The Role of Air Pollution and Olfactory Dysfunction in Alzheimer’s Disease Pathogenesis
Abstract
:1. Introduction
2. Overview of the Olfactory System
3. The Composition of Air Pollution
4. Alzheimer’s Disease and Air Pollution
Olfactory Dysfunction as an Early Marker of Alzheimer’s Disease
5. Current Model Systems Used to Elucidate the Links Between Air Pollution, Olfactory Dysfunction, and Alzheimer’s Disease
5.1. Animal Models of Air Pollution Exposure and Alzheimer’s Disease
5.2. Human Studies of Air Pollution Exposure and Olfactory Function and Alzheimer’s Disease
5.3. In Vitro Models of Air Pollution Exposure and Alzheimer’s Disease
6. Implications for Public Health
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Owusu, P.A.; Sarkodie, S.A. Global estimation of mortality, disability-adjusted life years and welfare cost from exposure to ambient air pollution. Sci. Total Environ. 2020, 742, 140636. [Google Scholar] [CrossRef] [PubMed]
- Block, M.L.; Elder, A.; Auten, R.L.; Bilbo, S.D.; Chen, H.; Chen, J.-C.; Cory-Slechta, D.A.; Costa, D.; Diaz-Sanchez, D.; Dorman, D.C.; et al. The outdoor air pollution and brain health workshop. Neurotoxicology 2012, 33, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Block, M.L.; Calderón-Garcidueñas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci. 2015, 9, 124. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Engle, R.; Mora-Tiscareño, A.; Styner, M.; Gómez-Garza, G.; Zhu, H.; Jewells, V.; Torres-Jardón, R.; Romero, L.; Monroy-Acosta, M.E.; et al. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn. 2011, 77, 345–355. [Google Scholar] [CrossRef]
- Attems, J.; Walker, L.; Jellinger, K.A. Olfaction and aging: A mini-review. Gerontology 2015, 61, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr. Neuropharmacol. 2019, 17, 891–911. [Google Scholar] [CrossRef]
- Lane, G.; Zhou, G.; Noto, T.; Zelano, C. Assessment of direct knowledge of the human olfactory system. Exp. Neurol. 2020, 329, 113304. [Google Scholar] [CrossRef]
- Witt, M. Anatomy and Development of the Human Gustatory and Olfactory Systems; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wang, I.-H.; Murray, E.; Andrews, G.; Jiang, H.-C.; Park, S.J.; Donnard, E.; Durán-Laforet, V.; Bear, D.M.; Faust, T.E.; Garber, M. Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nat. Neurosci. 2022, 25, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Mackay-Sim, A. Olfactory mucosa: Neural stem and progenitor cells for nervous system repair and cell models of brain disease. In Progenitor and Stem Cell Technologies and Therapies; Elsevier: Amsterdam, The Netherlands, 2012; pp. 309–330. [Google Scholar]
- Ackels, T.; Erskine, A.; Dasgupta, D.; Marin, A.C.; Warner, T.P.; Tootoonian, S.; Fukunaga, I.; Harris, J.J.; Schaefer, A.T. Fast odour dynamics are encoded in the olfactory system and guide behaviour. Nature 2021, 593, 558–563. [Google Scholar] [CrossRef]
- Xu, L.; Li, W.; Voleti, V.; Zou, D.-J.; Hillman, E.M.; Firestein, S. Widespread receptor-driven modulation in peripheral olfactory coding. Science 2020, 368, eaaz5390. [Google Scholar] [CrossRef] [PubMed]
- Scussiatto, H.O.; Da Silva, J.L.B.; Figueiredo, A.F.; Ramos, R.A.M.R.; de Rezende Pinna, F.; Voegels, R.L.; Pinto, J.M.; Fornazieri, M.A. Association of air pollution with olfactory identification performance of São Paulo residents: A cross-sectional study. Int. Arch. Occup. Environ. Health 2023, 96, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.; Hori, H.; Umezawa, M.; Kubota, N.; Niki, R.; Yanagita, S.; Takeda, K. Gene expression changes in the olfactory bulb of mice induced by exposure to diesel exhaust are dependent on animal rearing environment. PLoS ONE 2013, 8, e70145. [Google Scholar] [CrossRef]
- Ehsanifar, M.; Montazeri, Z.; Taheri, M.A.; Rafati, M.; Behjati, M.; Karimian, M. Hippocampal inflammation and oxidative stress following exposure to diesel exhaust nanoparticles in male and female mice. Neurochem. Int. 2021, 145, 104989. [Google Scholar] [CrossRef]
