Epigenetic Characteristics in Primary and Recurrent Glioblastoma—Influence on the Clinical Course
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Selected Epigenetic Characteristics
2.2. Patients
2.3. Methylation Analysis
2.4. MiRNA Analysis
2.5. Statistical Analysis
3. Results
3.1. General Results of the Study Population
3.2. Stability of Promoter Methylation
3.3. Stability of miRNA Expression
3.4. Impact of Epigenetic Temporal Stability on Survival
4. Discussion
4.1. Temporal Stability of Epigenetic Markers
4.2. Influences of Temporal Instability of Epigenetic Markers on the Survival of GBM Patients
4.3. Limitations of the Study
5. Conclusions and Further Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louis, D.N. Molecular Pathology of Malignant Gliomas. Annu. Rev. Pathol. 2006, 1, 97–117. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006–2010. Neuro-Oncology 2013, 15 (Suppl. 2), ii1–ii56. [Google Scholar] [CrossRef]
- Hartmann, C.; Meyer, J.; Balss, J.; Capper, D.; Mueller, W.; Christians, A.; Felsberg, J.; Wolter, M.; Mawrin, C.; Wick, W.; et al. Type and Frequency of IDH1 and IDH2 Mutations Are Related to Astrocytic and Oligodendroglial Differentiation and Age: A Study of 1,010 Diffuse Gliomas. Acta Neuropathol. 2009, 118, 469–474. [Google Scholar] [CrossRef]
- Sawaya, R. Extent of Resection in Malignant Gliomas: A Critical Summary. J. Neurooncol. 1999, 42, 303–305. [Google Scholar] [CrossRef]
- Takeuchi, K.; Hoshino, K. Statistical Analysis of Factors Affecting Survival after Glioblastoma Multiforme. Acta Neurochir. 1977, 37, 57–73. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Wemmert, S.; Bettscheider, M.; Alt, S.; Ketter, R.; Kammers, K.; Feiden, W.; Steudel, W.-I.; Rahnenführer, J.; Urbschat, S. P15 Promoter Methylation-a Novel Prognostic Marker in Glioblastoma Patients. Int. J. Oncol. 2009, 34, 1743–1748. [Google Scholar] [CrossRef]
- Gil, J.; Peters, G. Regulation of the INK4b-ARF-INK4a Tumour Suppressor Locus: All for One or One for All. Nat. Rev. Mol. Cell Biol. 2006, 7, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, M.; Johnsen, K.B.; Olesen, P.; Pilgaard, L.; Duroux, M. MicroRNA Expression Signatures and Their Correlation with Clinicopathological Features in Glioblastoma Multiforme. Neuromol. Med. 2014, 16, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Kalkan, R.; Atli, E.İ. The Impacts of miRNAs in Glioblastoma Progression. Crit. Rev. Eukaryot. Gene Expr. 2016, 26, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Kong, X.; Gong, S.; Liu, F.; Zhao, Y. Recent Advances of the Regulation Roles of MicroRNA in Glioblastoma. Int. J. Clin. Oncol. 2020, 25, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 Is an Antiapoptotic Factor in Human Glioblastoma Cells. Cancer Res. 2005, 65, 6029–6033. [Google Scholar] [CrossRef]
- Jen, J.; Harper, J.W.; Bigner, S.H.; Bigner, D.D.; Papadopoulos, N.; Markowitz, S.; Willson, J.K.; Kinzler, K.W.; Vogelstein, B. Deletion of P16 and P15 Genes in Brain Tumors. Cancer Res. 1994, 54, 6353–6358. [Google Scholar]
- Schmidt, E.E.; Ichimura, K.; Reifenberger, G.; Collins, V.P. CDKN2 (P16/MTS1) Gene Deletion or CDK4 Amplification Occurs in the Majority of Glioblastomas. Cancer Res. 1994, 54, 6321–6324. [Google Scholar]
