Predictive and Prognostic Role of Systemic Immune-Inflammation Index (SII) in Metastatic Colorectal Cancer Patients Treated with Trifluridine/Tipiracil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Parameters and Statistical Analysis
3. Results
3.1. Participants and Descriptive Data
3.2. Outcome Data
3.3. Main Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Mattiuzzi, C.; Sanchis-Gomar, F.; Lippi, G. Concise Update on Colorectal Cancer Epidemiology. Ann. Transl. Med. 2019, 7, 609. [Google Scholar] [CrossRef] [PubMed]
- Colorectal Cancer Statistics. WCRF International. Available online: https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/ (accessed on 28 June 2023).
- Mayer, R.J.; Van Cutsem, E.; Falcone, A.; Yoshino, T.; Garcia-Carbonero, R.; Mizunuma, N.; Yamazaki, K.; Shimada, Y.; Tabernero, J.; Komatsu, Y.; et al. Randomized Trial of TAS-102 for Refractory Metastatic Colorectal Cancer. N. Engl. J. Med. 2015, 372, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib Monotherapy for Previously Treated Metastatic Colorectal Cancer (CORRECT): An International, Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, S.; Xu, R.H.; Shen, L.; Xu, J.; Bai, Y.; Yang, L.; Deng, Y.; Chen, Z.D.; Zhong, H.; et al. Effect of Fruquintinib vs Placebo on Overall Survival in Patients with Previously Treated Metastatic Colorectal Cancer: The FRESCO Randomized Clinical Trial. JAMA 2018, 319, 2486–2496. [Google Scholar] [CrossRef]
- Prager, G.W.; Taieb, J.; Fakih, M.; Ciardiello, F.; Cutsem, E.V.; Elez, E.; Cruz, F.M.; Wyrwicz, L.; Stroyakovskiy, D.; Pápai, Z.; et al. Trifluridine–Tipiracil and Bevacizumab in Refractory Metastatic Colorectal Cancer. N. Engl. J. Med. 2023, 388, 1657–1667. [Google Scholar] [CrossRef]
- Nielsen, D.L.; Palshof, J.A.; Larsen, F.O.; Jensen, B.V.; Pfeiffer, P. A Systematic Review of Salvage Therapy to Patients with Metastatic Colorectal Cancer Previously Treated with Fluorouracil, Oxaliplatin and Irinotecan +/- Targeted Therapy. Cancer Treat. Rev. 2014, 40, 701–715. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.; Kim, R.; Kim, T.W.; O’Connor, J.M.; Strickler, J.H.; Malka, D.; Sartore-Bianchi, A.; Bi, F.; Yamaguchi, K.; Yoshino, T.; et al. Third- or Later-Line Therapy for Metastatic Colorectal Cancer: Reviewing Best Practice. Clin. Color. Cancer 2019, 18, e117–e129. [Google Scholar] [CrossRef]
- Tampellini, M.; Di Maio, M.; Baratelli, C.; Anania, L.; Brizzi, M.P.; Sonetto, C.; La Salvia, A.; Scagliotti, G.V. Treatment of Patients with Metastatic Colorectal Cancer in a Real-World Scenario: Probability of Receiving Second and Further Lines of Therapy and Description of Clinical Benefit. Clin. Color. Cancer 2017, 16, 372–376. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-Related Inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- McMillan, D.C. The Systemic Inflammation-Based Glasgow Prognostic Score: A Decade of Experience in Patients with Cancer. Cancer Treat. Rev. 2013, 39, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Kasuga, I.; Makino, S.; Kiyokawa, H.; Katoh, H.; Ebihara, Y.; Ohyashiki, K. Tumor-Related Leukocytosis Is Linked with Poor Prognosis in Patients with Lung Carcinoma. Cancer 2001, 92, 2399–2405. