CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Sample Collection
2.2. Clinical Data
2.3. Next-Generation Sequencing for Genetic Alteration
2.4. Survival Analysis and Statistical Analysis
3. Results
3.1. Clinical and Genetic Characteristics of Patients
3.2. Univariate Analysis of Factors Predicting Progression-Free Survival
3.3. Univariate Analysis of Factors Predicting Overall Survival
3.4. Combined Role of CDKN2A Homozygous Deletion and IDH1/2 Mutation
3.5. Multivariate Analysis of Factors Predicting Progression-Free Survival
3.6. Multivariate Analysis of Factors Predicting Overall Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Brat, D.J.; Aldape, K.; Colman, H.; Figarella-Branger, D.; Fuller, G.N.; Giannini, C.; Holland, E.C.; Jenkins, R.B.; Kleinschmidt-DeMasters, B.; Komori, T.; et al. cIMPACT-NOW update 5: Recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020, 139, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Torp, S.H.; Solheim, O.; Skjulsvik, A.J. The WHO 2021 Classification of Central Nervous System tumors: A practical update on what neurosurgeons need to know—A minireview. Acta Neurochir. 2022, 164, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, W.D.; Flanders, T.Y.; Pollock, P.M.; Hayward, N.K. The CDKN2A (p16) gene and human cancer. Mol. Med. 1997, 3, 5–20. [Google Scholar] [CrossRef]
- Crespo, I.; Vital, A.L.; Gonzalez-Tablas, M.; del Carmen Patino, M.; Otero, A.; Lopes, M.C.; de Oliveira, C.; Domingues, P.; Orfao, A.; Tabernero, M.D. Molecular and genomic alterations in glioblastoma multiforme. Am. J. Pathol. 2015, 185, 1820–1833. [Google Scholar] [CrossRef]
- Toyokuni, S. Mysterious link between iron overload and CDKN2A/2B. J. Clin. Biochem. Nutr. 2011, 48, 46–49. [Google Scholar] [CrossRef]
- Di Stefano, A.L.; Enciso-Mora, V.; Marie, Y.; Desestret, V.; Labussière, M.; Boisselier, B.; Mokhtari, K.; Idbaih, A.; Hoang-Xuan, K.; Delattre, J.Y.; et al. Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro-oncology 2013, 15, 542–547. [Google Scholar] [CrossRef]
- Verheul, C.; Ntafoulis, I.; Kers, T.V.; Hoogstrate, Y.; Mastroberardino, P.G.; Barnhoorn, S.; Payán-Gómez, C.; Yen, R.T.C.; Struys, E.A.; Koolen, S.L.W.; et al. Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol. Adv. 2021, 3, vdab103. [Google Scholar] [CrossRef]
- Carstam, L.; Corell, A.; Smits, A.; Dénes, A.; Barchéus, H.; Modin, K.; Sjögren, H.; Vega, S.F.; Bontell, T.O.; Carén, H.; et al. WHO grade loses its prognostic value in molecularly defined diffuse lower-grade gliomas. Front. Oncol. 2021, 11, 803975. [Google Scholar] [CrossRef]
- Lu, V.M.; O’Connor, K.P.; Shah, A.H.; Eichberg, D.G.; Luther, E.M.; Komotar, R.J.; Ivan, M.E. The prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: A systematic review of the contemporary literature. J. Neurooncol. 2020, 148, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Appay, R.; Dehais, C.; Maurage, C.A.; Alentorn, A.; Carpentier, C.; Colin, C.; Ducray, F.; Escande, F.; Idbaih, A.; Kamoun, A.; et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro-oncology 2019, 21, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Mol, L.; Ottevanger, P.B.; Koopman, M.; Punt, C.J.A. The prognostic value of WHO performance status in relation to quality of life in advanced colorectal cancer patients. Eur. J. Cancer 2016, 66, 138–143. