Decoding Ecuadorian Mycobacterium tuberculosis Isolates: Unveiling Lineage-Associated Signatures in Beta-Lactamase Resistance via Pangenome Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mtb Samples, Assembly, Functional Annotation, and Pangenome Analysis
2.2. Variant Calling, Lineage Classification, and Drug-Resistance Genes
3. Results
3.1. Assembly, Functional Annotation, and Pangenome Analysis
3.2. Pangenome Diversity on Lineage of Mtb
3.3. Genetic Diversity of the Beta-Lactamase Resistance-Associated Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report, 1st ed.; World Health Organization: Geneva, Switzerland, 2024; p. 68. Available online: https://www.who.int/publications/i/item/9789240101531 (accessed on 15 January 2025).
- De Jong, B.C.; Antonio, M.; Gagneux, S. Mycobacterium africanum—Review of an Important Cause of Human Tuberculosis in West Africa. PLoS Negl. Trop. Dis. 2010, 4, 4e744. [Google Scholar] [CrossRef]
- Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E.; et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393, 537–544. [Google Scholar] [CrossRef]
- Garnier, T.; Eiglmeier, K.; Camus, J.C.; Medina, N.; Mansoor, H.; Pryor, M.; Duthoy, S.; Grondin, S.; Lacroix, C.; Monsempe, C.; et al. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 2003, 100, 7877–7882. [Google Scholar] [CrossRef]
- van Ingen, J.; Rahim, Z.; Mulder, A.; Boeree, M.J.; Simeone, R.; Brosch, R.; van Soolingen, D. Characterization of Mycobacterium orygis as M. tuberculosis Complex Subspecies. Emerg. Infect. Dis. 2012, 18, 653–655. [Google Scholar] [CrossRef]
- Macedo, R.; Isidro, J.; Gomes, M.C.; Botelho, A.; Albuquerque, T.; Sogorb, A.; Bernardino, R.; Fernandes, T.L.; Mourato, T.; Durval, M.; et al. Animal-to-human transmission of Mycobacterium pinnipedii. Eur. Respir. J. 2020, 56, 2000371. [Google Scholar] [CrossRef]
- Boritsch, E.C.; Brosch, R. Evolution of Mycobacterium tuberculosis: New Insights into Pathogenicity and Drug Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Napier, G.; Campino, S.; Merid, Y.; Abebe, M.; Woldeamanuel, Y.; Aseffa, A.; Hibberd, M.L.; Phelan, J.; Clark, T.G. Robust barcoding and identification of Mycobacterium tuberculosis lineages for epidemiological and clinical studies. Genome Med. 2020, 12, 114. [Google Scholar] [CrossRef]
- Coll, F.; McNerney, R.; Guerra-Assunção, J.A.; Glynn, J.R.; Perdigão, J.; Viveiros, M.; Portugal, I.; Pain, A.; Martin, N.; Clark, T.G. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat. Commun. 2014, 5, 4812. [Google Scholar] [CrossRef]
- Senghore, M.; Diarra, B.; Gehre, F.; Otu, J.; Worwui, A.; Muhammad, A.K.; Kwambana-Adams, B.; Kay, G.L.; Sanogo, M.; Baya, B.; et al. Evolution of Mycobacterium tuberculosis complex lineages and their role in an emerging threat of multidrug resistant tuberculosis in Bamako, Mali. Sci. Rep. 2020, 10, 327. [Google Scholar] [CrossRef]
- Díaz Acosta, C.C.; Russomando, G.; Candia, N.; Ritacco, V.; Vasconcellos, S.E.G.; de Berrêdo Pinho Moreira, M.; de Romero, N.J.; Morcillo, N.; de Waard, J.H.; Gomes, H.M.; et al. Exploring the “Latin American Mediterranean” family and the RDRio lineage in Mycobacterium tuberculosis isolates from Paraguay, Argentina and Venezuela. BMC Microbiol. 2019, 19, 131. [Google Scholar] [CrossRef]
- Ngabonziza, J.C.S.; Loiseau, C.; Marceau, M.; Jouet, A.; Menardo, F.; Tzfadia, O.; Antoine, R.; Niyigena, E.B.; Mulders, W.; Fissette, K.; et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat. Commun. 2020, 11, 2917. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Asensio, J.; Pérez, I.; Aguiló, N.; Uranga, S.; Picó, A.; Lampreave, C.; Cebollada, A.; Otal, I.; Samper, S.; Martín, C. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis Complex lineages. PLoS Genet. 2018, 14, e1007282. [Google Scholar] [CrossRef]