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The Systemic Inflammation-Based Neutrophil–Lymphocyte Ratio: Experience in Patients with Cancer. Crit. Rev. Oncol./Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Li, B.; Zhou, P.; Liu, Y.; Wei, H.; Yang, X.; Chen, T.; Xiao, J. Platelet-to-Lymphocyte Ratio in Advanced Cancer: Review and Meta-Analysis. Clin. Chim. Acta 2018, 483, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yang, X.-R.; Xu, Y.; Sun, Y.-F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Nøst, T.H.; Alcala, K.; Urbarova, I.; Byrne, K.S.; Guida, F.; Sandanger, T.M.; Johansson, M. Systemic Inflammation Markers and Cancer Incidence in the UK Biobank. Eur. J. Epidemiol. 2021, 36, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.-N.; Goyal, H.; Yu, S.; Luo, H. Prognostic Value of Systemic Immune-Inflammation Index (SII) in Cancers: A Systematic Review and Meta-Analysis. J. Lab. Precis. Med. 2018, 3, 29. [Google Scholar] [CrossRef]
- Zhong, J.-H.; Huang, D.-H.; Chen, Z.-Y. Prognostic Role of Systemic Immune-Inflammation Index in Solid Tumors: A Systematic Review and Meta-Analysis. Oncotarget 2017, 8, 75381–75388. [Google Scholar] [CrossRef]
- Dogdus, M.; Dindas, F.; Yenercag, M.; Yildirim, A.; Ozcan Abacioglu, O.; Kilic, S.; Yavuz, F.; Koyun, E.; Candan, O. The Role of Systemic Immune Inflammation Index for Predicting Saphenous Vein Graft Disease in Patients with Coronary Artery Bypass Grafting. Angiology 2022, 74, 579–586. [Google Scholar] [CrossRef]
- Karaaslan, T.; Karaaslan, E. Predictive Value of Systemic Immune-Inflammation Index in Determining Mortality in COVID-19 Patients. J. Crit. Care Med. 2022, 8, 156–164. [Google Scholar] [CrossRef]
- Passardi, A.; Scarpi, E.; Cavanna, L.; Dall’Agata, M.; Tassinari, D.; Leo, S.; Bernardini, I.; Gelsomino, F.; Tamberi, S.; Brandes, A.A.; et al. Inflammatory Indexes as Predictors of Prognosis and Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer. Oncotarget 2016, 7, 33210–33219. [Google Scholar] [CrossRef] [PubMed]
- Lolli, C.; Basso, U.; Derosa, L.; Scarpi, E.; Sava, T.; Santoni, M.; Crabb, S.J.; Massari, F.; Aieta, M.; Conteduca, V.; et al. Systemic Immune-Inflammation Index Predicts the Clinical Outcome in Patients with Metastatic Renal Cell Cancer Treated with Sunitinib. Oncotarget 2016, 7, 54564–54571. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.-W.; Yang, Y.-F.; Yang, C.-C.; Yan, L.-J.; Ding, Z.-N.; Liu, H.; Xue, J.-S.; Dong, Z.-R.; Chen, Z.-Q.; Hong, J.-G.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Cancer Immunotherapy: Systemic Review and Meta-Analysis. Immunotherapy 2022, 14, 1481–1496. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.H.; Litière, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1-Update and Clarification: From the RECIST Committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Shi, Y.; Yang, J.; Zhou, Q.; Lian, Y.; Wang, D.; Ma, T.; Zhang, Y.; Mi, Y.; Gu, X.; et al. Prognostic and Clinicopathological Significance of Systemic Immune-Inflammation Index in Colorectal Cancer: A Meta-Analysis. Ther. Adv. Med. Oncol. 2020, 12, 1758835920937425. [Google Scholar] [CrossRef] [PubMed]
- Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in Cancer: Neutral No More. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef]
- Franco, A.T.; Corken, A.; Ware, J. Platelets at the Interface of Thrombosis, Inflammation, and Cancer. Blood 2015, 126, 582–588. [Google Scholar] [CrossRef]
- Mei, Z.; Liu, Y.; Liu, C.; Cui, A.; Liang, Z.; Wang, G.; Peng, H.; Cui, L.; Li, C. Tumour-Infiltrating Inflammation and Prognosis in Colorectal Cancer: Systematic Review and Meta-Analysis. Br. J. Cancer 2014, 110, 1595–1605. [Google Scholar] [CrossRef]
- McMillan, D.C. Systemic Inflammation, Nutritional Status and Survival in Patients with Cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 223. [Google Scholar] [CrossRef]
- Li, J.; Shao, J.; Zhang, X.; Chen, X.; Zhao, W.; Qian, H.; Cui, X.; Jiang, X. Prognostic Value of the Pretreatment Systemic Immune-Inflammation Index in Patients with Colorectal Cancer. Gastroenterol. Res. Pract. 2020, 2020, 8781674. [Google Scholar] [CrossRef]
- Eraslan, E.; Adas, Y.G.; Yildiz, F.; Gulesen, A.I.; Karacin, C.; Arslan, U.Y. Systemic Immune-Inflammation Index (SII) Predicts Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. J. Coll. Physicians Surg. Pak. 2021, 30, 399–404. [Google Scholar] [CrossRef]
- Taieb, J.; Price, T.; Vidot, L.; Chevallier, B.; Wyrwicz, L.; Bachet, J.-B. Safety and Efficacy of Trifluridine/Tipiracil in Previously Treated Metastatic Colorectal Cancer: Final Results from the Phase IIIb Single-Arm PRECONNECT Study by Duration of Therapy. BMC Cancer 2023, 23, 94. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, A.; Yamada, T.; Matsumoto, S.; Sakurazawa, N.; Kawano, Y.; Shinozuka, E.; Sekiguchi, K.; Suzuki, H.; Yoshida, H. Pretreatment Neutrophil–to–Lymphocyte Ratio Predicts Survival After TAS-102 Treatment of Patients with Metastatic Colorectal Cancer. Anticancer Res. 2019, 39, 4343–4350. [Google Scholar] [CrossRef] [PubMed]
- Kuramochi, H.; Yamada, T.; Yoshida, Y.; Matsuda, A.; Kamiyama, H.; Kosugi, C.; Ishibashi, K.; Fukazawa, A.; Ihara, K.; Sonoda, H.; et al. The Pre-Treatment Lymphocyte-to-Monocyte Ratio Predicts Efficacy in Metastatic Colorectal Cancer Treated With TAS-102 and Bevacizumab. Anticancer Res. 2021, 41, 3131–3137. [Google Scholar] [CrossRef]
Characteristics | n | % |
---|---|---|
Enrolled | 179 | 100 |
Sex | ||
Male | 111 | 62 |
Female | 68 | 38 |
Age, years median (range) | 65 (30–83) | |
ECOG performance status | ||
0 | 27 | 15 |
1 | 143 | 80 |
2 | 9 | 5 |
Primary site | ||
Cecum | 16 | 9 |
Ascending colon | 5 | 3 |
Hepatic flexure of the large intestine | 5 | 3 |
Transverse colon | 8 | 5 |
Splenic flexure of the large intestine | 6 | 3 |
Colon descending | 6 | 3 |
Sigmoid | 40 | 22 |
Rectosigmoid junction | 25 | 14 |
Rectum | 68 | 38 |
Primary tumor location | ||
Right-sided | 34 | 19 |
Left-sided | 145 | 81 |
Primary tumor histological subtype | ||
Adenocarcinoma | 173 | 96 |
Mucinous adenocarcinoma | 5 | 3 |
Signet ring cell carcinoma | 1 | 1 |
Histological differentiation: | ||
Well | 27 | 15 |
Moderate | 116 | 65 |
Poorly | 14 | 8 |
Unknown | 22 | 12 |
pT category | ||
pT1 | 5 | 3 |
pT2 | 17 | 10 |
pT3 | 92 | 51 |
pT4 | 49 | 27 |
Not operated on | 16 | 9 |
pN category | ||
pN0 | 34 | 19 |
pN1 | 68 | 38 |
