (23%) | NR |
Control 34/(38%M) | NR Steatosis Fibrosis | NR | NR | NR | NR | ||
[23] ^ | Observational cohort study/Hungary | 150/(54%M) | 99/(66%) Steatosis (n = 147): F3: 15 F2: 29 F1: 49 F0: 54 | NR | NR | 83 ICU | NR |
[25] ^ | Prospective cohort study/Romania | 78/(56%M) | 58 (74%) Hepatic steatosis: 20/(26%) | NR | NR | NR 60 non-severe 18 severe | 6 months |
[26] | Retrospective cohort study/Italy | 235/(68.9%M) | 105/(77%) NAFLD | 61 (52–72.5) | None | Patients with IV/NIV: 45 | NR |
105/(63.8%M) No NAFLD at follow-up | NR Median reported PACS symptoms: 3 | 63 (52–74) | None | Patients with IV/NIV: 21 (p = 0.9) | As above | ||
130/(73.1%M) NAFLD at follow-up | NR ** NAFLD | 60 (52–70) | patients with IV/NIV: 24 | As above | |||
[27] | Prospective cohort study/Romania | Pulmonary injury group 53/(43.4%M) | NR Steatosis | NR | None | NR | NR |
Non-pulmonary injury group 44/(31.8%M) | NR | NR | None | NR | NR |
Study | Study Type/County | N (Total)/Gender (%M) | n/N (%)/Type of LPD | * Age (Years) | Previous Liver Disease | COVID-19 Severity | Follow-Up Time/Outcome |
---|---|---|---|---|---|---|---|
[17] | Cross-sectional, single-center study/Latvia | Acute COVID-19 group 66/(50%M) | NR Liver fibrosis | NR | NR | NR | No follow-up |
Post-COVID-19 group 58/(53%M) | NR Liver fibrosis | NR | NR | NR | No follow-up | ||
Control group 17/(53%M) | NR | NR | NR | NR | No follow-up | ||
[19] ^ | Large-scale prospective population-based cohort study/UK | COVID-19 group 112,311/(45.2%M) | NR Hepatic sclerosis or cirrhosis | NR | NR | Non-hospitalized Hospitalized Severe | 254 (IQR 184–366) days |
Contemporary control group 359,671/(44.6%M) | NR Hepatic sclerosis or cirrhosis | NR | NR | NR | 254 (184–366) days | ||
Historical control group 370,979/(55%M) | Hepatic sclerosis or cirrhosis | 56.94 | NR | NR | 254 (IQR 184–367) days | ||
[22] | Observational cohort study/Latvia | Post- COVID-19 56/(50%M) | NR Fibrosis | NR | NR | Moderate: 10/30 (33%) Severe: 7/30 (23%) | NR |
Control 34/(38%M) | NR Fibrosis | NR | NR | NR | NR | ||
[23] | Observational cohort study/Hungary | 150/(54%M) | 99 (66%) Cirrhosis F4 fibrosis: 7 F3 fibrosis: 3 F1/2 fibrosis: 68 No fibrosis/F0: 72 | NR | NR | 83 cases ICU | NR |
Study | Study Type/County | N (Total)/Gender (%M) | n/N (%)/Type of LPD | * Age (Years) | Previous Liver Disease | COVID-19 Severity | Follow-Up Time/Outcome |
---|---|---|---|---|---|---|---|
[13] | Case report/Romania | 1 M | 1/(100%) Immune hepatitis | 21 | None | Mild COVID-19 | ALT normalization 20 days after peak on follow-up |
[14] | Retrospective case series/Israel | 5/(100%M) | |||||
Patient 3: Acute hepatitis with cholestasis | 8 | None | Mild | 4 months | |||
Patient 4: Acute hepatitis with cholestasis | 8 | NAFLD | Mild | 4 months | |||
Patient 5: Acute hepatitis with cholestasis | 13 | None | Mild | 45 days | |||
[27] | Case report/UAE | 1/(100%M) | 1/(100%) Autoimmune hepatitis | 33 | None | Mild | 7 months after hospitalization (asymptomatic) |