- Lucchini, R.; Dorman, D.; Elder, A.; Veronesi, B. Neurological impacts from inhalation of pollutants and the nose–brain connection. Neurotoxicology 2012, 33, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Falcon-Rodriguez, C.I.; Osornio-Vargas, A.R.; Sada-Ovalle, I.; Segura-Medina, P. Aeroparticles, composition, and lung diseases. Front. Immunol. 2016, 7, 3. [Google Scholar] [CrossRef]
- Laumbach, R.J.; Kipen, H.M. Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. J. Allergy Clin. Immunol. 2012, 129, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Bourdrel, T.; Bind, M.-A.; Béjot, Y.; Morel, O.; Argacha, J.-F. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 2017, 110, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J.; Carraway, M.S.; Madden, M.C. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J. Toxicol. Environ. Health Part B 2012, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sagheer, U.; Al-Kindi, S.; Abohashem, S.; Phillips, C.T.; Rana, J.S.; Bhatnagar, A.; Gulati, M.; Rajagopalan, S.; Kalra, D.K. Environmental Pollution and Cardiovascular Disease: Part 1 of 2: Air Pollution. JACC Adv. 2024, 3, 100805. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Han, K.; Wang, Y.; Qu, R.; Liu, Y.; Wang, S.; Wang, Y.; An, Z.; Li, J.; Wu, H. Microglial activation and oxidative stress in PM2.5-induced neurodegenerative disorders. Antioxidants 2022, 11, 1482. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Cuní-López, C.; Ng, M.F.; Stewart, R.; Milton, L.A.; Etebar, F.; Sun, Y.; Vivian, E.; Nguyen, T.H.; Asare, P.F.; Lupton, M.K.; et al. Impact of wildfire smoke and diesel exhaust on inflammatory response in aging human microglia. bioRxiv 2024. [Google Scholar] [CrossRef]
- Pope III, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Tshehla, C.; Wright, C.Y. 15 Years after the national environmental management air quality Act: Is legislation failing to reduce air pollution in South Africa? S. Afr. J. Sci. 2019, 115, 1–4. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.-A.; Schwartz, J.D.; Weisskopf, M.G.; Melly, S.J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-term PM2.5 exposure and neurological hospital admissions in the northeastern United States. Environ. Health Perspect. 2016, 124, 23–29. [Google Scholar] [CrossRef]
- Mohammadzadeh, M.; Khoshakhlagh, A.H.; Grafman, J. Air pollution: A latent key driving force of dementia. BMC Public Health 2024, 24, 2370. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Solt, A.C.; Henríquez-Roldán, C.; Torres-Jardón, R.; Nuse, B.; Herritt, L.; Villarreal-Calderón, R.; Osnaya, N.; Stone, I.; García, R.; et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol. Pathol. 2008, 36, 289–310. [Google Scholar] [PubMed]
- Shi, L.; Wu, X.; Danesh Yazdi, M.; Braun, D.; Abu Awad, Y.; Wei, Y.; Liu, P.; Di, Q.; Wang, Y.; Schwartz, J.; et al. Long-term effects of PM(2·5) on neurological disorders in the American Medicare population: A longitudinal cohort study. Lancet Planet. Health 2020, 4, e557–e565. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Steenland, K.; Li, H.; Liu, P.; Zhang, Y.; Lyles, R.H.; Requia, W.J.; Ilango, S.D.; Chang, H.H.; Wingo, T. A national cohort study (2000–2018) of long-term air pollution exposure and incident dementia in older adults in the United States. Nat. Commun. 2021, 12, 6754. [Google Scholar] [CrossRef] [PubMed]
- Genc, S.; Zadeoglulari, Z.; Fuss, S.H.; Genc, K. The adverse effects of air pollution on the nervous system. J. Toxicol. 2012, 2012, 782462. [Google Scholar] [CrossRef]
- Cacciottolo, M.; Wang, X.; Driscoll, I.; Woodward, N.; Saffari, A.; Reyes, J.; Serre, M.L.; Vizuete, W.; Sioutas, C.; Morgan, T.E.; et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl. Psychiatry 2017, 7, e1022. [Google Scholar] [CrossRef]