- David, S.; Duarte, E.L.; Leite, C.Q.F.; Ribeiro, J.N.; Maio, J.N.; Paixão, E.; Portugal, C.; Sancho, L.; Germano de Sousa, J. Implication of the RD(Rio) Mycobacterium tuberculosis sublineage in multidrug resistant tuberculosis in Portugal. Infect. Genet. Evol. 2012, 12, 1362–1367. [Google Scholar] [CrossRef]
- Tatara, M.B.; Perdigão, J.; Viveiros, M.; Kritski, A.; da Silva, K.E.; Sacchi, F.P.C.; de Lima, C.C.; dos Santos, P.C.P.; Diniz, J.d.L.d.C.G.; Silva, P.E.A.; et al. Genetic Diversity and Molecular Epidemiology of Mycobacterium tuberculosis in Roraima State, Brazil. Am. J. Trop. Med. Hyg. 2019, 101, 774–779. [Google Scholar] [CrossRef]
- Shanmugam, S.K.; Kumar, N.; Sembulingam, T.; Ramalingam, S.B.; Selvaraj, A.; Rajendhiran, U.; Solaiyappan, S.; Tripathy, S.P.; Natrajan, M.; Chandrasekaran, P.; et al. Mycobacterium tuberculosis Lineages Associated with Mutations and Drug Resistance in Isolates from India. Microbiol. Spectr. 2022, 10, e01594-21. [Google Scholar] [CrossRef]
- Arias, A.P.J.; Lahiguera, M.J.; Borrás, R.; Cardona, C.G.; Silva, M.G.; López, M.J.V.; Serrano, M.d.R.G. Comparative study of the genetic diversity of Mycobacterium tuberculosis Complex by Simplified Amplified Fragment Length Polymorphism and Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat Analysis. Rev. Ecuat. Med. Cienc. Biológicas 2018, 39, 63–71. [Google Scholar]
- Zurita, J.; Espinel, N.; Barba, P.; Ortega-Paredes, D.; Zurita-Salinas, C.; Rojas, Y.; Alcocer, I. Genetic diversity and drug resistance of Mycobacterium tuberculosis in Ecuador. Int. J. Tuberc. Lung Dis. 2019, 23, 166–173. [Google Scholar] [CrossRef]
- Garzon-Chavez, D.; Zurita, J.; Mora-Pinargote, C.; Franco-Sotomayor, G.; Leon-Benitez, M.; Granda-Pardo, J.C.; Trueba, G.; Garcia-Bereguiain, M.A.; de Waard, J.H. Prevalence, Drug Resistance, and Genotypic Diversity of the Mycobacterium tuberculosis Beijing Family in Ecuador. Microb. Drug Resist. 2019, 25, 931–937. [Google Scholar] [CrossRef]
- Garzon-Chavez, D.; Garcia-Bereguiain, M.A.; Mora-Pinargote, C.; Granda-Pardo, J.C.; Leon-Benitez, M.; Franco-Sotomayor, G.; Trueba, G.; de Waard, J.H. Population structure and genetic diversity of Mycobacterium tuberculosis in Ecuador. Sci. Rep. 2020, 10, 6237. [Google Scholar] [CrossRef]
- Garcés, E.; Cifuentes, L.; Franco, G.; Romero-Sandoval, N.; Arias, P.J. Study of the distribution of lineages of Mycobacterium tuberculosis in a prison in Guayaquil, Ecuador. Enfermedades Emergent 2023, 22, 7–14. [Google Scholar]
- Yang, T.; Gan, M.; Liu, Q.; Liang, W.; Tang, Q.; Luo, G.; Zuo, T.; Guo, Y.; Hong, C.; Li, Q.; et al. SAM-TB: A whole genome sequencing data analysis website for detection of Mycobacterium tuberculosis drug resistance and transmission. Brief Bioinform. 2022, 23, bbac030. [Google Scholar] [CrossRef]
- Lam, C.; Martinez, E.; Crighton, T.; Furlong, C.; Donnan, E.; Marais, B.J.; Sintchenko, V. Value of routine whole genome sequencing for Mycobacterium tuberculosis drug resistance detection. Int. J. Infect. Dis. 2021, 113, S48–S54. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Chen, L.; Wang, W.; Yu, F.; Xiong, H. Whole-genome sequencing of Mycobacterium tuberculosis for prediction of drug resistance. Epidemiol. Infect. 2022, 150, e22. [Google Scholar] [CrossRef]
- Brown, A.C. Whole-Genome Sequencing of Mycobacterium tuberculosis Directly from Sputum Samples. In Mycobacteria Protocols; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; pp. 459–480. [Google Scholar] [CrossRef]