- Giglio, S.; Cirombella, R.; Amodeo, R.; Portaro, L.; Lavra, L.; Vecchione, A. MicroRNA miR-24 Promotes Cell Proliferation by Targeting the CDKs Inhibitors p27Kip1 and p16INK4a. J. Cell. Physiol. 2013, 228, 2015–2023. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, A.; Li, Y.; Zhang, K.; Han, L.; Du, W.; Yan, W.; Li, R.; Wang, Y.; Wang, K.; et al. MiR-24 Regulates the Proliferation and Invasion of Glioma by ST7L via β-Catenin/Tcf-4 Signaling. Cancer Lett. 2013, 329, 174–180. [Google Scholar] [CrossRef]
- Huse, J.T.; Brennan, C.; Hambardzumyan, D.; Wee, B.; Pena, J.; Rouhanifard, S.H.; Sohn-Lee, C.; le Sage, C.; Agami, R.; Tuschl, T.; et al. The PTEN-Regulating microRNA miR-26a Is Amplified in High-Grade Glioma and Facilitates Gliomagenesis in Vivo. Genes Dev. 2009, 23, 1327–1337. [Google Scholar] [CrossRef]
- López-Urrutia, E.; Coronel-Hernández, J.; García-Castillo, V.; Contreras-Romero, C.; Martínez-Gutierrez, A.; Estrada-Galicia, D.; Terrazas, L.I.; López-Camarillo, C.; Maldonado-Martínez, H.; Jacobo-Herrera, N.; et al. MiR-26a Downregulates Retinoblastoma in Colorectal Cancer. Tumor Biol. 2017, 39, 1010428317695945. [Google Scholar] [CrossRef]
- Qian, X.; Zhao, P.; Li, W.; Shi, Z.-M.; Wang, L.; Xu, Q.; Wang, M.; Liu, N.; Liu, L.-Z.; Jiang, B.-H. MicroRNA-26a Promotes Tumor Growth and Angiogenesis in Glioma by Directly Targeting Prohibitin. CNS Neurosci. Ther. 2013, 19, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-F.; Shi, Z.-M.; Wang, X.-R.; Cao, L.; Wang, Y.-Y.; Zhang, J.-X.; Yin, Y.; Luo, H.; Kang, C.-S.; Liu, N.; et al. MiR-181d Acts as a Tumor Suppressor in Glioma by Targeting K-Ras and Bcl-2. J. Cancer Res. Clin. Oncol. 2012, 138, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Pineda, E.; Domenech, M.; Hernández, A.; Comas, S.; Balaña, C. Recurrent Glioblastoma: Ongoing Clinical Challenges and Future Prospects. OncoTargets Ther. 2023, 16, 71–86. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, C.J.; Kearney, H.; Beausang, A.; Farrell, M.A.; Brett, F.M.; Cryan, J.B.; Loftus, T.E.; Buckley, P.G. Temporal Stability of MGMT Promoter Methylation in Glioblastoma Patients Undergoing STUPP Protocol. J. Neurooncol. 2018, 137, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Franceschi, E.; Paccapelo, A.; Tallini, G.; De Biase, D.; Ghimenton, C.; Danieli, D.; Zunarelli, E.; Lanza, G.; Silini, E.M.; et al. Role of MGMT Methylation Status at Time of Diagnosis and Recurrence for Patients with Glioblastoma: Clinical Implications. Oncologist 2017, 22, 432–437. [Google Scholar] [CrossRef]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Bartolini, S.; Bacci, A.; Agati, R.; Ghimenton, C.; Turazzi, S.; Talacchi, A.; Skrap, M.; et al. O(6)-Methylguanine DNA-Methyltransferase Methylation Status Can Change between First Surgery for Newly Diagnosed Glioblastoma and Second Surgery for Recurrence: Clinical Implications. Neuro-Oncology 2010, 12, 283–288. [Google Scholar] [CrossRef]
