The Link between Endogenous Pain Modulation Changes and Clinical Improvement in Fibromyalgia Syndrome: A Meta-Regression Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Inclusion Criteria
2.2. Study Selection and Data Extraction
2.3. Management of Missing Data
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Risk of Bias Findings
3.2. Pooled Analysis Findings
3.3. Meta-Regression Findings
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kocyigit, B.F.; Akyol, A. Fibromyalgia syndrome: Epidemiology, diagnosis and treatment. Reumatologia 2022, 60, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Nijs, J.; Malfliet, A.; Nishigami, T. Nociplastic pain and central sensitization in patients with chronic pain conditions: A terminology update for clinicians. Braz. J. Phys. Ther. 2023, 27, 100518. [Google Scholar] [CrossRef] [PubMed]
- Mezhov, V.; Guymer, E.; Littlejohn, G. Central sensitivity and fibromyalgia. Intern. Med. J. 2021, 51, 1990–1998. [Google Scholar] [CrossRef]
- Pacheco-Barrios, K.; Teixeira, P.E.; Martinez-Magallanes, D.; Neto, M.S.; Pichardo, E.A.; Camargo, L.; Lima, D.; Cardenas-Rojas, A.; Fregni, F. Brain compensatory mechanisms in depression and memory complaints in fibromyalgia: The role of theta oscillatory activity. Pain Med. 2024, 25, 514–522. [Google Scholar] [CrossRef]
- Camargo, L.; Pacheco-Barrios, K.; Marques, L.M.; Caumo, W.; Fregni, F. Adaptive and Compensatory Neural Signatures in Fibromyalgia: An Analysis of Resting-State and Stimulus-Evoked EEG Oscillations. Biomedicines 2024, 12, 1428. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Branco, L.; Kucukseymen, E.U.; Duarte, D.; El-Hagrassy, M.M.; Pinto, C.B.; Gunduz, M.E.; Cardenas-Rojas, A.; Pacheco-Barrios, K.; Yang, Y.; Gonzalez-Mego, P.; et al. Optimised transcranial direct current stimulation (tDCS) for fibromyalgia—Targeting the endogenous pain control system: A randomised, double-blind, factorial clinical trial protocol. BMJ Open 2019, 9, e032710. [Google Scholar] [CrossRef]
- Yarnitsky, D. Role of Endogenous Pain Modulation in Chronic Pain Mechanisms and Treatment. Pain 2015, 156, S24–S31. [Google Scholar] [CrossRef]
- Nie, H.; Graven-Nielsen, T.; Arendt-Nielsen, L. Spatial and Temporal Summation of Pain Evoked by Mechanical Pressure Stimulation. Eur. J. Pain 2009, 13, 592–599. [Google Scholar] [CrossRef]
- Potvin, S.; Marchand, S. Pain facilitation and pain inhibition during conditioned pain modulation in fibromyalgia and in healthy controls. Pain 2016, 157, 1704–1710. [Google Scholar] [CrossRef]
- Uygur-Kucukseymen, E.; Castelo-Branco, L.; Pacheco-Barrios, K.; Luna-Cuadros, M.A.; Cardenas-Rojas, A.; Giannoni-Luza, S.; Zeng, H.; Gianlorenco, A.C.; Gnoatto-Medeiros, M.; Shaikh, E.S.; et al. Decreased neural inhibitory state in fibromyalgia pain: A cross-sectional study. Neurophysiol. Clin. 2020, 50, 279–288. [Google Scholar] [CrossRef]
- Bittencourt, J.V.; Corrêa, L.A.; Bezerra, M.C.; Reis, F.J.J.D.; Luca, K.D.; Nogueira, L.A.C. Patients with fibromyalgia present different pain phenotypes compared to patients with generalized pain. BrJP 2022, 5, 119–126. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.; Higgins, J.; Thomas, J. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Minozzi, S.; Dwan, K.; Borrelli, F.; Filippini, G. Reliability of the revised Cochrane risk-of-bias tool for randomised trials (RoB2) improved with the use of implementation instruction. J. Clin. Epidemiol. 2022, 141, 99–105. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- IntHout, J.; Ioannidis, J.P.; Borm, G.F. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G. GRADE Handbook; GRADE Working Group: Split, Croatia. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 28 July 2024).