- Oudin, A.; Forsberg, B.; Adolfsson, A.N.; Lind, N.; Modig, L.; Nordin, M.; Nordin, S.; Adolfsson, R.; Nilsson, L.-G. Traffic-related air pollution and dementia incidence in northern Sweden: A longitudinal study. Environ. Health Perspect. 2016, 124, 306–312. [Google Scholar] [CrossRef]
- Ajmani, G.S.; Suh, H.H.; Pinto, J.M. Effects of ambient air pollution exposure on olfaction: A review. Environ. Health Perspect. 2016, 124, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Levesque, S.; Taetzsch, T.; Lull, M.E.; Kodavanti, U.; Stadler, K.; Wagner, A.; Johnson, J.A.; Duke, L.; Kodavanti, P.; Surace, M.J. Diesel exhaust activates and primes microglia: Air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ. Health Perspect. 2011, 119, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Peters, A. Ambient air pollution and Alzheimer’s disease: The role of the composition of fine particles. Proc. Natl. Acad. Sci. USA 2023, 120, e2220028120. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Stommel, E.W.; Rajkumar, R.P.; Mukherjee, P.S.; Ayala, A. Particulate air pollution and risk of neuropsychiatric outcomes. What we breathe, swallow, and put on our skin matters. Int. J. Environ. Res. Public Health 2021, 18, 11568. [Google Scholar] [CrossRef]
- Oberdörster, G.; Elder, A.; Rinderknecht, A. Nanoparticles and the brain: Cause for concern? J. Nanosci. Nanotechnol. 2009, 9, 4996–5007. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.C. Prion-like mechanisms in Alzheimer disease. Handb. Clin. Neurol. 2018, 153, 303–319. [Google Scholar] [PubMed]
- Sahu, B.; Mackos, A.R.; Floden, A.M.; Wold, L.E.; Combs, C.K. Particulate matter exposure exacerbates amyloid-β plaque deposition and gliosis in APP/PS1 mice. J. Alzheimer’s Dis. 2021, 80, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Yung, K.K.L. Air pollution and Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimer’s Dis. 2020, 77, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Oudin, A.; Segersson, D.; Adolfsson, R.; Forsberg, B. Association between air pollution from residential wood burning and dementia incidence in a longitudinal study in Northern Sweden.(Research Article)(Clinical report). PLoS ONE 2018, 13, e0198283. [Google Scholar] [CrossRef]
- Devanand, D.P.; Lee, S.; Manly, J.; Andrews, H.; Schupf, N.; Masurkar, A.; Stern, Y.; Mayeux, R.; Doty, R.L. Olfactory identification deficits and increased mortality in the community. Ann. Neurol. 2015, 78, 401–411. [Google Scholar] [CrossRef]
- Devanand, D.P.; Liu, X.; Tabert, M.H.; Pradhaban, G.; Cuasay, K.; Bell, K.; de Leon, M.J.; Doty, R.L.; Stern, Y.; Pelton, G.H. Combining Early Markers Strongly Predicts Conversion from Mild Cognitive Impairment to Alzheimer’s Disease. Biol. Psychiatry 2008, 64, 871–879. [Google Scholar] [CrossRef]
- Mesholam, R.I.; Moberg, P.J.; Mahr, R.N.; Doty, R.L. Olfaction in neurodegenerative disease: A meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch. Neurol. 1998, 55, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Kwon, D.-Y.; Choi, J.H.; Park, M.-H.; Yoon, H.-K. Olfactory dysfunctions in drug-naive Parkinson’s disease with mild cognitive impairment. Park. Relat. Disord. 2018, 46, 69–73. [Google Scholar] [CrossRef]
- Power, M.C.; Kioumourtzoglou, M.-A.; Hart, J.E.; Okereke, O.I.; Laden, F.; Weisskopf, M.G. The relation between past exposure to fine particulate air pollution and prevalent anxiety: Observational cohort study. BMJ 2015, 350, h1111. [Google Scholar] [CrossRef]
- Weuve, J.; Puett, R.C.; Schwartz, J.; Yanosky, J.D.; Laden, F.; Grodstein, F. Exposure to particulate air pollution and cognitive decline in older women. Arch. Intern. Med. 2012, 172, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Ehsanifar, M.; Banihashemian, S.; Ehsanifar, M. Exposure to air pollution nanoparticles: Oxidative stress and neuroinfl ammation. J. ISSN 2021, 2766, 2276. [Google Scholar]
