Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application
Abstract
:1. Introduction
2. Dysregulation of KB Metabolism Enzymes in Tumor
2.1. ACAT1
2.2. HMGCS2
2.3. HMGCL
2.4. BDH
2.5. OXCT1
3. The Potential Function KBs in Tumorigenesis
3.1. β-OHB
3.2. AcAc
3.3. Acetone
4. KD as a Novel Adjuvant Approach for Cancer Treatment
4.1. Types of KD
4.2. Potential Mechanisms of the KD in Suppressing Cancer
4.3. Animal Models of KD in Cancer
4.4. Preclinical and Clinical Studies of KD in Cancer
4.5. Limitations and Risks of Clinical Studies on the KD in Cancer
4.6. Next Step of KD in Clinical Application
5. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Martinez-Outschoorn, U.E.; Peiris-Pages, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol. 2017, 14, 113. [Google Scholar] [CrossRef]
- Fukushi, A.; Kim, H.D.; Chang, Y.C.; Kim, C.H. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int. J. Mol. Sci. 2022, 23, 10037. [Google Scholar] [CrossRef]
- Hwang, C.Y.; Choe, W.; Yoon, K.S.; Ha, J.; Kim, S.S.; Yeo, E.J.; Kang, I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022, 14, 4932. [Google Scholar] [CrossRef] [PubMed]
- Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of Ketone Body Metabolism and the Role of PPARalpha. Int. J. Mol. Sci. 2016, 17, 2093. [Google Scholar] [CrossRef]
- Ferrere, G.; Tidjani Alou, M.; Liu, P.; Goubet, A.G.; Fidelle, M.; Kepp, O.; Durand, S.; Iebba, V.; Fluckiger, A.; Daillere, R.; et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 2021, 6, e145207. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Verdin, E. beta-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr. 2017, 37, 51–76. [Google Scholar] [CrossRef]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Mahmod, A.I.; Kamal, A.; Rashid, H.M.; Alashqar, A.M.D.; Khater, S.; Jamal, D.; Waly, M. Ketogenic Diet in Cancer Prevention and Therapy: Molecular Targets and Therapeutic Opportunities. Curr. Issues Mol. Biol. 2021, 43, 558–589. [Google Scholar] [CrossRef]
- Sun, D.; Li, X.; Nie, S.; Liu, J.; Wang, S. Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed. Pharmacother. 2023, 157, 113993. [Google Scholar] [CrossRef]
- Weber, D.D.; Aminazdeh-Gohari, S.; Kofler, B. Ketogenic diet in cancer therapy. Aging 2018, 10, 164–165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Bi, D.; Zhang, Y.; Kong, C.; Du, J.; Wu, X.; Wei, Q.; Qin, H. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 2022, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Lien, E.C.; Westermark, A.M.; Zhang, Y.; Yuan, C.; Li, Z.; Lau, A.N.; Sapp, K.M.; Wolpin, B.M.; Vander Heiden, M.G. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature 2021, 599, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Kesarwani, P.; Kant, S.; Zhao, Y.; Miller, C.R.; Chinnaiyan, P. The Influence of the Ketogenic Diet on the Immune Tolerant Microenvironment in Glioblastoma. Cancers 2022, 14, 5550. [Google Scholar] [CrossRef]
- Hagihara, K.; Kajimoto, K.; Osaga, S.; Nagai, N.; Shimosegawa, E.; Nakata, H.; Saito, H.; Nakano, M.; Takeuchi, M.; Kanki, H.; et al. Promising Effect of a New Ketogenic Diet Regimen in Patients with Advanced Cancer. Nutrients 2020, 12, 1473. [Google Scholar] [CrossRef]
- Dal Bello, S.; Valdemarin, F.; Martinuzzi, D.; Filippi, F.; Gigli, G.L.; Valente, M. Ketogenic Diet in the Treatment of Gliomas and Glioblastomas. Nutrients 2022, 14, 3851. [Google Scholar] [CrossRef]
- Jiang, H.; Zeng, Y.; Yuan, X.; Chen, L.; Xu, X.; Jiang, X.; Li, Q.; Li, G.; Yang, H. Ketogenesis promotes triple-negative breast cancer metastasis via calpastatin beta-hydroxybutyrylation. Lipids Health Dis. 2024, 23, 371. [Google Scholar] [CrossRef] [PubMed]
- Dmitrieva-Posocco, O.; Wong, A.C.; Lundgren, P.; Golos, A.M.; Descamps, H.C.; Dohnalova, L.; Cramer, Z.; Tian, Y.; Yueh, B.; Eskiocak, O.; et al. beta-Hydroxybutyrate suppresses colorectal cancer. Nature 2022, 605, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Qin, F.; Zhang, M.; Li, J.; Li, J.; Lai, M. Elevated serum beta-hydroxybutyrate, a circulating ketone metabolite, accelerates colorectal cancer proliferation and metastasis via ACAT1. Oncogene 2023, 42, 1889–1899. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Dai, W.; Zheng, X.; Wang, J.; Song, S.; Fang, L.; Zhou, J.; Wu, W.; Gu, J. Increased B3GALNT2 in hepatocellular carcinoma promotes macrophage recruitment via reducing acetoacetate secretion and elevating MIF activity. J. Hematol. Oncol. 2018, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Miller-Atkins, G.; Acevedo-Moreno, L.A.; Grove, D.; Dweik, R.A.; Tonelli, A.R.; Brown, J.M.; Allende, D.S.; Aucejo, F.; Rotroff, D.M. Breath Metabolomics Provides an Accurate and Noninvasive Approach for Screening Cirrhosis, Primary, and Secondary Liver Tumors. Hepatol. Commun. 2020, 4, 1041–1055. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Al-Dalaeen, A.; Mahmod, A.I. Ketogenic diet in cancer management. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 369–376. [Google Scholar] [CrossRef]