- Guyatt, G.H.; Oxman, A.D.; Montori, V.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Djulbegovic, B.; Atkins, D.; Falck-Ytter, Y.; et al. GRADE guidelines: 5. Rating the quality of evidence—Publication bias. J. Clin. Epidemiol. 2011, 64, 1277–1282. [Google Scholar] [CrossRef]
- Bennett, R.M.; Bushmakin, A.G.; Cappelleri, J.C.; Zlateva, G.; Sadosky, A.B. Minimal clinically important difference in the fibromyalgia impact questionnaire. J. Rheumatol. 2009, 36, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Lawson, R. Small sample confidence intervals for the odds ratio. Commun. Stat.-Simul. Comput. 2004, 33, 1095–1113. [Google Scholar] [CrossRef]
- Graven-Nielsen, T.; Kendall, S.A.; Henriksson, K.G.; Bengtsson, M.; Sörensen, J.; Johnson, A.; Gerdle, B.; Arendt-Nielsen, L. Ketamine reduces muscle pain, temporal summation, and referred pain in fibromyalgia patients. Pain 2000, 85, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Dailey, D.L.; Rakel, B.A.; Vance, C.G.; Liebano, R.E.; Amrit, A.S.; Bush, H.M.; Lee, K.S.; Lee, J.E.; Sluka, K.A. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain 2013, 154, 2554–2562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Zanette, S.A.; Vercelino, R.; Laste, G.; Rozisky, J.R.; Schwertner, A.; Machado, C.B.; Xavier, F.; de Souza, I.C.C.; Deitos, A.; Torres, I.L.S.; et al. Melatonin analgesia is associated with improvement of the descending endogenous pain-modulating system in fibromyalgia: A phase II, randomized, double-dummy, controlled trial. BMC Pharmacol. Toxicol. 2014, 15, 40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meeus, M.; Hermans, L.; Ickmans, K.; Struyf, F.; Van Cauwenbergh, D.; Bronckaerts, L.; De Clerck, L.S.; Moorken, G.; Hans, G.; Grosemans, S.; et al. Endogenous Pain Modulation in Response to Exercise in Patients with Rheumatoid Arthritis, Patients with Chronic Fatigue Syndrome and Comorbid Fibromyalgia, and Healthy Controls: A Double-Blind Randomized Controlled Trial. Pain Pract. 2015, 15, 98–106. [Google Scholar] [CrossRef]
- Pickering, G.; Macian, N.; Delage, N.; Picard, P.; Cardot, J.-M.; Sickout-Arondo, S.; Giron, F.; Dualé, C.; Pereira, B.; Marcaillou, F. Milnacipran Poorly Modulates Pain in Patients Suffering from Fibromyalgia: A Randomized Double-Blind Controlled Study. Drug Des. Dev. Ther. 2018, 12, 2485–2496. [Google Scholar] [CrossRef]
- Amer-Cuenca, J.J.; Pecos-Martín, D.; Martínez-Merinero, P.; Lluch Girbés, E.; Nijs, J.; Meeus, M.; Ferrer Peña, R.; Fernández-Carnero, J. How Much Is Needed? Comparison of the Effectiveness of Different Pain Education Dosages in Patients with Fibromyalgia. Pain Med. 2020, 21, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Udina-Cortes, C.; Fernandez-Carnero, J.; Romano, A.A.; Cuenca-Zaldivar, J.N.; Villafane, J.H.; Castro-Marrero, J.; Alguacil-Diego, I.M. Effects of neuro-adaptive electrostimulation therapy on pain and disability in fibromyalgia: A prospective, randomized, double-blind study. Medicine 2020, 99, e23785. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ablin, J.N.; Lang, E.; Catalogna, M.; Aloush, V.; Hadanny, A.; Doenyas-Barak, K.; Finci, S.; Polak, N.; Fishlev, G.; Korin, C.; et al. Hyperbaric oxygen therapy compared to pharmacological intervention in fibromyalgia patients following traumatic brain injury: A randomized, controlled trial. PLoS ONE 2023, 18, e0282406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Paula, T.M.H.; Castro, M.S.; Medeiros, L.F.; Paludo, R.H.; Couto, F.F.; da Costa, T.R.; Fortes, J.P.; Salbego, M.d.O.; Behnck, G.S.; de Moura, T.A.M.; et al. Association of Low-Dose Naltrexone and Transcranial Direct Current Stimulation in Fibromyalgia: A Randomized, Double-Blinded, Parallel Clinical Trial. Braz. J. Anesthesiol. 2023, 73, 409–417. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Wodehouse, T. Conditioned pain modulation—A comprehensive review. Neurophysiol. Clin. 2021, 51, 197–208. [Google Scholar] [CrossRef]