- Schmidt, E.; Ichimura, K.; Messerle, K.; Goike, H.; Collins, V. Infrequent Methylation of CDKN2A(MTS1/P16) and Rare Mutation of Both CDKN2A and CDKN2B(MTS2/P15) in Primary Astrocytic Tumours. Br. J. Cancer 1997, 75, 2–8. [Google Scholar] [CrossRef]
- Uhlmann, K.; Rohde, K.; Zeller, C.; Szymas, J.; Vogel, S.; Marczinek, K.; Thiel, G.; Nürnberg, P.; Laird, P.W. Distinct Methylation Profiles of Glioma Subtypes: Methylation Profiles in Gliomas. Int. J. Cancer 2003, 106, 52–59. [Google Scholar] [CrossRef]
- Sippl, C.; Ketter, R.; Bohr, L.; Kim, Y.J.; List, M.; Oertel, J.; Urbschat, S. MiRNA-181d Expression Significantly Affects Treatment Responses to Carmustine Wafer Implantation. Neurosurgery 2019, 85, 147–155. [Google Scholar] [CrossRef]
- Maachani, U.B.; Tandle, A.; Shankavaram, U.; Kramp, T.; Camphausen, K. Modulation of miR-21 Signaling by MPS1 in Human Glioblastoma. Oncotarget 2016, 7, 52912–52927. [Google Scholar] [CrossRef]
- Masoudi, M.S.; Mehrabian, E.; Mirzaei, H. MiR-21: A Key Player in Glioblastoma Pathogenesis. J. Cell. Biochem. 2018, 119, 1285–1290. [Google Scholar] [CrossRef]
- Labib, E.M.; Ezz El Arab, L.R.; Ghanem, H.M.; Hassan, R.E.; Swellam, M. Relevance of Circulating MiRNA-21 and MiRNA-181 in Prediction of Glioblastoma Multiforme Prognosis. Arch. Physiol. Biochem. 2020, 128, 924–929. [Google Scholar] [CrossRef]
- Sippl, C.; Teping, F.; Ketter, R.; Braun, L.; Tremmel, L.; Schulz-Schaeffer, W.; Oertel, J.; Urbschat, S. The Influence of Distinct Regulatory miRNAs of the P15/P16/RB1/E2F Pathway on the Clinical Progression of Glioblastoma Multiforme. World Neurosurg. 2019, 132, 900–908. [Google Scholar] [CrossRef]
- Sippl, C.; Quiring, A.; Teping, F.; Schulz-Schaeffer, W.; Urbschat, S.; Ketter, R.; Oertel, J. MiRNA-181d Expression Correlates in Tumor versus Plasma of Glioblastoma Patients-the Base of a Preoperative Stratification Tool for Local Carmustine Wafer Use. World Neurosurg. 2022, 159, e324–e333. [Google Scholar] [CrossRef]
- Anaya, J. OncoLnc: Linking TCGA Survival Data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput. Sci. 2016, 2, e67. [Google Scholar] [CrossRef]
- Feldheim, J.; Kessler, A.F.; Monoranu, C.M.; Ernestus, R.-I.; Löhr, M.; Hagemann, C. Changes of O6-Methylguanine DNA Methyltransferase (MGMT) Promoter Methylation in Glioblastoma Relapse-A Meta-Analysis Type Literature Review. Cancers 2019, 11, 1837. [Google Scholar] [CrossRef]
- Lyon, J.F.; Vasudevaraja, V.; Mirchia, K.; Walker, J.M.; Corona, R.J.; Chin, L.S.; Tran, I.; Snuderl, M.; Richardson, T.E.; Viapiano, M.S. Spatial Progression and Molecular Heterogeneity of IDH-Mutant Glioblastoma Determined by DNA Methylation-Based Mapping. Acta Neuropathol. Commun. 2021, 9, 120. [Google Scholar] [CrossRef]
- Barciszewska, A.-M.; Gurda, D.; Głodowicz, P.; Nowak, S.; Naskręt-Barciszewska, M.Z. A New Epigenetic Mechanism of Temozolomide Action in Glioma Cells. PLoS ONE 2015, 10, e0136669. [Google Scholar] [CrossRef]
- Storey, K.; Leder, K.; Hawkins-Daarud, A.; Swanson, K.; Ahmed, A.U.; Rockne, R.C.; Foo, J. Glioblastoma Recurrence and the Role of O6-Methylguanine-DNA Methyltransferase Promoter Methylation. JCO Clin. Cancer Inform. 2019, 3, 1–12. [Google Scholar] [CrossRef]