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.; Won, M.; Shaw, E.G.; Coughlin, C.; Curran, W.J., Jr.; Mehta, M.P. Validation and simplification of the Radiation Therapy Oncology Group recursive partitioning analysis classification for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 623–630. [Google Scholar] [CrossRef]
- Kim, Y.Z.; Song, Y.J.; Kim, K.U.; Kim, D.C. MGMT Gene Promoter Methylation Analysis by Pyrosequencing of Brain Tumour. Kor. J. Pathol. 2011, 45, 455–462. [Google Scholar] [CrossRef]
- Wen, P.Y.; Chang, S.M.; van den Bent, M.J.; Vogelbaum, M.A.; Macdonald, D.R.; Lee, E.Q. Response assessment in neuro-oncology clinical trials. J. Clin. Oncol. 2017, 35, 2439–2449. [Google Scholar] [CrossRef]
- Kim, M.; Lee, C.; Hong, J.; Kim, J.; Jeong, J.Y.; Park, N.J.; Kim, J.E.; Park, J.Y. Validation and Clinical Application of ONCOaccuPanel for Targeted Next-Generation Sequencing of Solid Tumors. Cancer Res. Treat. 2023, 55, 429–441. [Google Scholar] [CrossRef]
- Yokoda, R.T.; Cobb, W.S.; Yong, R.L.; Crary, J.F.; Viapiano, M.S.; Walker, J.M.; Umphlett, M.; Tsankova, N.M.; Richardson, T.E. CDKN2A mutations have equivalent prognostic significance to homozygous deletion in IDH-mutant astrocytoma. J. Neuropath. Exp. Neurol. 2023, 82, 845–852. [Google Scholar] [CrossRef]
- Funakoshi, Y.; Hata, N.; Takigawa, K.; Arita, H.; Kuga, D.; Hatae, R.; Sangatsuda, Y.; Fujioka, Y.; Sako, A.; Umehara, T.; et al. Clinical significance of CDKN2A homozygous deletion in combination with methylated MGMT status for IDH-wildtype glioblastoma. Cancer Med. 2021, 10, 3177–3187. [Google Scholar] [CrossRef]
- Ma, S.; Rudra, S.; Campian, J.; Dahiya, P.S.; Dunn, G.P.; Johanns, T.; Goldstein, M.; Kim, A.H.; Huang, J. Prognostic impact of CDKN2A/B deletion, TERT mutation, and EGFR amplification on histological and molecular IDH-wildtype glioblastoma. Neurooncol. Adv. 2020, 2, vdaa126. [Google Scholar] [CrossRef]
- Aoki, K.; Nakamura, H.; Suzuki, H.; Matsuo, K.; Kataoka, K.; Shimamura, T.; Motomura, K.; Ohka, F.; Shiina, S.; Yamamoto, T.; et al. Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro-oncology 2018, 20, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Shirahata, M.; Ono, T.; Stichel, D.; Schrimpf, D.; Reuss, D.E.; Sahm, F.; Koelsche, C.; Wefers, A.; Reinhardt, A.; Huang, K.; et al. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol. 2018, 136, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.R.; Shi, Z.F.; Zhang, Z.Y.; Chan, A.K.Y.; Aibaidula, A.; Wang, W.W.; Kwan, J.S.H.; Poon, W.S.; Chen, H.; Li, W.C.; et al. IDH mutant lower grade (WHO Grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations. Brain Pathol. 2020, 30, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Barthel, F.P.; Johnson, K.C.; Varn, F.S.; Moskalik, A.D.; Tanner, G.; Kocakavuk, E.; Anderson, K.J.; Abiola, O.; Aldape, K.; Alfaro, K.D.; et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 2019, 576, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, P.; Lin, A.L.; Young, R.J.; DiStefano, N.D.; Hyman, D.M.; Li, B.T.; Berger, M.F.; Zehir, A.; Ladanyi, M.; Solit, D.B.; et al. Genomic correlates of disease progression and treatment response in prospectively characterized gliomas. Clin. Cancer Res. 2019, 25, 5537–5547. [Google Scholar] [CrossRef]