- Bossmann, T.; Brauner, T.; Lowak, H.; Anton, F.; Forster, C.; Horstmann, T. Reliability of conditioned pain modulation for the assessment of endogenous pain control pathways. Neurol. Psychiatry Brain Res. 2016, 22, 155–161. [Google Scholar] [CrossRef]
- Lazaridou, A.; Paschali, M.; Zgierska, A.E.; Garland, E.L.; Edwards, R.R. Exploring the relationship between endogenous pain modulation, pain intensity, and depression in patients using opioids for chronic low back pain. Clin. J. Pain 2022, 38, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Owens, M.A.; Bulls, H.W.; Trost, Z.; Terry, S.C.; Gossett, E.W.; Wesson-Sides, K.M.; Goodin, B.R. An examination of pain catastrophizing and endogenous pain modulatory processes in adults with chronic low back pain. Pain Med. 2016, 17, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.N.; Rice, D.A.; McNair, P.J. Conditioned pain modulation in populations with chronic pain: A systematic review and meta-analysis. J. Pain 2012, 13, 936–944. [Google Scholar] [CrossRef]
- Graeff, P.; Itter, A.; Wach, K.; Ruscheweyh, R. Inter-Individual Differences Explain More Variance in Conditioned Pain Modulation than Age, Sex and Conditioning Stimulus Intensity Combined. Brain Sci. 2021, 11, 1186. [Google Scholar] [CrossRef]
- Kennedy, D.L.; Kemp, H.I.; Ridout, D.; Yarnitsky, D.; Rice, A.S.C. Reliability of Conditioned Pain Modulation. Pain 2016, 157, 2410–2419. [Google Scholar] [CrossRef]
- Edwards, R.R.; Dolman, A.J.; Martel, M.O.; Finan, P.H.; Lazaridou, A.; Cornelius, M.; Wasan, A.D. Variability in conditioned pain modulation predicts response to NSAID treatment in patients with knee osteoarthritis. BMC Musculoskelet. Disord. 2016, 17, 284. [Google Scholar] [CrossRef]
- Yarnitsky, D.; Crispel, Y.; Eisenberg, E.; Granovsky, Y.; Ben-Nun, A.; Sprecher, E.; Best, L.-A.; Granot, M. Prediction of chronic post-operative pain: Pre-operative DNIC testing identifies patients at risk. Pain 2008, 138, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Izumi, M.; Petersen, K.K.; Laursen, M.B.; Arendt-Nielsen, L.; Graven-Nielsen, T. Facilitated temporal summation of pain correlates with clinical pain intensity after hip arthroplasty. Pain 2017, 158, 323–332. [Google Scholar] [CrossRef]
- Bruehl, S.; France, C.R.; Stone, A.L.; Gupta, R.; Buvanendran, A.; Chont, M.M.; Burns, J.W. Greater conditioned pain modulation is associated with enhanced morphine analgesia in healthy individuals and patients with chronic low back pain. Clin. J. Pain 2021, 37, 20–27. [Google Scholar] [CrossRef]
- Arendt-Nielsen, L.; Skou, S.T.; Nielsen, T.A.; Petersen, K.K. Altered central sensitization and pain modulation in the CNS in chronic joint pain. Curr. Osteoporos. Rep. 2015, 13, 225–234. [Google Scholar] [CrossRef]