- Ruan, Y.; Chen, L.; She, D.; Chung, Y.; Ge, L.; Han, L. Ketogenic diet for epilepsy: An overview of systematic review and meta-analysis. Eur. J. Clin. Nutr. 2022, 76, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.F.; El-Rashidy, O.F.; Abdelhamed, M.H.; Shata, M.O. Modified Atkins diet for drug-resistant epilepsy and the risk of urolithiasis. Pediatr. Res. 2022, 91, 149–153. [Google Scholar] [CrossRef]
- Pfeifer, H.H.; Thiele, E.A. Low-glycemic-index treatment: A liberalized ketogenic diet for treatment of intractable epilepsy. Neurology 2005, 65, 1810–1812. [Google Scholar] [CrossRef] [PubMed]
- Dabek, A.; Wojtala, M.; Pirola, L.; Balcerczyk, A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients 2020, 12, 788. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Verdin, E. beta-hydroxybutyrate: Much more than a metabolite. Diabetes Res. Clin. Pract. 2014, 106, 173–181. [Google Scholar] [CrossRef]
- Santangelo, A.; Corsello, A.; Spolidoro, G.C.I.; Trovato, C.M.; Agostoni, C.; Orsini, A.; Milani, G.P.; Peroni, D.G. The Influence of Ketogenic Diet on Gut Microbiota: Potential Benefits, Risks and Indications. Nutrients 2023, 15, 3680. [Google Scholar] [CrossRef]
- Klement, R.J.; Brehm, N.; Sweeney, R.A. Ketogenic diets in medical oncology: A systematic review with focus on clinical outcomes. Med. Oncol. 2020, 37, 14. [Google Scholar] [CrossRef]
- Khodabakhshi, A.; Akbari, M.E.; Mirzaei, H.R.; Mehrad-Majd, H.; Kalamian, M.; Davoodi, S.H. Feasibility, Safety, and Beneficial Effects of MCT-Based Ketogenic Diet for Breast Cancer Treatment: A Randomized Controlled Trial Study. Nutr. Cancer 2020, 72, 627–634. [Google Scholar] [CrossRef] [PubMed]
- AlHilli, M.M.; Rhoades, E.E.; Chau, D.; Tewari, S.; Reich, A.; Myers, A.; Lindner, D.J.; Lathia, J.D.; Zhang, R.; Willard, B.; et al. Unrestricted Ketogenic Diet Feeding Enhances Epithelial Ovarian Cancer Growth In Vivo. Nutrients 2023, 15, 2730. [Google Scholar] [CrossRef]
- Monda, A.; La Torre, M.E.; Messina, A.; Di Maio, G.; Monda, V.; Moscatelli, F.; De Stefano, M.; La Marra, M.; Padova, M.D.; Dipace, A.; et al. Exploring the ketogenic diet’s potential in reducing neuroinflammation and modulating immune responses. Front. Immunol. 2024, 15, 1425816. [Google Scholar] [CrossRef]
- Puchalska, P.; Crawford, P.A. Metabolic and Signaling Roles of Ketone Bodies in Health and Disease. Annu. Rev. Nutr. 2021, 41, 49–77. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, A. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci. 2019, 232, 116592. [Google Scholar] [CrossRef]
- Sun, X.; Shu, Y.; Ye, G.; Wu, C.; Xu, M.; Gao, R.; Huang, D.; Zhang, J. Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy. Acta Pharm. Sin. B 2022, 12, 838–852. [Google Scholar] [CrossRef]
- Liu, R.; Zeng, L.W.; Gong, R.; Yuan, F.; Shu, H.B.; Li, S. mTORC1 activity regulates post-translational modifications of glycine decarboxylase to modulate glycine metabolism and tumorigenesis. Nat. Commun. 2021, 12, 4227. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, X.; Zhao, W.; Liao, Z.; Li, B.; Han, P.; Yang, Y.; Zhong, X.; Mo, Y.; Li, P.; et al. Epigenetic Inactivation of Acetyl-CoA Acetyltransferase 1 Promotes the Proliferation and Metastasis in Nasopharyngeal Carcinoma by Blocking Ketogenesis. Front. Oncol. 2021, 11, 667673. [Google Scholar] [CrossRef]
- Martinez-Outschoorn, U.E.; Lin, Z.; Whitaker-Menezes, D.; Howell, A.; Sotgia, F.; Lisanti, M.P. Ketone body utilization drives tumor growth and metastasis. Cell Cycle 2012, 11, 3964–3971. [Google Scholar] [CrossRef]
- Fan, J.; Lin, R.; Xia, S.; Chen, D.; Elf, S.E.; Liu, S.; Pan, Y.; Xu, H.; Qian, Z.; Wang, M.; et al. Tetrameric Acetyl-CoA Acetyltransferase 1 Is Important for Tumor Growth. Mol. Cell 2016, 64, 859–874. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zhu, Y.; Lin, X.; Tan, X.; Lu, B.; Li, Y. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene 2020, 39, 2437–2449. [Google Scholar] [CrossRef]
- Guan, J.; Jiang, X.; Guo, Y.; Zhao, W.; Li, J.; Li, Y.; Cheng, M.; Fu, L.; Zhao, Y.; Li, Q. Autophagy inhibition and reactive oxygen species elimination by acetyl-CoA acetyltransferase 1 through fused in sarcoma protein to promote prostate cancer. BMC Cancer 2022, 22, 1313. [Google Scholar] [CrossRef]
- Cotter, D.G.; Ercal, B.; Huang, X.; Leid, J.M.; d’Avignon, D.A.; Graham, M.J.; Dietzen, D.J.; Brunt, E.M.; Patti, G.J.; Crawford, P.A. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Investig. 2014, 124, 5175–5190. [Google Scholar] [CrossRef]