- Idbaih, A.; Kouwenhoven, M.; Jeuken, J.; Carpentier, C.; Gorlia, T.; Kros, J.M.; French, P.; Teepen, J.L.; Delattre, O.; Delattre, J.Y.; et al. Chromosome 1p loss evaluation in anaplastic oligodendroglioma. Neuropathology 2008, 28, 440–443. [Google Scholar] [CrossRef]
- Lass, U.; Hartmann, C.; Capper, D.; Herold-Mende, C.; Von Deimling, A.; Meiboom, M.; Mueller, W. Chromogenic in situ hybridization is a reliable alternative to fluorescence in situ hybridization for diagnostic testing of 1p and 19q loss in paraffin-embedded gliomas. Brain Pathol. 2013, 23, 311–318. [Google Scholar] [CrossRef]
- LaFramboise, T. Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Res. 2009, 37, 4181–4193. [Google Scholar] [CrossRef]
- Capper, D.; Stichel, D.; Sahm, F.; Jones, D.T.W.; Schrimpf, D.; Sill, M.; Schmid, S.; Hovestadt, V.; Reuss, D.E.; Koelsche, C.; et al. Practical implementation of DNA methylation and copy number-based CNS tumor diagnostics: The Heidelberg experience. Acta Neuropathol. 2018, 136, 181–210. [Google Scholar] [CrossRef]
- Zhou, B.; Ho, S.S.; Zhang, X.; Pattni, R.; Haraksingh, R.R.; Urban, A.E. Whole-genome sequencing analysis of CNV using low-coverage and paired-end strategies is efficient and outperforms array-based CNV analysis. J. Med. Genet. 2018, 55, 735–743. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.; Miller, C.P.; Tatevossian, R.G.; Dalton, J.D.; Tang, B.; Orisme, W.; Punchihewa, C.; Parker, M.; Qaddoumi, I.; et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat. Genet. 2013, 45, 602–612. [Google Scholar] [PubMed]
- Shimizu, Y.; Suzuki, M.; Akiyama, O.; Ogino, I.; Matsushita, Y.; Satomi, K.; Yanagisawa, S.; Ohno, M.; Takahashi, M.; Miyakita, Y.; et al. Utility of real-time polymerase chain reaction for the assessment of CDKN2A homozygous deletion in adult-type IDH-mutant astrocytoma. Brain Tumor Pathol. 2023, 40, 93–100. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, J.; Qiao, J.; Liu, Z.; Gu, L.; Zhang, B.; Lu, Y.; Xing, R.; Deng, D. Detection of somatic copy number deletion of the CDKN2A gene by quantitative multiplex PCR for clinical practice. Front. Oncol. 2022, 12, 1038380. [Google Scholar] [CrossRef]
- Fan, Z.; Zhou, J.; Tian, Y.; Qin, Y.; Liu, Z.; Gu, L.; Dawsey, S.M.; Wei, W.; Deng, D. Somatic CDKN2A copy number variations are associated with the prognosis of esophageal squamous cell dysplasia. Chin. Med. J. 2024, 137, 980–989. [Google Scholar] [CrossRef]