- Kuntić, M.; Hahad, O.; Münzel, T.; Daiber, A. Crosstalk between Oxidative Stress and Inflammation Caused by Noise and Air Pollution—Implications for Neurodegenerative Diseases. Antioxidants 2024, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Budia, M.; Konttinen, H.; Saveleva, L.; Korhonen, P.; Jalava, P.I.; Kanninen, K.M.; Malm, T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochem. Int. 2020, 136, 104715. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Tan, H.Y.; Lee, C.Y.; Cho, H. An air particulate pollutant induces neuroinflammation and neurodegeneration in human brain models. Adv. Sci. 2021, 8, 2101251. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Herrera-Soto, A.; Jury, N.; Maher, B.A.; González-Maciel, A.; Reynoso-Robles, R.; Ruiz-Rudolph, P.; van Zundert, B.; Varela-Nallar, L. Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environ. Res. 2020, 183, 109226. [Google Scholar] [CrossRef]
- Wang, L.; Wei, L.Y.; Ding, R.; Feng, Y.; Li, D.; Li, C.; Malko, P.; Syed Mortadza, S.A.; Wu, W.; Yin, Y. Predisposition to Alzheimer’s and age-related brain pathologies by PM2.5 exposure: Perspective on the roles of oxidative stress and TRPM2 channel. Front. Physiol. 2020, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Thiankhaw, K.; Chattipakorn, N.; Chattipakorn, S.C. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. Environ. Pollut. 2022, 292, 118320. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and blood–brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther. 2021, 27, 36–47. [Google Scholar] [CrossRef]
- Andersson, J.; Oudin, A.; Nordin, S.; Forsberg, B.; Nordin, M. PM2.5 exposure and olfactory functions. Int. J. Environ. Health Res. 2022, 32, 2484–2495. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Yang, A.; White, A.J.; Purdy, F.; Li, C.; Luo, Z.; D’Aloisio, A.A.; Suarez, L.; Deming-Halverson, S.; Pinto, J.M. Ambient air pollutants and olfaction among women 50–79 years of age from the sister study. Environ. Health Perspect. 2023, 131, 087012. [Google Scholar] [CrossRef] [PubMed]
- Ekström, I.A.; Rizzuto, D.; Grande, G.; Bellander, T.; Laukka, E.J. Environmental air pollution and olfactory decline in aging. Environ. Health Perspect. 2022, 130, 027005. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Mora-Tiscareño, A.; Ontiveros, E.; Gómez-Garza, G.; Barragán-Mejía, G.; Broadway, J.; Chapman, S.; Valencia-Salazar, G.; Jewells, V.; Maronpot, R.R.; et al. Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs. Brain Cogn. 2008, 68, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Ehsanifar, M.; Tameh, A.A.; Farzadkia, M.; Kalantari, R.R.; Zavareh, M.S.; Nikzaad, H.; Jafari, A.J. Exposure to nanoscale diesel exhaust particles: Oxidative stress, neuroinflammation, anxiety and depression on adult male mice. Ecotoxicol. Environ. Saf. 2019, 168, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Fonken, L.K.; Xu, X.; Weil, Z.M.; Chen, G.; Sun, Q.; Rajagopalan, S.; Nelson, R.J. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol. Psychiatry 2011, 16, 987. [Google Scholar] [CrossRef]
- Guan, W.-J.; Zheng, X.-Y.; Chung, K.F.; Zhong, N.-S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 2016, 388, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 2019, 15, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Féron, F.; Perry, C.; McGrath, J.J.; Mackay-Sim, A. New techniques for biopsy and culture of human olfactory epithelial neurons. Arch. Otolaryngol. Head Neck Surg. 1998, 124, 861–866. [Google Scholar] [CrossRef]