- Kim, J.T.; Napier, D.L.; Kim, J.; Li, C.; Lee, E.Y.; Weiss, H.L.; Wang, Q.; Evers, B.M. Ketogenesis alleviates TNFalpha-induced apoptosis and inflammatory responses in intestinal cells. Free Radic. Biol. Med. 2021, 172, 90–100. [Google Scholar] [CrossRef]
- Han, P.; Wang, Y.; Luo, W.; Lu, Y.; Zhou, X.; Yang, Y.; Zheng, Q.; Li, D.; Wu, S.; Li, L.; et al. Epigenetic inactivation of hydroxymethylglutaryl CoA synthase reduces ketogenesis and facilitates tumor cell motility in clear cell renal carcinoma. Pathol. Res. Pract. 2021, 227, 153622. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Li, C.; Weiss, H.L.; Zhou, Y.; Liu, C.; Wang, Q.; Evers, B.M. Regulation of Ketogenic Enzyme HMGCS2 by Wnt/beta-catenin/PPARgamma Pathway in Intestinal Cells. Cells 2019, 8, 1106. [Google Scholar] [CrossRef]
- Tang, H.; Wu, Y.; Qin, Y.; Wang, H.; Jia, Y.; Yang, S.; Luo, S.; Wang, Q. Predictive significance of HMGCS2 for prognosis in resected Chinese esophageal squamous cell carcinoma patients. OncoTargets Ther. 2017, 10, 2553–2560. [Google Scholar] [CrossRef]
- Wan, S.; Xi, M.; Zhao, H.B.; Hua, W.; Liu, Y.L.; Zhou, Y.L.; Zhuo, Y.J.; Liu, Z.Z.; Cai, Z.D.; Wan, Y.P.; et al. HMGCS2 functions as a tumor suppressor and has a prognostic impact in prostate cancer. Pathol. Res. Pract. 2019, 215, 152464. [Google Scholar] [CrossRef]
- Saraon, P.; Cretu, D.; Musrap, N.; Karagiannis, G.S.; Batruch, I.; Drabovich, A.P.; van der Kwast, T.; Mizokami, A.; Morrissey, C.; Jarvi, K.; et al. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol. Cell Proteom. 2013, 12, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shidfar, A.; Ivancic, D.; Ranjan, M.; Liu, L.; Choi, M.R.; Parimi, V.; Gursel, D.B.; Sullivan, M.E.; Najor, M.S.; et al. Overexpression of lipid metabolism genes and PBX1 in the contralateral breasts of women with estrogen receptor-negative breast cancer. Int. J. Cancer 2017, 140, 2484–2497. [Google Scholar] [CrossRef]
- Bunay, J.; Kossai, M.; Damon-Soubeyrant, C.; De Haze, A.; Saru, J.P.; Trousson, A.; de Joussineau, C.; Bouchareb, E.; Kocer, A.; Vialat, M.; et al. Persistent organic pollutants promote aggressiveness in prostate cancer. Oncogene 2023, 42, 2854–2867. [Google Scholar] [CrossRef]
- Cui, W.; Luo, W.; Zhou, X.; Lu, Y.; Xu, W.; Zhong, S.; Feng, G.; Liang, Y.; Liang, L.; Mo, Y.; et al. Dysregulation of Ketone Body Metabolism Is Associated with Poor Prognosis for Clear Cell Renal Cell Carcinoma Patients. Front. Oncol. 2019, 9, 1422. [Google Scholar] [CrossRef]
- Zhong, C.; Xiong, G.; Yang, H.; Du, X.; Du, J.; Yao, F.; Fang, W.; Deng, Y. Phosphorylation by IKKbeta Promotes the Degradation of HMGCL via NEDD4 in Lung Cancer. Int. J. Biol. Sci. 2023, 19, 1110–1122. [Google Scholar] [CrossRef]
- Luo, W.; Qin, L.; Li, B.; Liao, Z.; Liang, J.; Xiao, X.; Xiao, X.; Mo, Y.; Huang, G.; Zhang, Z.; et al. Inactivation of HMGCL promotes proliferation and metastasis of nasopharyngeal carcinoma by suppressing oxidative stress. Sci. Rep. 2017, 7, 11954. [Google Scholar] [CrossRef]
- Sun, Y.; Mu, G.; Zhang, X.; Wu, Y.; Wang, S.; Wang, X.; Xue, Z.; Wang, C.; Liu, J.; Li, W.; et al. Metabolic modulation of histone acetylation mediated by HMGCL activates the FOXM1/beta-catenin pathway in glioblastoma. Neuro Oncol. 2024, 26, 653–669. [Google Scholar] [CrossRef]
- Gouirand, V.; Gicquel, T.; Lien, E.C.; Jaune-Pons, E.; Da Costa, Q.; Finetti, P.; Metay, E.; Duluc, C.; Mayers, J.R.; Audebert, S.; et al. Ketogenic HMG-CoA lyase and its product beta-hydroxybutyrate promote pancreatic cancer progression. EMBO J. 2022, 41, e110466. [Google Scholar] [CrossRef]
- Kang, H.B.; Fan, J.; Lin, R.; Elf, S.; Ji, Q.; Zhao, L.; Jin, L.; Seo, J.H.; Shan, C.; Arbiser, J.L.; et al. Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling. Mol. Cell 2015, 59, 345–358. [Google Scholar] [CrossRef]
- Cui, X.; Yun, X.; Sun, M.; Li, R.; Lyu, X.; Lao, Y.; Qin, X.; Yu, W. HMGCL-induced beta-hydroxybutyrate production attenuates hepatocellular carcinoma via DPP4-mediated ferroptosis susceptibility. Hepatol. Int. 2023, 17, 377–392. [Google Scholar] [CrossRef]
- Zhang, Z.; Bi, X.; Lian, X.; Niu, Z. BDH1 promotes lung cancer cell proliferation and metastases by PARP1-mediated autophagy. J. Cell Mol. Med. 2023, 27, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Y.; Liu, Y.; Yang, D.; Jiao, Y.; Liu, Y. Expression and clinical significance of BDH1 in liver cancer. Medicine 2021, 100, e28013. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, F.A.; Shah, S.S.; de Cordoba, N.; Walters, W.M.; Prince, J.; Khatib, Z.; Komotar, R.J.; Vanni, S.; Graham, R.M. The contribution of ketone bodies to glycolytic inhibition for the treatment of adult and pediatric glioblastoma. J. Neurooncol. 2020, 147, 317–326. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, P.P.; Liu, Q.L.; Cong, M.H.; Gao, Y.; Shi, H.P.; Yu, W.N.; Miao, M.Y. Low ketolytic enzyme levels in tumors predict ketogenic diet responses in cancer cell lines in vitro and in vivo. J. Lipid Res. 2018, 59, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.T.; Olson, L.K.; Schwartz, K.A. Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: Implication for ketogenic diet therapy. Nutr. Metab. 2013, 10, 47. [Google Scholar] [CrossRef]