- Deng, L.; Zhou, J.; Sun, Y.; Hu, Y.; Qiao, J.; Liu, Z.; Gu, L.; Lin, D.; Zhang, L.; Deng, D. CDKN2A somatic copy number amplification in normal tissues surrounding gastric carcinoma reduces cancer metastasis risk in droplet digital PCR analysis. Gastric Cancer 2024, 27, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kang, J.; Lim, K.Y.; Kim, H.; Kim, S.I.; Won, J.K.; Park, C.K.; Park, S.H. The prognostic significance of p16 expression pattern in diffuse gliomas. J. Pathol. Transl. Med. 2021, 55, 102–111. [Google Scholar] [CrossRef]
- Suman, S.; Sharma, R.; Katiyar, V.; Mahajan, S.; Suri, A.; Sharma, M.C.; Sarkar, C.S.; Suri, V. Role of CDKN2A deletion in grade 2/3 IDH-mutant astrocytomas: Need for selective approach in resource-constrained settings. Neurosurg. Focus 2022, 53, E17. [Google Scholar] [CrossRef] [PubMed]
- Zschernack, V.; Andreiuolo, F.; Dörner, E.; Wiedey, A.; Jünger, S.T.; Friker, L.L.; Maruccia, R.; Pietsch, T. p16 Immunohistochemistry as a Screening Tool for Homozygous CDKN2A Deletions in CNS Tumors. Am. J. Surg. Pathol. 2024, 48, 46–53. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Natsume, A.; Hatano, H.; Fujii, M.; Shimato, S.; Ito, M.; Ohno, M.; Ito, S.; Ogura, M.; Yoshida, J. p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas. Neurosurgery 2009, 64, 455–462. [Google Scholar] [CrossRef]
- Jünger, S.T.; Andreiuolo, F.; Mynarek, M.; Wohlers, I.; Rahmann, S.; Klein-Hitpass, L.; Dörner, E.; Mühlen, A.Z.; Velez-Char, N.; von Hoff, K.; et al. CDKN2A deletion in supratentorial ependymoma with RELA alteration indicates a dismal prognosis: A retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathol. 2020, 140, 405–407. [Google Scholar] [CrossRef]
- Sievers, P.; Hielscher, T.; Schrimpf, D.; Stichel, D.; Reuss, D.E.; Berghoff, A.S.; Neidert, M.C.; Wirsching, H.G.; Mawrin, C.; Ketter, R.; et al. CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathol. 2020, 140, 409–413. [Google Scholar] [CrossRef]
- Sherr, C.J. Cancer cell cycles. Science 1996, 274, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Hannon, G.J.; Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993, 366, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Kocakavuk, E.; Anderson, K.J.; Varn, F.S.; Johnson, K.C.; Amin, S.B.; Sulman, E.P.; Lolkema, M.P.; Barthel, F.P.; Verhaak, R.G.W. Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nat. Genet. 2021, 53, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Varn, F.S.; Johnson, K.C.; Martinek, J.; Huse, J.T.; Nasrallah, M.P.; Wesseling, P.; Cooper, L.A.D.; Malta, T.M.; Wade, T.E.; Sabedot, T.S.; et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 2022, 185, 2184–2199.e16. [Google Scholar] [CrossRef] [PubMed]
- Rautajoki, K.J.; Jaatinen, S.; Hartewig, A.; Tiihonen, A.M.; Annala, M.; Salonen, I.; Valkonen, M.; Simola, V.; Vuorinen, E.M.; Kivinen, A.; et al. Genomic characterization of IDH-mutant astrocytoma progression to grade 4 in the treatment setting. Acta Neuropathol. Commun. 2023, 11, 176. [Google Scholar] [CrossRef]
- Minami, J.K.; Morrow, D.; Bayley, N.A.; Fernandez, E.G.; Salinas, J.J.; Tse, C.; Zhu, H.; Su, B.; Plawat, R.; Jones, A.; et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 2023, 41, 1048–1060. [Google Scholar] [CrossRef]
Variables | Number | |
---|---|---|