- Yarnitsky, D.; Granot, M.; Granovsky, Y. Pain modulation profile and pain therapy: Between pro-and antinociception. Pain 2014, 155, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Almeida, Y.; Fillingim, R.B. Can quantitative sensory testing move us closer to mechanism-based pain management? Pain Med. 2014, 15, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Granovsky, Y.; Yarnitsky, D. Personalized pain medicine: The clinical value of psychophysical assessment of pain modulation profile. Rambam Maimonides Med. J. 2013, 4, e0024. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Age | Sample Size | Group Description | Type of Neuromodulator/Drug | Type of Conditioned Stimulation | Type of Conditioning Stimulation | CPM Method | TS Method | Measure of Clinical Pain Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Graven-Nielsen et al., 2000 [22] | RCT CO | 45 (8.25) | 15 | Group 1: Ketamine; Group 2: Placebo | Ketamine 0.3 mg/kg infussion per session | PPT (three bilateral tenderpoints) | NA | NA | PPT with 10 repeated applications of pulse. TS is the MD of VAS on the last pulse and the first pulse. | VAS |
Dailey et al., 2013 [23] | RCT CO | 49.1 (12.9) | 43 | Group 1: TENS; Group 2: Placebo | Transcutaneous electrical nerve stimulations (TENS), 100 Hz, 200 μs at maximal tolerable intensity. | PPT (cervical) | Cold Water | VAS assessed via PPT, realized with and without CS. CPM is the percentage of change of VAS between the two tests. | NA | VAS |
Zanette et al., 2014 [24] | RCT | 48.9 (8) | Group 1: 21 Group 2: 21 Group 3: 21 | Group 1: Melatonin; Group 2: Amitriptyline + Melatonin; Group 3: Amitriptyline | Melatonin (10 mg) tablets + placebo; amitriptyline (25 mg) + placebo; or amitriptyline (25 mg) + melatonin (10 mg) once a day over 6-week period. | Heat pain (forearm) | Cold Water | VAS assessed via heat stimulation, measured with and without CS. CPM is the MD between the two tests. | NA | VAS FIQ |
Meeus et al., 2015 [25] | RCT CO | 44.58 (7.34) | 19 | Group 1: Acetaminophen; Group 2: Placebo | Acetaminophen 1 g—30 min before assessment | PPT (middle finger of right hand and trapezius right arm) | Occlusion cuff | NPRS assessed via PPT, realized with and without CS. CPM is the MD of NPRS between the two tests. | PPT with 10 repeated applications of pulse. TS is the MD of NPRS on the last pulse and the first pulse. | NPRS |
Pickering et al., 2018 [26] | RCT | 46.7 (10.6) | Group 1: 29 Group 2: 25 | Group 1: Milnacipran; Group 2: Placebo | Milnacipran, titrated 50 mg days 1–3, 75 mg days 4–6, 100 mg days 7–1 months. | Heat pain (volar side of forearm) | Hot Water | NPRS assessed via PPT, realized with and without CS. CPM is the MD of NPRS between the two tests. | PPT with 10 repeated applications of pulse. TS is the MD of NPRS on the last pulse and the first pulse. | NPRS |
Amer-Cuenca et al., 2019 [27] | RCT | 53.4 (9.08) | Group 1: 24 Group 2: 28 Group 3: 32 Group 4: 19 | Group 1: HD PNE; Group 2: LCD PNE; Group 3: LDD PNE; Group 4: Placebo | HP PNE (six 45 min sessions), LCD PNE (two 45 min sessions), LDD PNE (six 15 min sessions) | PPT (dorsal aspect of the distal phalanx) | Occlusion cuff | NPRS assessed via PPT, realized with and without CS. CPM is the MD of NPRS between the two tests. | PPT with 10 repeated applications of pulse. TS is the MD of NPRS on the last pulse and the first pulse. | NPRS FIQ |
Udina-Cortes et al., 2020 [28] | RCT | 52 (8) | Group 1: 20 Group 2: 17 | Group 1: NAE; Group 2: NAE Sham | Self-Controlled Energo Neuro-Adaptive Regulator, 15–350 Hz, 4 ± 2 to 500 ± 50 milliseconds, 1.7–2.5 V to 100–150 V amplitude. | PPT (trapezius muscle) | Occlusion cuff | VAS assessed via PPT, realized with and without CS. CPM is the MD of VAS between the two tests. | PPT with 10 repeated applications of pulse. TS is the MD of VAS on the last pulse and the first pulse. | VAS FIQ |