- Liu, J.Z.; Hu, Y.L.; Feng, Y.; Jiang, Y.; Guo, Y.B.; Liu, Y.F.; Chen, X.; Yang, J.L.; Chen, Y.Y.; Mao, Q.S.; et al. BDH2 triggers ROS-induced cell death and autophagy by promoting Nrf2 ubiquitination in gastric cancer. J. Exp. Clin. Cancer Res. 2020, 39, 123. [Google Scholar] [CrossRef]
- Huang, J.; Liang, L.; Jiang, S.; Liu, Y.; He, H.; Sun, X.; Li, Y.; Xie, L.; Tao, Y.; Cong, L.; et al. BDH1-mediated LRRC31 regulation dependent on histone lysine beta-hydroxybutyrylation to promote lung adenocarcinoma progression. MedComm 2023, 4, e449. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Mei, X.; Cao, F.; Zhu, X. BDH2 promotes apoptosis and autophagy of lung adenocarcinoma cells via Akt/mTOR pathway. Gen. Physiol. Biophys. 2022, 41, 115–122. [Google Scholar] [CrossRef]
- Zhong, C.; Yu, Q.; Peng, Y.; Zhou, S.; Liu, Z.; Deng, Y.; Guo, L.; Zhao, S.; Chen, G. Novel LncRNA OXCT1-AS1 indicates poor prognosis and contributes to tumorigenesis by regulating miR-195/CDC25A axis in glioblastoma. J. Exp. Clin. Cancer Res. 2021, 40, 123. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dai, X.; Guo, X.; Cheng, A.; Mac, S.M.; Wang, Z. Circ-OXCT1 Suppresses Gastric Cancer EMT and Metastasis by Attenuating TGF-beta Pathway Through the Circ-OXCT1/miR-136/SMAD4 Axis. OncoTargets Ther. 2020, 13, 3987–3998. [Google Scholar] [CrossRef]
- Lee, C.L.; Huang, C.J.; Yang, S.H.; Chang, C.C.; Huang, C.C.; Chien, C.C.; Yang, R.N. Discovery of genes from feces correlated with colorectal cancer progression. Oncol. Lett. 2016, 12, 3378–3384. [Google Scholar] [CrossRef]
- Ma, W.; Sun, Y.; Yan, R.; Zhang, P.; Shen, S.; Lu, H.; Zhou, Z.; Jiang, Z.; Ye, L.; Mao, Q.; et al. OXCT1 functions as a succinyltransferase, contributing to hepatocellular carcinoma via succinylating LACTB. Mol. Cell 2024, 84, 538–551.e7. [Google Scholar] [CrossRef]
- Shimazu, T.; Hirschey, M.D.; Newman, J.; He, W.; Shirakawa, K.; Le Moan, N.; Grueter, C.A.; Lim, H.; Saunders, L.R.; Stevens, R.D.; et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013, 339, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhou, Y.; Rychahou, P.; Fan, T.W.; Lane, A.N.; Weiss, H.L.; Evers, B.M. Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ. 2017, 24, 458–468. [Google Scholar] [CrossRef]
- Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 2007, 1, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.K.; Chang, P.H.; Kuo, W.H.; Chen, C.L.; Jeng, Y.M.; Chang, K.J.; Shew, J.Y.; Hu, C.M.; Lee, W.H. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via beta-hydroxybutyrate. Nat. Commun. 2017, 8, 14706. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhang, D.; Chung, D.; Tang, Z.; Huang, H.; Dai, L.; Qi, S.; Li, J.; Colak, G.; Chen, Y.; et al. Metabolic Regulation of Gene Expression by Histone Lysine beta-Hydroxybutyrylation. Mol. Cell 2016, 62, 194–206. [Google Scholar] [CrossRef]
- Hou, W.; Liu, G.; Ren, X.; Liu, X.; He, L.; Huang, H. Quantitative Proteomics Analysis Expands the Roles of Lysine beta-Hydroxybutyrylation Pathway in Response to Environmental beta-Hydroxybutyrate. Oxid. Med. Cell Longev. 2022, 2022, 4592170. [Google Scholar] [CrossRef]
- Liu, K.; Li, F.; Sun, Q.; Lin, N.; Han, H.; You, K.; Tian, F.; Mao, Z.; Li, T.; Tong, T.; et al. p53 beta-hydroxybutyrylation attenuates p53 activity. Cell Death Dis. 2019, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Kadochi, Y.; Mori, S.; Fujiwara-Tani, R.; Luo, Y.; Nishiguchi, Y.; Kishi, S.; Fujii, K.; Ohmori, H.; Kuniyasu, H. Remodeling of energy metabolism by a ketone body and medium-chain fatty acid suppressed the proliferation of CT26 mouse colon cancer cells. Oncol. Lett. 2017, 14, 673–680. [Google Scholar] [CrossRef]
- Giakoumettis, D.; Kritis, A.; Foroglou, N. C6 cell line: The gold standard in glioma research. Hippokratia 2018, 22, 105–112. [Google Scholar]
- Karagiannis, F.; Peukert, K.; Surace, L.; Michla, M.; Nikolka, F.; Fox, M.; Weiss, P.; Feuerborn, C.; Maier, P.; Schulz, S.; et al. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature 2022, 609, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Bartmann, C.; Janaki Raman, S.R.; Floter, J.; Schulze, A.; Bahlke, K.; Willingstorfer, J.; Strunz, M.; Wockel, A.; Klement, R.J.; Kapp, M.; et al. Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation. Cancer Metab. 2018, 6, 8. [Google Scholar] [CrossRef]