Age (years) | <50 | 47 (34.6%) |
≥50 | 89 (65.4%) | |
Sex | Male | 84 (61.8%) |
Female | 52 (38.2%) | |
WHO performance status | 0 | 55 (40.4%) |
1 | 65 (47.8%) | |
2 | 16 (11.8%) | |
Extent of resection | Biopsy | 17 (12.5%) |
Subtotal resection | 52 (38.2%) | |
Gross total resection | 67 (49.3%) | |
RPA class | III | 32 (23.5%) |
IV | 79 (58.1%) | |
V | 25 (18.4%) | |
MGMT gene promoter | Methylated | 86 (63.2%) |
Unmethylated | 50 (36.8%) | |
EGFR amplification | Yes | 95 (69.9%) |
No | 41 (30.1%) | |
TERT promoter mutation | Yes | 71 (52.2%) |
No | 65 (47.8%) | |
CDKN2A deletion | Yes | 75 (55.1%) |
No | 61 (44.9%) | |
IDH mutation | Yes | 29 (21.3%) |
No | 107 (78.7%) | |
Postoperative adjuvant therapy | ||
RTx and/or nitrosourea chemotherapy | 35 (25.7%) | |
CCRT with temozolomide | 101 (74.3%) | |
Salvage treatment after progression * | ||
Second surgical resection | 74 (54.4%) | |
Repeated irradiation | 63 (46.3%) | |
Salvage chemotherapy | 83 (61.0%) | |
Supportive treatment only | 17 (12.5%) |
Variables | IDH Mutant (n = 29) | IDH Wildtype (n = 107) | p Value | |
---|---|---|---|---|
Age (years) | <50 | 14 (48.3%) | 33 (30.8%) | 0.153 |
≥50 | 15 (51.7%) | 74 (69.2%) | ||
Sex | Male | 17 (58.6%) | 67 (62.6%) | 0.772 |
Female | 12 (31.4%) | 40 (37.4%) | ||
WHO performance status | 0 | 11 (37.9%) | 44 (41.1%) | 0.806 |
1 | 13 (44.8%) | 52 (48.6%) | ||
2 | 5 (17.3%) | 11 (10.3%) | ||
Extent of resection | Biopsy | 3 (10.3%) | 14 (13.1%) | 0.734 |
Subtotal resection | 10 (34.5%) | 42 (39.2%) | ||
Gross total resection | 16 (55.2%) | 51 (47.7%) | ||
RPA class | III | 9 (31.0%) | 23 (21.5%) | 0.183 |
IV | 17 (58.6%) | 62 (57.9%) | ||
V | 3 (10.4%) | 22 (20.6%) | ||
MGMT gene promoter | Methylated | 20 (69.0%) | 66 (61.7%) | 0.271 |
Unmethylated | 9 (31.0%) | 41 (38.3%) | ||
EGFR amplification | Yes | 18 (62.1%) | 71 (66.4%) | 0.562 |
No | 11 (37.9%) | 36 (33.6%) | ||
TERT promoter mutation | Yes | 15 (51.7%) | 56 (52.3%) | 0.933 |
No | 14 (48.3%) | 51 (47.7%) | ||
CDKN2A deletion | Yes | 16 (55.2%) | 59 (55.1%) | 0.958 |
No | 13 (44.8%) | 48 (44.9%) | ||
Postoperative adjuvant therapy | ||||
RTx and/or nitrosourea chemotherapy | 7 (24.1%) | 28 (26.2%) | 0.893 | |
CCRT with temozolomide | 22 (75.9%) | 79 (73.8%) | ||
Salvage treatment after progression * | ||||
Second surgical resection | 15 (51.7%) | 59 (55.1%) | 0.725 | |
Repeated irradiation | 11 (37.9%) | 52 (48.6%) | ||
Salvage chemotherapy | 17 (58.6%) | 66 (61.7%) | ||
Supportive treatment only | 3 (10.3%) | 14 (13.1%) |
Variables | CDKN2A Deletion (n = 75) | CDKN2A Intact (n = 61) | p Value | |
---|---|---|---|---|
Age (years) | <50 | 21 (28.0%) | 26 (42.6%) | 0.054 |
≥50 | 54 (72.0%) | 35 (57.4%) | ||
Sex | Male | 47 (62.7%) | 37 (60.7%) | 0.872 |
Female | 28 (37.3%) | 24 (39.3%) | ||
WHO performance status | 0 | 29 (38.7%) | 26 (42.6%) | 0.626 |
1 | 36 (48.0%) | 29 (47.5%) | ||
2 | 10 (13.3%) | 6 (9.9%) | ||
Extent of resection | Biopsy | 10 (13.3%) | 7 (11.5%) | 0.791 |
Subtotal resection | 29 (38.7%) | 23 (37.7%) | ||
Gross total resection | 36 (48.0%) | 31 (50.8%) | ||