- Park, E.C.; Kim, G.; Jung, J.; Wang, K.; Lee, S.; Jeon, S.-S.; Lee, Z.W.; Kim, S.I.; Kim, S.; Oh, Y.-T.; et al. Differential Expression of MicroRNAs in Patients with Glioblastoma after Concomitant Chemoradiotherapy. Omics J. Integr. Biol. 2013, 17, 259–268. [Google Scholar] [CrossRef]
- Matos, B.; Bostjancic, E.; Matjasic, A.; Popovic, M.; Glavac, D. Dynamic Expression of 11 miRNAs in 83 Consecutive Primary and Corresponding Recurrent Glioblastoma: Correlation to Treatment, Time to Recurrence, Overall Survival and MGMT Methylation Status. Radiol. Oncol. 2018, 52, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, J.; Xiang, Q.; Liang, Y.; Zhao, N.; Zhang, Z.; Liu, Q.; Cui, Y. Prognostic Role of microRNA-21 Expression in Gliomas: A Meta-Analysis. J. Neurooncol. 2016, 130, 11–17. [Google Scholar] [CrossRef]
- Shen, F.; Mo, M.H.; Chen, L.; An, S.; Tan, X.; Fu, Y.; Rezaei, K.; Wang, Z.; Zhang, L.; Fu, S.W. MicroRNA-21 Down-regulates Rb1 Expression by Targeting PDCD4 in Retinoblastoma. J. Cancer 2014, 5, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Sippl, C.; Ketter, R.; Braun, L.; Teping, F.; Schoeneberger, L.; Kim, Y.J.; List, M.; Nakhoda, A.; Wemmert, S.; Oertel, J.; et al. miRNA-26a Expression Influences the Therapy Response to Carmustine Wafer Implantation in Patients with Glioblastoma Multiforme. Acta Neurochir. 2019, 161, 2299–2309. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Patients with GBM (n = 44) |
---|---|
Mean age ± SD [range] (years) | 56.9 ± 9.5 [35.9–77.9] |
Sex, n (%) | |
Male | 27 (61.4) |
Female | 17 (38.6) |
Extent of resection | |
Gross total resection | 21 (47.7) |
Subtotal resection | 23 (52.3) |
Overall survival ± SD [range] (month) | 19.5 ± 10.8 [1.5–60.6] |
Progression-free survival ± SD [range] (month) | 9.9 ± 5.6 [0.9–23.4] |
Death by end of trial, n (%) | 42 (95.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiring, A.; Spielmann, H.; Teping, F.; Saffour, S.; Khafaji, F.; Schulz-Schaeffer, W.; Monfroy, N.; Oertel, J.; Linsler, S.; Sippl, C. Epigenetic Characteristics in Primary and Recurrent Glioblastoma—Influence on the Clinical Course. Biomedicines 2024, 12, 2078. https://doi.org/10.3390/biomedicines12092078
Quiring A, Spielmann H, Teping F, Saffour S, Khafaji F, Schulz-Schaeffer W, Monfroy N, Oertel J, Linsler S, Sippl C. Epigenetic Characteristics in Primary and Recurrent Glioblastoma—Influence on the Clinical Course. Biomedicines. 2024; 12(9):2078. https://doi.org/10.3390/biomedicines12092078
Chicago/Turabian StyleQuiring, Alexander, Hannah Spielmann, Fritz Teping, Safwan Saffour, Fatemeh Khafaji, Walter Schulz-Schaeffer, Nathan Monfroy, Joachim Oertel, Stefan Linsler, and Christoph Sippl. 2024. "Epigenetic Characteristics in Primary and Recurrent Glioblastoma—Influence on the Clinical Course" Biomedicines 12, no. 9: 2078. https://doi.org/10.3390/biomedicines12092078
APA StyleQuiring, A., Spielmann, H., Teping, F., Saffour, S., Khafaji, F., Schulz-Schaeffer, W., Monfroy, N., Oertel, J., Linsler, S., & Sippl, C. (2024). Epigenetic Characteristics in Primary and Recurrent Glioblastoma—Influence on the Clinical Course. Biomedicines, 12(9), 2078. https://doi.org/10.3390/biomedicines12092078