- Adam, C.; Paolini, L.; Gueguen, N.; Mabilleau, G.; Preisser, L.; Blanchard, S.; Pignon, P.; Manero, F.; Le Mao, M.; Morel, A.; et al. Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming. Nat. Commun. 2021, 12, 7115. [Google Scholar] [CrossRef]
- Abdurrachim, D.; Woo, C.C.; Teo, X.Q.; Chan, W.X.; Radda, G.K.; Lee, P.T.H. A new hyperpolarized (13)C ketone body probe reveals an increase in acetoacetate utilization in the diabetic rat heart. Sci. Rep. 2019, 9, 5532. [Google Scholar] [CrossRef]
- Yokokawa, T.; Yoshihisa, A.; Kanno, Y.; Abe, S.; Misaka, T.; Yamada, S.; Kaneshiro, T.; Sato, T.; Oikawa, M.; Kobayashi, A.; et al. Circulating acetoacetate is associated with poor prognosis in heart failure patients. Int. J. Cardiol. Heart Vasc. 2019, 25, 100432. [Google Scholar] [CrossRef]
- Wu, X.J.; Shu, Q.Q.; Wang, B.; Dong, L.; Hao, B. Acetoacetate Improves Memory in Alzheimer’s Mice via Promoting Brain-Derived Neurotrophic Factor and Inhibiting Inflammation. Am. J. Alzheimer’s Dis. Other Dement. 2022, 37, 15333175221124949. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Lin, R.; Jin, L.; Zhao, L.; Kang, H.B.; Pan, Y.; Liu, S.; Qian, G.; Qian, Z.; Konstantakou, E.; et al. Prevention of Dietary-Fat-Fueled Ketogenesis Attenuates BRAF V600E Tumor Growth. Cell Metab. 2017, 25, 358–373. [Google Scholar] [CrossRef]
- Wheless, J.W. History of the ketogenic diet. Epilepsia 2008, 49 (Suppl. S8), 3–5. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L.; Huang, M.; Xu, G.; Yang, M. Metabolic changes induced by heavy metal copper exposure in human ovarian granulosa cells. Ecotoxicol. Environ. Saf. 2024, 285, 117078. [Google Scholar] [CrossRef]
- Barrea, L.; Caprio, M.; Tuccinardi, D.; Moriconi, E.; Di Renzo, L.; Muscogiuri, G.; Colao, A.; Savastano, S.; Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group. Could ketogenic diet “starve” cancer? Emerging evidence. Crit. Rev. Food Sci. Nutr. 2022, 62, 1800–1821. [Google Scholar] [CrossRef]
- Klement, R.J. Fasting, Fats, and Physics: Combining Ketogenic and Radiation Therapy against Cancer. Complement. Med. Res. 2018, 25, 102–113. [Google Scholar] [CrossRef]
- Allen, B.G.; Bhatia, S.K.; Buatti, J.M.; Brandt, K.E.; Lindholm, K.E.; Button, A.M.; Szweda, L.I.; Smith, B.J.; Spitz, D.R.; Fath, M.A. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin. Cancer Res. 2013, 19, 3905–3913. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, C.L.; Chiu, W.C.; Twu, Y.C.; Liao, Y.J. HMGCS2 Mediates Ketone Production and Regulates the Proliferation and Metastasis of Hepatocellular Carcinoma. Cancers 2019, 11, 1876. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Dai, Z. Cancer Treatment with the Ketogenic Diet: A Systematic Review and Meta-analysis of Animal Studies. Front. Nutr. 2021, 8, 594408. [Google Scholar] [CrossRef]
- Liu, S.; Yao, Q.; Li, X.; Wu, H.; Sun, C.; Bai, W.; Kang, J. Effects of a ketogenic diet on reproductive and metabolic phenotypes in mice with polycystic ovary syndromedagger. Biol. Reprod. 2023, 108, 597–610. [Google Scholar] [CrossRef]
- Elisia, I.; Yeung, M.; Kowalski, S.; Shyp, T.; Tee, J.; Hollman, S.; Wong, A.; King, J.; Dyer, R.; Sorensen, P.H.; et al. A ketogenic diet rich in fish oil is superior to other fats in preventing NNK-induced lung cancer in A/J mice. Sci. Rep. 2024, 14, 5610. [Google Scholar] [CrossRef]
- Klement, R.J.; Weigel, M.M.; Sweeney, R.A. A ketogenic diet consumed during radiotherapy improves several aspects of quality of life and metabolic health in women with breast cancer. Clin. Nutr. 2021, 40, 4267–4274. [Google Scholar] [CrossRef]
- Buga, A.; Harper, D.G.; Sapper, T.N.; Hyde, P.N.; Fell, B.; Dickerson, R.; Stoner, J.T.; Kackley, M.L.; Crabtree, C.D.; Decker, D.D.; et al. Feasibility and metabolic outcomes of a well-formulated ketogenic diet as an adjuvant therapeutic intervention for women with stage IV metastatic breast cancer: The Keto-CARE trial. PLoS ONE 2024, 19, e0296523. [Google Scholar] [CrossRef]
- Yang, L.; TeSlaa, T.; Ng, S.; Nofal, M.; Wang, L.; Lan, T.; Zeng, X.; Cowan, A.; McBride, M.; Lu, W.; et al. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 2022, 3, 119–136. [Google Scholar] [CrossRef]
- Grube, M.; Dimmler, A.; Schmaus, A.; Saup, R.; Wagner, T.; Garvalov, B.K.; Sleeman, J.P.; Thiele, W. Ketogenic diet does not promote triple-negative and luminal mammary tumor growth and metastasis in experimental mice. Clin. Exp. Metastasis 2024, 41, 251–266. [Google Scholar] [CrossRef]
- Cortez, N.E.; Bacha, T.A.; Ead, A.S.; Rodriguez Lanzi, C.; Lacroix, C.; Franceschetti, A.; Hong, B.V.; Matsukuma, K.; Mackenzie, G.G. The Impact of a Ketogenic Diet on Late-Stage Pancreatic Carcinogenesis in Mice: Efficacy and Safety Studies. Nutrients 2024, 16, 3919. [Google Scholar] [CrossRef]