pN2 | 57 | 32 |
pN3 | 2 | 1 |
Not operated on | 18 | 10 |
Site of metastasis | ||
Liver | 135 | 75 |
Lung | 73 | 41 |
Lymph node | 36 | 20 |
Peritoneum | 23 | 13 |
KRAS mutation status | ||
Wild-type | 89 | 50 |
Mutant | 85 | 47 |
Not available | 5 | 3 |
BRAF mutation status | ||
Wild-type | 153 | 85 |
Mutant | 11 | 6 |
Not available | 1 | 1 |
NRAS mutation status | ||
Wild-type | 166 | 93 |
Mutant | 6 | 3 |
Not available | 7 | 4 |
Number of prior lines of treatment | ||
1 | 2 | 1 |
2 | 100 | 56 |
3 | 61 | 34 |
4 | 12 | 7 |
5 | 3 | 2 |
6 | 1 | 1 |
BMI median, range (kg/m2) | 27 (16–43) | |
<25 | 56 | 31 |
≥25 | 123 | 69 |
CEA median, (95% CI) (ng/L) | 86.0 (53.7–116.1) | |
<30 | 134 | 75 |
≥30 | 45 | 25 |
NLR median, (95% CI), (×109/L) | 2.6 (2.4–2.9) | |
≤3 | 149 | 83 |
>3 | 30 | 17 |
PLR median, (95% CI), (×109/L) | 147 (131–165) | |
≤150 | 90 | 50 |
>150 | 89 | 50 |
SII median, (95% CI), (×109/L) | 615 (558–753) | |
≤550 | 76 | 42 |
>550 | 103 | 58 |
Covariate | n (%) | Median (Months) | p Value |
---|---|---|---|
Age | 0.6938 | ||
≤70 year | 139 (78%) | 3.6 | |
>70 year | 40 (22%) | 3.4 | |
Gender | 0.1570 | ||
Male | 111 (62%) | 3.4 | |
Female | 68 (38%) | 3.9 | |
Performance status (ECOG) | 0.5552 | ||
0–1 | 170 (95%) | 3.5 | |
2 | 9 (5%) | 3.7 | |
Liver metastases: | 0.0103 * | ||
No | 44 (25%) | 4.7 | |
Yes | 135 (75%) | 3.2 | |
Lung metastases: | 0.1300 | ||
No | 106 (59%) | 4.8 | |
Yes | 73 (41%) | 3.2 | |
Primary tumor location: | 0.5933 | ||
Left-sided | 145 (81%) | 3.5 | |
Right-sided | 34 (19%) | 3.5 | |
Number of prior lines of treatment: | 0.9651 | ||
<3 | 102 (57%) | 3.7 | |
≥3 | 77 (43%) | 3.3 | |
Histological differentiation: | 0.0163 * | ||
Well/moderate | 36 (20%) | 3.9 | |
Poorly/unknown | 143 (80%) | 2.4 | |
KRAS | 0.7737 | ||
Wild-type | 89 (50%) | 3.0 | |
Mutated | 85 (47%) | 3.6 | |
NRAS | 0.1476 | ||
Wild-type | 166 (93%) | 3.6 | |
Mutated | 6 (3%) | 3.2 | |
BRAF | 0.4907 | ||
Wild-type | 153 (85%) | 3.6 | |
Mutated | 11 (6%) | 2.9 | |
NLR | 0.0283 * | ||
≤3 | 149 (83%) | 3.8 | |
>3 | 30 (17%) | 2.6 | |
PLR | 0.0019 * | ||
≤150 | 90 (50%) | 4.6 | |
>150 | 89 (50%) | 3.0 | |
SII | 0.0070 * | ||
≤550 | 76 (42%) | 4.4 | |
>550 | 103 (58%) | 3.0 | |
CEA | 0.0008 * | ||
<5 ng/L | 14 (8%) | 5.5 | |
≥5 ng/L | 164 (92%) | 3.3 | |
BMI | 0.8853 | ||
<25 | 56 (31%) | 3.0 | |
≥25 | 123 (69%) | 3.7 |
Parameter | p Value | HR | HR 95% Lower | HR 95% Upper |
---|---|---|---|---|
SII | 0.0071 * | 1.62 | 1.14 | 2.31 |
≤550 | ||||
>550 | ||||
CEA | 0.0316 * | 2.21 | 1.07 | 4.56 |
<5 ng/L | ||||
≥5 ng/L | ||||
Histological differentiation: | 0.0038 * | 1.84 | 1.22 | 2.78 |
Well/moderate | ||||
Poorly/unknown | ||||
NLR | NS | NS | NS | NS |
≤3 | ||||
>3 | ||||
PLR | NS | NS | NS | NS |
≤150 | ||||
>150 | ||||
Liver metastases: | NS | NS | NS | NS |
No | ||||
Yes |
Covariate | n (%) | Median (Months) | p Value |
---|---|---|---|
Age | 0.9918 | ||
≤70 year | 139 (78%) | 10.0 | |
>70 year | 40 (22%) | 7.6 | |
Gender | 0.6764 | ||
Male | 111 (62%) | 10.0 | |
Female | 68 (38%) | 8.6 | |
Performance status (ECOG) | 0.8483 | ||
0–1 | 170 (95%) | 9.9 | |
2 | 9 (5%) | 7.7 | |
Liver metastases: | 0.4444 | ||
No | 44 (25%) | 10.0 | |
Yes | 135 (75%) | 10.1 | |