[30] | Case report/India | 1 F | 1/(100%) Acute hepatitis | 25 | NR | Mild | 5 months after presentation |
Study | Study Type/County | N (Total)/Gender (%M) | n/N (%)/Type of LPD | * Age (Years) | Previous Liver Disease | COVID-19 Severity | Follow-Up Time/Outcome |
---|---|---|---|---|---|---|---|
[14] | Retrospective case series/Israel | 5/(100%M) | 5/(100%) Patient 1: Acute liver failure | Patient 1: 3-month-old | None | Mild | NR |
Patient 2: Acute liver failure | Patient 2: 5-month-old | None | NR | NR | |||
[19] ^ | Large-scale prospective population-based cohort study/UK | COVID-19 group 112,311/(45.2%M) | NR Liver failure | NR | NR | Non-hospitalized Hospitalized Severe | 254 (IQR 184–366) days |
Contemporary control group 359,671/(44.6%M) | NR Liver failure | NR | NR | NR | 254 (184–366) days | ||
Historical control group 370,979/(55%M) | Liver failure | 56.94 | NR | NR | 254 (IQR 184–367) days | ||
[20] | Case report/USA | 1 F | 1 (100%) Acute liver failure | 68 | NR | NR |
Study | Study Type/County | N (Total)/Gender (%M) | n/N (%)/Type of LPD | * Age (Years) | Previous Liver Disease | COVID-19 Severity | Follow-Up Time/Outcome |
---|---|---|---|---|---|---|---|
[10] ^ | Prospective study/China | COVID-19 cohort 7/(42%M) | 7/(100%) ** Liver inflammation by imaging | 66 (56–88) | HLD: 0/7 (0%) | Severe | 16.1 days after discharge (on average) |
[12] ^ | Prospective observational cohort study/UK | Experimental cohort (post-COVID-19 syndrome patients) 201/(29.4%M) | 56/(28%) Increased liver inflammation (≥784 ms cT1) 11.5% | NR | NR | NR 19% hospitalized | NR |
Control cohort (healthy individuals) 36/(88.6%M) | NR Increased Liver inflammation (≥784 ms cT1) 0% | NR | NR | NR | NR |
Study | Study Type/County | N (Total)/Gender (%M) | n/N (%)/Type of LPD | * Age (Years) | Previous Liver Disease | COVID-19 Severity | Follow-Up Time/Outcome |
---|---|---|---|---|---|---|---|
[11] ^ | Prospective longitudinal study/UK | Baseline 536/(27%M) | NR | NR | NR | 13% hospitalized due to COVID-19 | 196 (182–209) days |
Follow-up (over 1 year) 331/(27%M) | 20/(14%) Hepatomegaly | NR | NR | NR | |||
[12] ^ | Prospective observational cohort study/UK | Experimental cohort (post-COVID-19 syndrome patients) 201/(29.4%M) | 56/(28%) Increased liver volume (≥1935 mL) 10.4% | NR | NR | NR 19% of patients hospitalized | NR |
Control cohort (healthy individuals) 36/(88.6%M) | NR Increased liver volume (≥1935 mL) 2.9% | NR | NR | NR | NR |
Study | Study Type/County | N (Total)/Gender (%M) | n/N (%)/Type of HPD | * Age (Years) | Previous Liver Disease | COVID-19 Severity | Follow-Up Time/Outcome |
---|---|---|---|---|---|---|---|
[9] | Retrospective cohort study/UK | Experimental group (COVID-19 group) 47,780/(54.9%M) | 143/(0.3%) Chronic liver disease NR | NR | NR | 10% of patients needed ICU | Mean follow-up 140 ± 50 days Maximum 253 days |
Matched control group (individuals who did not test positive for COVID-19) 47,780/(54.9%M) | NR | NR | NR | NR | Mean follow-up 153 ± 33 days Maximum 253 days | ||