- Arneson-Wissink, P.C.; Mendez, H.; Pelz, K.; Dickie, J.; Bartlett, A.Q.; Worley, B.L.; Krasnow, S.M.; Eil, R.; Grossberg, A.J. Hepatic signal transducer and activator of transcription-3 signalling drives early-stage pancreatic cancer cachexia via suppressed ketogenesis. J. Cachexia Sarcopenia Muscle 2024, 15, 975–988. [Google Scholar] [CrossRef]
- Maeyama, M.; Tanaka, K.; Nishihara, M.; Irino, Y.; Shinohara, M.; Nagashima, H.; Tanaka, H.; Nakamizo, S.; Hashiguchi, M.; Fujita, Y.; et al. Metabolic changes and anti-tumor effects of a ketogenic diet combined with anti-angiogenic therapy in a glioblastoma mouse model. Sci. Rep. 2021, 11, 79. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, C.; Jin, L.; Zhang, R.; Wang, T.; Wang, Q.; Chen, J.; Yang, F.; Siebert, H.C.; Zheng, X. Ketogenic Diet Elicits Antitumor Properties through Inducing Oxidative Stress, Inhibiting MMP-9 Expression, and Rebalancing M1/M2 Tumor-Associated Macrophage Phenotype in a Mouse Model of Colon Cancer. J. Agric. Food Chem. 2020, 68, 11182–11196. [Google Scholar] [CrossRef] [PubMed]
- Zahra, A.; Fath, M.A.; Opat, E.; Mapuskar, K.A.; Bhatia, S.K.; Ma, D.C.; Rodman, S.N., III; Snyders, T.P.; Chenard, C.A.; Eichenberger-Gilmore, J.M.; et al. Consuming a Ketogenic Diet while Receiving Radiation and Chemotherapy for Locally Advanced Lung Cancer and Pancreatic Cancer: The University of Iowa Experience of Two Phase 1 Clinical Trials. Radiat. Res. 2017, 187, 743–754. [Google Scholar] [CrossRef]
- Khodabakhshi, A.; Akbari, M.E.; Mirzaei, H.R.; Seyfried, T.N.; Kalamian, M.; Davoodi, S.H. Effects of Ketogenic metabolic therapy on patients with breast cancer: A randomized controlled clinical trial. Clin. Nutr. 2021, 40, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhshi, A.; Seyfried, T.N.; Kalamian, M.; Beheshti, M.; Davoodi, S.H. Does a ketogenic diet have beneficial effects on quality of life, physical activity or biomarkers in patients with breast cancer: A randomized controlled clinical trial. Nutr. J. 2020, 19, 87. [Google Scholar] [CrossRef]
- Porper, K.; Shpatz, Y.; Plotkin, L.; Pechthold, R.G.; Talianski, A.; Champ, C.E.; Furman, O.; Shimoni-Sebag, A.; Symon, Z.; Amit, U.; et al. A Phase I clinical trial of dose-escalated metabolic therapy combined with concomitant radiation therapy in high-grade glioma. J. Neurooncol. 2021, 153, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.C.; Anderson, C.M.; Rodman, S.N.; Buranasudja, V.; McCormick, M.L.; Davis, A.; Loth, E.; Bodeker, K.L.; Ahmann, L.; Parkhurst, J.R.; et al. Ketogenic Diet with Concurrent Chemoradiation in Head and Neck Squamous Cell Carcinoma: Preclinical and Phase 1 Trial Results. Radiat. Res. 2021, 196, 213–224. [Google Scholar] [CrossRef]
- Cohen, C.W.; Fontaine, K.R.; Arend, R.C.; Gower, B.A. A Ketogenic Diet Is Acceptable in Women with Ovarian and Endometrial Cancer and Has No Adverse Effects on Blood Lipids: A Randomized, Controlled Trial. Nutr. Cancer 2020, 72, 584–594. [Google Scholar] [CrossRef]
- Klement, R.J.; Koebrunner, P.S.; Meyer, D.; Kanzler, S.; Sweeney, R.A. Impact of a ketogenic diet intervention during radiotherapy on body composition: IV. Final results of the KETOCOMP study for rectal cancer patients. Clin. Nutr. 2021, 40, 4674–4684. [Google Scholar] [CrossRef]
- Bezerra, L.S.; Santos-Veloso, M.A.O. Ketogenic diet and metastasis: A critical review of the literature and possible mechanisms. Clin. Nutr. ESPEN 2023, 57, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Bu, X.; Gao, Y.; Guo, J.; Hu, J.; Jiang, C.; Zhang, Z.; Xu, K.; Duan, J.; He, S.; et al. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol. Cell 2021, 81, 2317–2331.e6. [Google Scholar] [CrossRef]
- Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 2018, 173, 1728–1741.e13. [Google Scholar] [CrossRef]
- Murphy, S.; Rahmy, S.; Gan, D.; Zhu, Y.; Manyak, M.; Li, J.; Lu, X.; Lu, X. Overcome Prostate Cancer Resistance to Immune Checkpoint Therapy with Ketogenic Diet-Induced Epigenetic Reprogramming. bioRxiv 2023. [Google Scholar] [CrossRef]
- Weber, D.D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.G.; Kofler, B. Ketogenic diet in the treatment of cancer—Where do we stand? Mol. Metab. 2020, 33, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.; Brown, N.I.; Williams, S.; Plaisance, E.P.; Fontaine, K.R. Ketogenic Diet for Cancer: Critical Assessment and Research Recommendations. Nutrients 2021, 13, 3562. [Google Scholar] [CrossRef]
- Voss, M.; Wenger, K.J.; von Mettenheim, N.; Bojunga, J.; Vetter, M.; Diehl, B.; Franz, K.; Gerlach, R.; Ronellenfitsch, M.W.; Harter, P.N.; et al. Short-term fasting in glioma patients: Analysis of diet diaries and metabolic parameters of the ERGO2 trial. Eur. J. Nutr. 2022, 61, 477–487. [Google Scholar] [CrossRef]