Lung metastases: | 0.3097 | ||
No | 106 (59%) | 12.1 | |
Yes | 73 (41%) | 8.7 | |
Primary tumor location: | 0.1549 | ||
Left-sided | 145 (81%) | 10.5 | |
Right-sided | 34 (19%) | 7.5 | |
No. of prior lines of treatment: | 0.0240 * | ||
<3 | 102 (57%) | 8.7 | |
≥3 | 77 (43%) | 11.7 | |
Histological differentiation: | 0.0055 * | ||
Well/moderate | 36 (20%) | 10.7 | |
Poorly/unknown | 143 (80%) | 6.8 | |
KRAS | 0.2439 | ||
Wild-type | 89 (50%) | 10.0 | |
Mutated | 85 (47%) | 9.5 | |
NRAS | 0.8076 | ||
Wild-type | 166 (93%) | 10.0 | |
Mutated | 6 (3%) | NR | |
BRAF | 0.1005 | ||
Wild-type | 153 (85%) | 10.7 | |
Mutated | 11 (6%) | 6.5 | |
NLR | 0.0217 * | ||
≤3 | 149 (83%) | 10.5 | |
>3 | 30 (17%) | 6.2 | |
PLR | 0.0110 * | ||
≤150 | 90 (50%) | 11.9 | |
>150 | 89 (50%) | 8.8 | |
SII | 0.0004 * | ||
≤550 | 76 (42%) | 13.9 | |
>550 | 103 (58%) | 8.4 | |
CEA | 0.0003 * | ||
<5 ng/L | 14 (8%) | 17.7 | |
≥5 ng/L | 164 (92%) | 9.4 | |
BMI | 0.6875 | ||
<25 | 56 (31%) | 8.1 | |
≥25 | 123 (69%) | 10.6 |
Parameter | p Value | HR | HR 95% Lower | HR 95% Upper |
---|---|---|---|---|
No. of prior lines of treatment: | 0.0204 * | 1.54 | 1.07 | 2.21 |
≥3 | ||||
<3 | ||||
Histological differentiation: | 0.0003 * | 2.15 | 1.42 | 3.28 |
Well/moderate | ||||
Poorly/unknown | ||||
SII | 0.0001 * | 2.12 | 1.46 | 3.08 |
≤550 | ||||
>550 | ||||
CEA | 0.0227 * | 2.64 | 1.15 | 6.10 |
<5 ng/L | ||||
≥5 ng/L | ||||
NLR | NS | NS | NS | NS |
≤3 | ||||
>3 | ||||
PLR | NS | NS | NS | NS |
≤150 | ||||
>150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, M.; Radecka, B.; Gełej, M.; Jackowska, A.; Filipczyk-Cisarż, E.; Żurowska, M.; Hetman, K.; Foszczyńska-Kłoda, M.; Kania-Zembaczyńska, B.; Mańka, D.; et al. Predictive and Prognostic Role of Systemic Immune-Inflammation Index (SII) in Metastatic Colorectal Cancer Patients Treated with Trifluridine/Tipiracil. Biomedicines 2024, 12, 2076. https://doi.org/10.3390/biomedicines12092076
Malik M, Radecka B, Gełej M, Jackowska A, Filipczyk-Cisarż E, Żurowska M, Hetman K, Foszczyńska-Kłoda M, Kania-Zembaczyńska B, Mańka D, et al. Predictive and Prognostic Role of Systemic Immune-Inflammation Index (SII) in Metastatic Colorectal Cancer Patients Treated with Trifluridine/Tipiracil. Biomedicines. 2024; 12(9):2076. https://doi.org/10.3390/biomedicines12092076
Chicago/Turabian StyleMalik, Mateusz, Barbara Radecka, Marek Gełej, Aleksandra Jackowska, Emilia Filipczyk-Cisarż, Michalina Żurowska, Katarzyna Hetman, Małgorzata Foszczyńska-Kłoda, Beata Kania-Zembaczyńska, Danuta Mańka, and et al. 2024. "Predictive and Prognostic Role of Systemic Immune-Inflammation Index (SII) in Metastatic Colorectal Cancer Patients Treated with Trifluridine/Tipiracil" Biomedicines 12, no. 9: 2076. https://doi.org/10.3390/biomedicines12092076
APA StyleMalik, M., Radecka, B., Gełej, M., Jackowska, A., Filipczyk-Cisarż, E., Żurowska, M., Hetman, K., Foszczyńska-Kłoda, M., Kania-Zembaczyńska, B., Mańka, D., Orlikowska, M., & Bodnar, L. (2024). Predictive and Prognostic Role of Systemic Immune-Inflammation Index (SII) in Metastatic Colorectal Cancer Patients Treated with Trifluridine/Tipiracil. Biomedicines, 12(9), 2076. https://doi.org/10.3390/biomedicines12092076