RPA class | III | 16 (21.3%) | 16 (26.2%) | 0.617 |
IV | 43 (57.3%) | 36 (59.0%) | ||
V | 16 (18.4%) | 9 (14.8%) | ||
MGMT gene promoter | Methylated | 47 (62.7%) | 39 (61.9%) | 0.935 |
Unmethylated | 28 (37.3%) | 22 (36.1%) | ||
EGFR amplification | Yes | 51 (68.0%) | 44 (72.1%) | 0.804 |
No | 24 (31.0%) | 17 (27.9%) | ||
TERT promoter mutation | Yes | 44 (58.7%) | 27 (44.3%) | 0.103 |
No | 31 (41.3%) | 34 (55.7%) | ||
IDH mutation | Yes | 16 (21.3%) | 13 (21.3%) | 0.958 |
No | 59 (78.7%) | 48 (78.7%) | ||
Postoperative adjuvant therapy | 0.454 | |||
RTx and/or nitrosourea chemotherapy | 16 (21.3%) | 19 (31.1%) | ||
CCRT with temozolomide | 59 (78.7%) | 42 (68.9%) | ||
Salvage treatment after progression * | 0.836 | |||
Second surgical resection | 38 (50.7%) | 36 (59.0%) | ||
Repeated irradiation | 32 (42.7%) | 31 (50.8%) | ||
Salvage chemotherapy | 46 (61.3%) | 37 (60.7%) | ||
Supportive treatment only | 10 (13.3%) | 7 (11.5%) |
Variables | Mean PFS (Month, ±SD) | Hazard Ratio (95% CI) | p-Value | Mean OS (Month, ±SD) | Hazard Ratio (95% CI) | p-Value | |
---|---|---|---|---|---|---|---|
Age (years) | ≥50 | 9.96 (±0.400) | 18.91 (±1.452) | ||||
<50 | 11.29 (±0.546) | 3.072 (0.967–5.177) | 0.080 | 24.37 (±2.014) | 6.326 (4.228–8.424) | 0.012 | |
Sex | Male | 10.07 (±0.513) | 20.15 (±1.992) | ||||
Female | 10.91 (±0.532) | 2.310 (0.906–3.714) | 0.129 | 21.55 (±2.127) | 1.528 (0.827–2.229) | 0.467 | |
WHO performance | 2 | 8.65 (±0.388) | 10.26 (±0.726) | ||||
1 | 10.11 (±0.617) | 2.252 (0.911–3.593) | 0.133 | 19.53 (±1.538) | 10.254 (6.925–13.583) | 0.004 | |
0 | 11.23 (±0.638) | 3.679 (0.982–6.376) | 0.055 | 24.41 (±2.513) | 22.012 (15.32–28.70) | <0.001 | |
Extent of resection | Bx | 5.95 (±0.325) | 13.58 (±1.185) | ||||
STR | 9.40 (±0.418) | 9.514 (7.008–12.021) | 0.002 | 19.52 (±1.627) | 4.595 (1.889–7.301) | 0.034 | |
GTR | 12.24 (±0.629) | 41.251 (34.897–47.605) | <0.001 | 23.13 (±2.229) | 7.980 (4.669–11.291) | 0.007 | |
RPA class | V | 8.97 (±0.524) | 10.54 (±0.825) | ||||
IV | 10.25 (±0.596) | 6.288 (5.543–7.033) | 0.012 | 20.05 (±1.797) | 11.620 (7.074–16.166) | <0.001 | |
III | 11.77 (±0.662) | 8.648 (6.893–10.403) | 0.003 | 29.36 (±2.554) | 23.161 (17.43–28.90) | <0.001 | |
MGMT gene promoter | |||||||
Unmethylated | 9.31 (±0.503) | 17.29 (±2.327) | |||||
Methylated | 11.02 (±0.672) | 7.330 (6.134–8.526) | 0.017 | 22.28 (±2.506) | 6.306 (4.653–7.959) | 0.008 | |
EGFR amplification | Yes | 9.49 (±0.603) | 20.17 (±1.962) | ||||
No | 12.39 (±0.758) | 14.536 (12.085–16.987) | <0.001 | 22.03 (±1.994) | 1.989 (0.857–3.121) | 0.320 | |
TERT mutation | Yes | 9.33 (±0.567) | 19.66 (±1.878) | ||||
No | 11.53 (±0.706) | 17.490 (14.922–20.058) | <0.001 | 21.87 (±1.999) | 2.586 (0.929–4.243) | 0.208 | |
CDKN2A deletion | Yes | 8.75 (±0.522) | 16.65 (±1.689) | ||||
No | 12.40 (±0.735) | 33.218 (30.085–36.351) | <0.001 | 25.05 (±2.811) | 11.129 (7.048–15.211) | 0.002 | |
IDH mutation | No | 10.16 (±0.632) | 19.12 (±2.227) | ||||
Yes | 11.31 (±0.681) | 3.349 (0.957–5.741) | 0.067 | 26.02 (±2.513) | 5.794 (3.185–8.403) | 0.023 | |