- Klement, R.J.; Champ, C.E.; Kammerer, U.; Koebrunner, P.S.; Krage, K.; Schafer, G.; Weigel, M.; Sweeney, R.A. Impact of a ketogenic diet intervention during radiotherapy on body composition: III-final results of the KETOCOMP study for breast cancer patients. Breast Cancer Res. 2020, 22, 94. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.D.; Pauli, C.; Du, X.; Wang, D.G.; Li, X.; Wu, D.; Amadiume, S.C.; Goncalves, M.D.; Hodakoski, C.; Lundquist, M.R.; et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 2018, 560, 499–503. [Google Scholar] [CrossRef]
- Woolf, E.C.; Syed, N.; Scheck, A.C. Tumor Metabolism, the Ketogenic Diet and beta-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy. Front. Mol. Neurosci. 2016, 9, 122. [Google Scholar] [CrossRef]
- Klement, R.J.; Meyer, D.; Kanzler, S.; Sweeney, R.A. Ketogenic diets consumed during radio-chemotherapy have beneficial effects on quality of life and metabolic health in patients with rectal cancer. Eur. J. Nutr. 2022, 61, 69–84. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Santos, J.G.; Da Cruz, W.M.S.; Schonthal, A.H.; Salazar, M.D.; Fontes, C.A.P.; Quirico-Santos, T.; Da Fonseca, C.O. Efficacy of a ketogenic diet with concomitant intranasal perillyl alcohol as a novel strategy for the therapy of recurrent glioblastoma. Oncol. Lett. 2018, 15, 1263–1270. [Google Scholar] [CrossRef]
- Batch, J.T.; Lamsal, S.P.; Adkins, M.; Sultan, S.; Ramirez, M.N. Advantages and Disadvantages of the Ketogenic Diet: A Review Article. Cureus 2020, 12, e9639. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, B.; Raggi, P. The ketogenic diet: Pros and cons. Atherosclerosis 2020, 292, 119–126. [Google Scholar] [CrossRef]
Food Category | Recommended Foods | Foods to Avoid |
---|---|---|
Fats | Olive oil, coconut oil, butter, avocado oil, nuts | Vegetable oils (e.g., corn oil and peanut oil) |
Protein | beef, pork, chicken, and fatty fish (e.g., salmon) | Lean meats (e.g., chicken breast and lean beef) |
Vegetables | Leafy greens, cauliflower, cucumber, and mushrooms | Starchy vegetables (e.g., potatoes and corn) |
Fruits | Berries (strawberries, blueberries), lemon, and avocado | High-sugar fruits (e.g., bananas and apples) |
Dairy | Full-fat dairy (milk, cheese, butter, and yogurt) | Low-fat dairy (e.g., skim milk and low-fat yogurt) |
Nuts/Seeds | Almonds, walnuts, pumpkin seeds, and chia seeds | Sugary nuts (e.g., certain mixed nuts) |
Beverages | Water, unsweetened coffee, and tea | Sugary drinks (e.g., sodas and fruit juice) |
Condiments | Salt, spices, vinegar, and lemon juice | Sugary sauces (e.g., ketchup and salad dressing) |
Section | Content | Clinical Implications | References |
---|---|---|---|
Dysregulation of KB Metabolism Enzymes | Dysregulation of key enzymes (ACAT1, HMGCS2, HMGCL, BDH, and OXCT1) in tumor cells affects KBs synthesis, leading to altered metabolic processes in tumors. | Dysregulated enzymes can serve as biomarkers or therapeutic targets for cancer diagnosis and treatment. Inhibition of specific enzymes may slow tumor growth. | [15,16,17] |
Potential Role of KBs in Tumorigenesis | β-OHB, AcAc, and Acetone play roles in cell differentiation, inflammation, energy metabolism, and immune response. The exact role of β-OHB in cancer is complex. | KBs, especially β-OHB, have both tumor-suppressive and tumor-promoting effects, depending on concentration, tumor type, and metabolism. Requires further study. | [18,19,20] |
KD Overview | KD mimics fasting metaboh high fat, low carbs. Variants (MCTD, MAD, and LGIT) provide flexibility. A 4:1 fat-to-carb+protein ratio promotes ketogenesis. | KD is an emerging therapy for cancer, targeting tumor metabolism and promoting alternative energy utilization. Affects tumor growth, immune response, and therapy. | [21,22,23,24] |
KD and Tumor Metabolism | KD reduces glucose and insulin, shifts tumors to ketone metabolism, inhibits mTOR and TCA cycle, weakening tumor growth. | KD inhibits tumor growth and enhances the effectiveness of chemotherapy and radiotherapy by limiting glucose and promoting oxidative stress in tumor cells. | [25,26] |
Combination with Immunotherapy and Chemo | KD boosts immune responses, enhances checkpoint inhibitors (PD-1 and CTLA-4), and supports chemotherapy by reprogramming immune and metabolic pathways. | KD enhances immune therapy responses and synergizes with chemotherapy to improve survival and reduce tumor size in various cancers (e.g., breast, pancreatic, and lung). | [5] |
Side Effects and Challenges | GI discomfort, nutrient deficiencies, fatigue, and the potential for increased lipid levels or kidney stones. Adherence can be difficult, especially long-term. | Need for personalized care, addressing side effects, and adjusting KD protocols for individual tolerance and tumor type. | [27,28,29] |