- Rantanen, L.M.; Bitar, M.; Lampinen, R.; Stewart, R.; Quek, H.; Oikari, L.E.; Cunί-Lόpez, C.; Sutharsan, R.; Thillaiyampalam, G.; Iqbal, J. An Alzheimer’s Disease Patient-Derived Olfactory Stem Cell Model Identifies Gene Expression Changes Associated with Cognition. Cells 2022, 11, 3258. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; Kozlov, S.; Matigian, N.; Wali, G.; Gatei, M.; Sutharsan, R.; Bellette, B.; Kijas, A.W.; Cochrane, J.; Coulthard, M. A patient-derived olfactory stem cell disease model for ataxia-telangiectasia. Hum. Mol. Genet. 2013, 22, 2495–2509. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; Wali, G.; Perry, C.; Lavin, M.F.; Féron, F.; Mackay-Sim, A.; Sutharsan, R. A patient-specific stem cell model to investigate the neurological phenotype observed in ataxia-telangiectasia. In ATM Kinase: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2017; pp. 391–400. [Google Scholar]
- Leeson, H.C.; Hunter, Z.; Chaggar, H.K.; Mackay-Sim, A.; Wolvetang, E.J. Reprogramming of human olfactory neurosphere-derived cells from olfactory mucosal biopsies of a control cohort. Stem Cell Res. 2021, 56, 102527. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Zhang, S.; Guan, L.; Chen, J.; Tu, X.; Li, Q.; Jiang, H. Differentiation of induced pluripotent stem cells for future olfactory repair using an indirect co-culture technique. Int. J. Clin. Exp. Pathol. 2017, 10, 8072. [Google Scholar] [PubMed]
- Alfaro-Moreno, E.; Nawrot, T.S.; Vanaudenaerde, B.M.; Hoylaerts, M.F.; Vanoirbeek, J.A.; Nemery, B.; Hoet, P.H. Co-cultures of multiple cell types mimic pulmonary cell communication in response to urban PM10. Eur. Respir. J. 2008, 32, 1184–1194. [Google Scholar] [CrossRef] [PubMed]
- Rach, J.; Budde, J.; Möhle, N.; Aufderheide, M. Direct exposure at the air–liquid interface: Evaluation of an in vitro approach for simulating inhalation of airborne substances. J. Appl. Toxicol. 2014, 34, 506–515. [Google Scholar] [CrossRef]
- Fröhlich, E.; Salar-Behzadi, S. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies. Int. J. Mol. Sci. 2014, 15, 4795–4822. [Google Scholar] [CrossRef] [PubMed]
- Aufderheide, M.; Halter, B.; Möhle, N.; Hochrainer, D. The CULTEX RFS: A Comprehensive Technical Approach for the In Vitro Exposure of Airway Epithelial Cells to the Particulate Matter at the Air-Liquid Interface. BioMed Res. Int. 2013, 2013, 734137. [Google Scholar] [CrossRef]
- Stewart, R.; Yan, K.; Ellis, S.A.; Bishop, C.R.; Dumenil, T.; Tang, B.; Nguyen, W.; Larcher, T.; Parry, R.; Sng, J.D.J. SARS-CoV-2 omicron BA. 5 and XBB variants have increased neurotropic potential over BA. 1 in K18-hACE2 mice and human brain organoids. Front. Microbiol. 2023, 14, 1320856. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Dumenil, T.; Stewart, R.; Bishop, C.R.; Tang, B.; Nguyen, W.; Suhrbier, A.; Rawle, D.J. TMEM106B-mediated SARS-CoV-2 infection allows for robust ACE2-independent infection in vitro but not in vivo. Cell Rep. 2024, 43, 114921. [Google Scholar] [CrossRef] [PubMed]
- Schuller, A.; Montrose, L. Influence of woodsmoke exposure on molecular mechanisms underlying Alzheimer’s disease: Existing literature and gaps in our understanding. Epigenetics Insights 2020, 13, 2516865720954873. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, M.H.H.; Hussain, S. Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung–Gut Axis and Beyond. J. Xenobiotics 2024, 14, 1595–1612. [Google Scholar] [CrossRef] [PubMed]
Component | Sources | Key Constituents | Health Impacts | References |
---|---|---|---|---|
Particulate Matter | Combustion, industrial processes, natural phenomena | Heavy metals, PAHs, nitrates, sulphates | Respiratory diseases (asthma, COPD), systemic effects (cardiovascular dysfunction). Neurological disorders (neuroinflammation, increase neurodegenerative hallmarks) | [20,23,32,33] |
Gaseous Pollutants | Vehicles, industry, chemical reactions | NO2, SO2, O3, CO | Respiratory irritation, secondary pollutant formation | [22] |
Biological Materials | Agriculture, natural sources | Pollens, spores, endotoxins | Exacerbation of allergies, inflammatory responses | [20] |
Fine/Ultrafine Particulate matter | Combustion, urban pollution | Adsorbed metals and organic compounds | Penetration into bloodstream, systemic inflammation, organ damage | [20,26] |