Postop. adjuvant therapy | |||||||
RTx and/or nitrosourea chemotherapy | 10.38 (±0.533) | 18.44 (±1.527) | |||||
CCRT with TMZ | 10.40 (±0.584) | 1.018 (0.486–1.551) | 0.984 | 21.65 (±1.869) | 3.456 (0.970–5.942) | 0.063 |
Groups | Mean PFS (month, ±SD) | Hazard Ratio (95% CI) | p-Value | Mean OS (month, ±SD) | Hazard Ratio (95% CI) | p-Value |
---|---|---|---|---|---|---|
High-risk group (n = 75) | 8.75 (±0.694) | 16.65 (±1.554) | ||||
Intermediate-risk group (n = 48) | 11.02 (±0.956) | 6.469 (5.048–7.889) | <0.001 | 21.85 (±2.082) | 4.792 (2.015–7.569) | 0.029 |
Low-risk group (n = 13) | 15.25 (±1.492) | 16.979 (13.650–20.308) | <0.001 | 33.38 (±2.946) | 12.455 (9.627–15.283) | <0.001 |
Variables | Progression-Free Survival | Overall Survival | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Age (<50 years vs. ≥50 years) | 2.652 (0.924–4.381) | 0.164 | 4.645 (2.865–6.425) | 0.037 |
WHO performance status (0 vs. 1) | 1.728 (0.772–2.684) | 0.465 | 3.817 (2.436–5.198) | 0.046 |
(0 vs. 2) | 2.890 (0.874–4.906) | 0.359 | 5.002 (3.756–6.248) | 0.039 |
(1 vs. 2) | 1.637 (0.689–2.585) | 0.518 | 3.663 (1.492–5.834) | 0.049 |
Extent of surgery (GTR vs. biopsy) | 11.651 (8.755–14.547) | <0.001 | 8.075 (5.837–10.313) | 0.006 |
(GTR vs. STR) | 9.323 (7.285–11.361) | 0.003 | 5.528 (3.840–7.216) | 0.030 |
(STR vs. Biopsy) | 8.609 (6.238–10.979) | 0.009 | 3.233 (0.982–5.484) | 0.053 |
RPA class (III vs. IV) | 3.408 (0.952–5.864) | 0.078 | 3.992 (2.008–5.976) | 0.045 |
(III vs. V) | 5.382 (3.894–6.869) | 0.028 | 6.773 (4.259–9.287) | 0.022 |
(IV vs. V) | 4.611 (1.996–7.226) | 0.038 | 5.019 (3.890–6.148) | 0.036 |
MGMT gene promoter (methylated vs. unmethylated) | 6.989 (5.198–8.779) | 0.018 | 5.078 (3.694–6.462) | 0.030 |
EGFR amplification (No vs. Yes) | 9.658 (8.113–11.203) | 0.001 | 2.748 (0.825–4.671) | 0.152 |
TERT promoter mutation (No vs. Yes) | 13.077 (10.840–15.314) | <0.001 | 3.179 (0.887–5.471) | 0.138 |
CDKN2A deletion (No vs. Yes) | 21.361 (18.651–24.071) | <0.001 | 13.454 (10.268–16.639) | <0.001 |
IDH mutation (Yes vs. No) | 3.085 (0.888–5.282) | 0.116 | 6.352 (5.079–7.625) | 0.028 |
Postoperative adjuvant therapy (RTx and/or nitrosourea vs. CCRT with TMZ) | 1.373 (0.462–2.284) | 0.995 | 2.237 (0.842–3.632) | 0.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Kim, T.G.; Ryu, K.H.; Kim, S.H.; Kim, Y.Z. CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas. Biomedicines 2024, 12, 2256. https://doi.org/10.3390/biomedicines12102256
Lee SH, Kim TG, Ryu KH, Kim SH, Kim YZ. CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas. Biomedicines. 2024; 12(10):2256. https://doi.org/10.3390/biomedicines12102256
Chicago/Turabian StyleLee, Sang Hyuk, Tae Gyu Kim, Kyeong Hwa Ryu, Seok Hyun Kim, and Young Zoon Kim. 2024. "CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas" Biomedicines 12, no. 10: 2256. https://doi.org/10.3390/biomedicines12102256
APA StyleLee, S. H., Kim, T. G., Ryu, K. H., Kim, S. H., & Kim, Y. Z. (2024). CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas. Biomedicines, 12(10), 2256. https://doi.org/10.3390/biomedicines12102256