Ablin et al., 2023 [29] | RCT | 45.04 (11.9) | Group 1: 33 Group 2: 31 | Group 1: HBOT; Group 2: Duloxetina + Pregabalin | HBOT 60 daily sessions five times per week for a total of 12 weeks. 100% oxygen by mask at 2 absolute atmospheres (ATA) for 90 min. | PPT (upper trapezius muscle) | Cold Water | VAS assessed via PPT, realized with and without CS. CPM is the MD of VAS between the two tests. | NA | VAS FQI |
Paula et al., 2023 [30] | RCT | 49.3 (1.96) | Group 1: 21 Group 2: 22 Group 3: 22 Group 4: 21 | Group 1: LDN + tDCS; Group 2: LDN + tDCS Sham; Group 3: Placebo + tDCS; Group 4: Placebo + tDCS Sham | tDCS using a current of 2 mA for 20 min/session (5 sessions). LDN 4.5 mg daily, orally for 26 days. | PPT (right forearm) | Cold Water | VAS assessed via PPT, realized with and without CS. CPM is the MD of VAS between the two tests. | NA | VAS FIQ |
Study | Bias from Randomization Process | Bias due to Deviations from Intended Interventions | Bias due to Missing Outcome Data | Bias in Measurement of the Outcomes | Bias in Selection of the Reported Result | Overall Risk of Bias |
---|---|---|---|---|---|---|
Graven-Nielsen, 2000 [22] | Low | Low | Low | Low | Low | Low |
Dailey, 2013 [23] | Low | Low | Low | Low | Low | Low |
Zanette, 2014 [24] | Low | Low | Low | Low | Low | Low |
Meeus, 2015 [25] | Low | Low | Low | Low | Low | Low |
Pickering, 2018 [26] | Low | Low | Some concerns | Low | Low | Some concerns |
Amer-Cuenca, 2019 [27] | Low | Low | Low | Low | Low | Low |
Udina-Cortés, 2020 [28] | Low | Low | Low | Low | Low | Low |
Ablin, 2023 [29] | Low | Some concerns | Low | Low | Low | Some concerns |
Paula, 2023 [30] | Low | Low | Low | Low | Low | Low |
Association | Number of Trial Arms | Odds Ratio | 95% CI | p-Value |
---|---|---|---|---|
CPM improvement vs. VAS improvement | 17 | 16 | 1.26 to 553.58 | 0.002 |
CPM improvement vs. FIQR improvement | 14 | 13 | 1.09 to 1000.61 | 0.004 |
TS improvement vs. VAS improvement | 8 | 6 | 1.58 to 426.85 | 0.003 |
TS improvement vs. FIQR improvement | 6 | 5 | 1.16 to 1060.22 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco-Barrios, K.; Filardi, R.M.; González-González, L.F.; Park, N.; Petrus, F.Q.; Navarro-Flores, A.; Di-Bonaventura, S.; Alves, L.G.; Queiroz, F.; Fregni, F. The Link between Endogenous Pain Modulation Changes and Clinical Improvement in Fibromyalgia Syndrome: A Meta-Regression Analysis. Biomedicines 2024, 12, 2097. https://doi.org/10.3390/biomedicines12092097
Pacheco-Barrios K, Filardi RM, González-González LF, Park N, Petrus FQ, Navarro-Flores A, Di-Bonaventura S, Alves LG, Queiroz F, Fregni F. The Link between Endogenous Pain Modulation Changes and Clinical Improvement in Fibromyalgia Syndrome: A Meta-Regression Analysis. Biomedicines. 2024; 12(9):2097. https://doi.org/10.3390/biomedicines12092097
Chicago/Turabian StylePacheco-Barrios, Kevin, Rafaela Machado Filardi, Luis Fernando González-González, Nayeon Park, Fernanda Queiroz Petrus, Alba Navarro-Flores, Silvia Di-Bonaventura, Luana Gola Alves, Fernanda Queiroz, and Felipe Fregni. 2024. "The Link between Endogenous Pain Modulation Changes and Clinical Improvement in Fibromyalgia Syndrome: A Meta-Regression Analysis" Biomedicines 12, no. 9: 2097. https://doi.org/10.3390/biomedicines12092097
APA StylePacheco-Barrios, K., Filardi, R. M., González-González, L. F., Park, N., Petrus, F. Q., Navarro-Flores, A., Di-Bonaventura, S., Alves, L. G., Queiroz, F., & Fregni, F. (2024). The Link between Endogenous Pain Modulation Changes and Clinical Improvement in Fibromyalgia Syndrome: A Meta-Regression Analysis. Biomedicines, 12(9), 2097. https://doi.org/10.3390/biomedicines12092097