Future Research Directions | Explore KD’s detailed effects on tumor metabolism, immune response, enzyme regulation, and its long-term impact on cancer treatment. | More high-quality, large-scale studies needed to understand optimal KD use in cancer therapy, and to address its limitations and potential adverse effects. | [30,31] |
KD Type | Fat: Carbohydrate + Protein Ratio | Main Components | Target Population | Key Features | References |
---|---|---|---|---|---|
Classic Ketogenic Diet (KD) | 4:1 | LCTs | Children with epilepsy, and refractory epilepsy patients | Strict carbohydrate restriction and effective for epilepsy control | [21] |
Medium-Chain Triglyceride Diet (MCTD) | 3:1 | Medium-chain fatty acids (e.g., caprylic, capric acid) | Epilepsy and metabolic disorders | Higher ketone production per calorie and more efficient energy use | [22] |
Modified Atkins Diet (MAD) | 1:1 or 2:1 | Animal proteins, low-carb vegetables, fats | Children, adolescents, and adults | More flexible, palatable, and suitable for long-term use | [23] |
Low-Glycemic Index Treatment (LGIT) | 1.5:1 | Low glycemic index foods (e.g., low GI grains, selected fruits) | Epilepsy and diabetes patients | Greater dietary flexibility and still promotes ketosis | [24] |
Type | Cancer | Clinical Trial No./Animal Models | Conbined with Tumor Therapy | Study Duration | Metabolic Levels of the KD Group (Upregulated ↑; Downregulated ↓) | Major Outcome of the KD Groups | References |
---|---|---|---|---|---|---|---|
Animal models | Breast cancer | BALB/c mice | 35 days | Inhibited the proliferation of 4T1 tumor cells in vivo and temporarily slowed the growth of 4T1 primary tumors. | [97] | ||
Polycystic ovary syndrome | C57BL/6 female mice | 1 weeks and 3 weeks | bloodβ-OHB ↑, blood glucose ↓, body weight ↓ | Inflammation and apoptosis in the ovaries of mice treated with DHEA+KD are suppressed. | [92] | ||
Pancreatic cancer | Six-month KC mice | 6 months | KD modulated insulin signaling and hepatic lipid metabolism, highlighting its beneficial effects on health span and liver function compared to HFD. | [98] | |||
Pancreatic ductal adenocarcinoma | 12-week C57BL/6J mice | 2 weeks | KD improved the tibialis anterior muscle fiber diameter, circulating KBs, and Hmgcs2 expression levels in PDAC mice. | [99] | |||
glioblastoma | U87 glioblastoma mouse models | Bevacizumab | 80 days | The combined therapy of KD and Bev shows a decrease in tumor growth rate and an increase in mouse survival time. | [100] | ||
Colon cancer | BALB/c mice | 15 days | blood β-OHB ↑, blood glucose ↓ | KD can prevent the progression of colon tumors by inducing oxidative stress within the tumor, inhibiting the expression of MMP-9, and enhancing the polarization of M2 to M1 type TAMs. | [101] | ||
Preclinical study | Lung cancer and pancreatic cancer | Phase 1 Trial (NCT01419587) | Radiation | Lung cancer: 5 weeks, Pancreatic Cancer: 6 weeks | KD enhances radiation therapy response in a pancreas xenograft model. KD increase immuno-reactive 4HNE-modified proteins in pancreas xenograft tumor tissue. | [102] | |
Clinical study | Breast cancer | Randomized controlled trial (IRCT20171105037259N2) | Chemotherapy | 12 weeks | TNF-α ↓, IL-10 ↑, serum insulin ↓ | A reduction in tumor size in the KD. Stage decreased significantly in patients with locally advanced disease in the KD. | [103] |
Breast cancer | Randomized controlled trial (IRCT20171105037259N2) | Chemotherapy | 12 weeks | serum lactate ↓; ALP ↓ | [104] | ||
Glioma | Phase I clinical trial (NCT02149459) | Radiation | 2 weeks | β-OHB ↑, ketones in urine ↑, glucose ↓ | [105] | ||
Head and neck cancer | Phase 1 trial (NCT01975766) | Chemotherapy | 75 days and 120 days | Mice receiving radiotherapy and KD show slight improvement in tumor growth rate and survival rate. | [106] | ||
Ovarian and Endometrial cancer | Randomized Controlled trial (NCT03171506) | 12 weeks | β-OHB ↑ | [107] | |||
Rectal cancer | Non-randomized, controlled Trial (NCT02516501) | Radiation | 55 days | β-OHB ↑; body weight ↓, fat mass ↓ | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Deng, L.; Zhou, X.; Zhang, Z.; Zhao, W. Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application. Biomedicines 2025, 13, 210. https://doi.org/10.3390/biomedicines13010210
Liang Z, Deng L, Zhou X, Zhang Z, Zhao W. Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application. Biomedicines. 2025; 13(1):210. https://doi.org/10.3390/biomedicines13010210
Chicago/Turabian StyleLiang, Ziyuan, Lixian Deng, Xiaoying Zhou, Zhe Zhang, and Weilin Zhao. 2025. "Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application" Biomedicines 13, no. 1: 210. https://doi.org/10.3390/biomedicines13010210
APA StyleLiang, Z., Deng, L., Zhou, X., Zhang, Z., & Zhao, W. (2025). Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application. Biomedicines, 13(1), 210. https://doi.org/10.3390/biomedicines13010210