Regional Variability | Urban: vehicle emissions, industry; Rural: agriculture, natural sources | Combustion-related pollutants, ammonia | Heightened vulnerability among children, elderly, and low-income communities | [22,28] |
Mechanism | Description | References |
---|---|---|
Neuroinflammation | Chronic PM2.5 exposure activates microglia and astrocytes, leading to the sustained release of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6. This prolonged inflammatory state contributes to neuronal injury and synaptic dysfunction. | [27,39,40] |
Oxidative Stress | Airborne pollutants generate excessive ROS, depleting antioxidants and causing damage to lipids, proteins, and DNA in the brain. This oxidative stress promotes Aβ aggregation and tau hyperphosphorylation, key pathological features of AD. | [7,40,42] |
Blood–Brain Barrier Disruption | PM2.5 and ultrafine particles weaken BBB integrity, allowing toxic substances and inflammatory mediators to enter the CNS. This breach enhances Aβ plaque accumulation and neuronal apoptosis, worsening AD pathology. | [5,7,42] |
Epigenetic Modifications | Air pollution may induce DNA methylation changes and histone modifications, leading to transcriptional shifts that heighten susceptibility to AD. | [34,42] |
Model System | Details | Advantages | Disadvantages | References |
---|---|---|---|---|
Animal Models |
|
|
| [3,40,67] |
|
|
| [18,66] | |
| ||||
Human Studies |
|
|
| [7,38,65] |
|
|
| [68,69] | |
| [5] | |||
In Vitro Models |
|
|
| [75,76,77,81,82] |
|
|
| [80] | |
|
|
| [71,72,73,74] |
Focus Area | Details | References |
---|---|---|
Longitudinal Studies | Track air pollution exposure and cognitive decline over time, focusing on urban and genetically at-risk populations. | [34,36] |
Mechanistic Insights | Explore pollutant interactions with microglia, astrocytes, and the BBB to identify molecular targets for mitigating neuroinflammation and oxidative stress. | [5,40,42] |
Experimental Models | Use advanced in vitro systems like brain organoids and the CULTEX® Radial Flow System to replicate real-world exposure and cellular responses. | [42,80] |
Olfactory Pathway Research | Investigate how pollutants traverse the olfactory mucosa, bypass the BBB, and propagate pathology via prion-like mechanisms. | [5,19,34] |
Nasal Microbiome | Examine how dysbiosis influences olfactory dysfunction and neuroinflammation and evaluate microbiome-based therapeutic strategies. | [19,42,83] |
Therapeutic Development | Develop interventions such as antioxidants, anti-inflammatory agents, and BBB-strengthening treatments to counteract pollution-induced neurotoxicity. | [40,41,83] |
Public Health Policies | Implement stringent air quality regulations, urban planning to reduce emissions, and public awareness campaigns highlighting the cognitive risks of air pollution. | [5,37,46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odendaal, L.; Quek, H.; Cuní-López, C.; White, A.R.; Stewart, R. The Role of Air Pollution and Olfactory Dysfunction in Alzheimer’s Disease Pathogenesis. Biomedicines 2025, 13, 246. https://doi.org/10.3390/biomedicines13010246
Odendaal L, Quek H, Cuní-López C, White AR, Stewart R. The Role of Air Pollution and Olfactory Dysfunction in Alzheimer’s Disease Pathogenesis. Biomedicines. 2025; 13(1):246. https://doi.org/10.3390/biomedicines13010246
Chicago/Turabian StyleOdendaal, Louise, Hazel Quek, Carla Cuní-López, Anthony R. White, and Romal Stewart. 2025. "The Role of Air Pollution and Olfactory Dysfunction in Alzheimer’s Disease Pathogenesis" Biomedicines 13, no. 1: 246. https://doi.org/10.3390/biomedicines13010246
APA StyleOdendaal, L., Quek, H., Cuní-López, C., White, A. R., & Stewart, R. (2025). The Role of Air Pollution and Olfactory Dysfunction in Alzheimer’s Disease Pathogenesis. Biomedicines, 13(1), 246. https://doi.org/10.3390/biomedicines13010246