[15] | Case study/India | 1/(100%M) | Congestive hepatopathy | 17 | None | Mild COVID-19 | 3 months Discharged |
[16] | Single-center prospective observational study/India | 78/(34.6%M) | NR Deranged LFTs: 40/78 Ascites: 1/78 | NR | NR | NR | No follow-up |
[18] | Case study/USA | 1 F | 100% Intraparenchymal liver hemorrhage | 43 | Severe COVID-19 infection | Until discharge only | |
[21] | Case report/Brazil | 1 M | 1/(100%) hemophagocytic lymph histiocytosis | 57 | None | Mild COVID-19 infection | NR |
[23] ^ | Observational cohort study/Hungary | 150/(54%M) | 99/(66%) Endothelial damage (n = 119): F3: 46 F2: 52 F1: 21 F0: 0 Sinus dilatation (n = 119): F3: 31 F2: 52 F1: 36 F0: 0 | NR | NR | 83 cases requiring ICU | NR |
[24] | Case report/Indonesia | 1 M | 1/(100%) Liver abscesses with hemorrhage and parenchymal necrosis | 49 | None | Severe COVID-19 pneumonia admitted to ICU | Died on day 20 |
[25] ^ | Prospective cohort study/Romania | 78/(56%M) | 58/(74%) Portal venous system thrombosis: 2 (2.5%) | NR | NR | NR 60 non-severe 18 severe | 6 months |
[27] ^ | Prospective cohort study/Romania | Pulmonary injury group 53/(43.4%M) | NR Liver stiffness | NR | None | NR | NR |
Non-pulmonary injury group 44/(31.8%M) | NR Liver stiffness | NR | None | NR | NR | ||
[29] | Case report/Taiwan | 1 F | 1/(100%) Acute liver injury + calcified liver nodule | 60 | None | Mild | Over 3 months, LFTs trended down until returning to normal by the last follow-up visit |
[30] | Case report/India | 1 F | 1/(100%) Autoimmune hemolytic anemia | 25 | NR | Mild | 5 months after presentation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebbe, A.; Aboulwafa, A.; Bayraktar, N.; Mushannen, B.; Ayoub, S.; Sarker, S.; Abdalla, M.N.; Mohammed, I.; Mushannen, M.; Yagan, L.; et al. New Onset of Acute and Chronic Hepatic Diseases Post-COVID-19 Infection: A Systematic Review. Biomedicines 2024, 12, 2065. https://doi.org/10.3390/biomedicines12092065
Lebbe A, Aboulwafa A, Bayraktar N, Mushannen B, Ayoub S, Sarker S, Abdalla MN, Mohammed I, Mushannen M, Yagan L, et al. New Onset of Acute and Chronic Hepatic Diseases Post-COVID-19 Infection: A Systematic Review. Biomedicines. 2024; 12(9):2065. https://doi.org/10.3390/biomedicines12092065
Chicago/Turabian StyleLebbe, Ahamed, Ali Aboulwafa, Nuran Bayraktar, Beshr Mushannen, Sama Ayoub, Shaunak Sarker, Marwan Nour Abdalla, Ibrahim Mohammed, Malik Mushannen, Lina Yagan, and et al. 2024. "New Onset of Acute and Chronic Hepatic Diseases Post-COVID-19 Infection: A Systematic Review" Biomedicines 12, no. 9: 2065. https://doi.org/10.3390/biomedicines12092065
APA StyleLebbe, A., Aboulwafa, A., Bayraktar, N., Mushannen, B., Ayoub, S., Sarker, S., Abdalla, M. N., Mohammed, I., Mushannen, M., Yagan, L., & Zakaria, D. (2024). New Onset of Acute and Chronic Hepatic Diseases Post-COVID-19 Infection: A Systematic Review. Biomedicines, 12(9), 2065. https://doi.org/10.3390/biomedicines12092065