- Torres Ortiz, A.; Coronel, J.; Vidal, J.R.; Bonilla, C.; Moore, D.A.J.; Gilman, R.H.; Balloux, F.; Kon, O.M.; Didelot, X.; Grandjean, L. Genomic signatures of pre-resistance in Mycobacterium tuberculosis. Nat. Commun. 2021, 12, 7312. [Google Scholar] [CrossRef]
- Freschi, L.; Vargas, R.; Husain, A.; Kamal, S.M.M.; Skrahina, A.; Tahseen, S.; Ismail, N.; Barbova, A.; Niemann, S.; Cirillo, D.M.; et al. Population structure, biogeography and transmissibility of Mycobacterium tuberculosis. Nat. Commun. 2021, 12, 6099. [Google Scholar] [CrossRef]
- Iketleng, T.; Lessells, R.; Dlamini, M.T.; Mogashoa, T.; Mupfumi, L.; Moyo, S.; Gaseitsiwe, S.; de Oliveira, T. Mycobacterium tuberculosis Next-Generation Whole Genome Sequencing: Opportunities and Challenges. Tuberc. Res. Treat. 2018, 2018, 1298542. [Google Scholar] [CrossRef] [PubMed]
- Tonkin-Hill, G.; Corander, J.; Parkhill, J. Challenges in prokaryote pangenomics. Microb. Genom. 2023, 9, 001021. [Google Scholar] [CrossRef] [PubMed]
- Ferrés, I.; Iraola, G. Protocol for post-processing of bacterial pangenome data using Pagoo pipeline. STAR Protoc. 2021, 2, 100802. [Google Scholar] [CrossRef]
- Brockhurst, M.A.; Harrison, E.; Hall, J.P.J.; Richards, T.; McNally, A.; MacLean, C. The Ecology and Evolution of Pangenomes. Curr. Biol. 2019, 29, R1094–R1103. [Google Scholar] [CrossRef]
- Lapierre, P.; Gogarten, J.P. Estimating the size of the bacterial pan-genome. Trends Genet. 2009, 25, 107–110. [Google Scholar] [CrossRef]
- Puyén, Z.M.; Santos-Lázaro, D.; Vigo, A.N.; Cotrina, V.V.; Ruiz-Nizama, N.; Alarcón, M.J.; Asto, B.; Huamán, T.; Moore, D.A.J. Whole Genome Sequencing of Mycobacterium tuberculosis under routine conditions in a high-burden area of multidrug-resistant tuberculosis in Peru. PLoS ONE 2024, 19, e0304130. [Google Scholar] [CrossRef]
- Negrete-Paz, A.M.; Vázquez-Marrufo, G.; Gutiérrez-Moraga, A.; Vázquez-Garcidueñas, M.S. Pangenome Reconstruction of Mycobacterium tuberculosis as a Guide to Reveal Genomic Features Associated with Strain Clinical Phenotype. Microorganisms 2023, 11, 1495. [Google Scholar] [CrossRef]
- Hurtado-Páez, U.; Álvarez Zuluaga, N.; Arango Isaza, R.E.; Contreras-Moreira, B.; Rouzaud, F.; Robledo, J. Pan-genome association study of Mycobacterium tuberculosis lineage-4 revealed specific genes related to the high and low prevalence of the disease in patients from the North-Eastern area of Medellín, Colombia. Front. Microbiol. 2023, 13, p1076797. [Google Scholar] [CrossRef]
- Morey-León, G.; Andrade-Molina, D.; Fernández-Cadena, J.C.; Berná, L. Comparative genomics of drug-resistant strains of Mycobacterium tuberculosis in Ecuador. BMC Genom. 2022, 23, 844. [Google Scholar] [CrossRef]
- Andrews, S. FASTQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 18 June 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. 2014. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Chaudhari, N.M.; Gupta, V.K.; Dutta, C. BPGA—An ultra-fast pan-genome analysis pipeline. Sci. Rep. 2016, 6, 24373. [Google Scholar] [CrossRef]
- Kohl, T.A.; Utpatel, C.; Schleusener, V.; De Filippo, M.R.; Beckert, P.; Cirillo, D.M.; Niemann, S. MTBseq: A comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ 2018, 6, e5895. [Google Scholar] [CrossRef]
- Smith, I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clin. Microbiol. Rev. 2003, 16, 463–496. [Google Scholar] [CrossRef]
- Olivença, F.; Nunes, A.; Macedo, R.; Pires, D.; Silveiro, C.; Anes, E.; Miragaia, M.; Gomes, J.P.; Catalão, M.J. Uncovering Beta-Lactam Susceptibility Patterns in Clinical Isolates of Mycobacterium tuberculosis through Whole-Genome Sequencing. Microbiol. Spectr. 2022, 10, e00674-22. [Google Scholar] [CrossRef]
- Periwal, V.; Patowary, A.; Vellarikkal, S.K.; Gupta, A.; Singh, M.; Mittal, A.; Jeyapaul, S.; Chauhan, R.K.; Singh, A.V.; Singh, P.K.; et al. Comparative Whole-Genome Analysis of Clinical Isolates Reveals Characteristic Architecture of Mycobacterium tuberculosis Pangenome. PLoS ONE 2015, 10, e0122979. [Google Scholar] [CrossRef]
- Zakham, F.; Sironen, T.; Vapalahti, O.; Kant, R. Pan and Core Genome Analysis of 183 Mycobacterium tuberculosis Strains Revealed a High Inter-Species Diversity among the Human Adapted Strains. Antibiotics 2021, 10, 500. [Google Scholar] [CrossRef]
- Warner, D.F.; Koch, A.; Mizrahi, V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol. 2015, 23, 14–21. [Google Scholar] [CrossRef]
- Gagneux, S. Genetic Diversity in Mycobacterium tuberculosis. In Pathogenesis of Mycobacterium tuberculosis and Its Interaction with the Host Organism; Pieters, J., McKinney, J.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–25. [Google Scholar] [CrossRef]
- Rouli, L.; Merhej, V.; Fournier, P.E.; Raoult, D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect. 2015, 7, 72–85. [Google Scholar] [CrossRef]
- Achtman, M. Evolution, Population Structure, and Phylogeography of Genetically Monomorphic Bacterial Pathogens. Annu. Rev. Microbiol. 2008, 62, 53–70. [Google Scholar] [CrossRef]
- Dar, H.A.; Zaheer, T.; Ullah, N.; Bakhtiar, S.M.; Zhang, T.; Yasir, M.; Azhar, E.I.; Ali, A. Pangenome Analysis of Mycobacterium tuberculosis Reveals Core-Drug Targets and Screening of Promising Lead Compounds for Drug Discovery. Antibiotics 2020, 9, 819. [Google Scholar] [CrossRef]
- Yang, T.; Zhong, J.; Zhang, J.; Li, C.; Yu, X.; Xiao, J.; Jia, X.; Ding, N.; Ma, G.; Wang, G.; et al. Pan-Genomic Study of Mycobacterium tuberculosis Reflecting the Primary/Secondary Genes, Generality/Individuality, and the Interconversion Through Copy Number Variations. Front. Microbiol. 2018, 9, 1886. [Google Scholar] [CrossRef]
- Tonkin-Hill, G.; MacAlasdair, N.; Ruis, C.; Weimann, A.; Horesh, G.; Lees, J.A.; Gladstone, R.A.; Lo, S.; Beaudoin, C.; Floto, R.A.; et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020, 21, 180. [Google Scholar] [CrossRef]
- Tettelin, H.; Riley, D.; Cattuto, C.; Medini, D. Comparative genomics: The bacterial pan-genome. Curr. Opin. Microbiol. 2008, 11, 472–477. [Google Scholar] [CrossRef]
- Sapriel, G.; Brosch, R. Shared Pathogenomic Patterns Characterize a New Phylotype, Revealing Transition toward Host-Adaptation Long before Speciation of Mycobacterium tuberculosis. Genome Biol. Evol. 2019, 11, 2420–2438. [Google Scholar] [CrossRef]
- Kweon, O.; Kim, S.J.; Blom, J.; Kim, S.K.; Kim, B.S.; Baek, D.H.; Park, S.I.; Sutherland, J.B.; Cerniglia, C.E. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evol. Biol. 2015, 15, 21. [Google Scholar] [CrossRef]
- Behruznia, M.; Marin, M.; Farhat, M.; Thomas, J.C.; Domingo-Sananes, M.R.; Meehan, C.J. The Mycobacterium tuberculosis complex pangenome is small and driven by sub-lineage-specific regions of difference. eLife 2024, 13, RP97870. [Google Scholar]
- Wivagg, C.N.; Hung, D.T. Resuscitation-Promoting Factors Are Required for β-Lactam Tolerance and the Permeability Barrier in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2012, 56, 1591–1594. [Google Scholar] [CrossRef]
- Hett, E.C.; Chao, M.C.; Deng, L.L.; Rubin, E.J. A Mycobacterial Enzyme Essential for Cell Division Synergizes with Resuscitation-Promoting Factor. PLoS Pathog. 2008, 4, e1000001. [Google Scholar] [CrossRef]
Lineages | SNP | Deletions | Insertions | ||
---|---|---|---|---|---|
More than 20 nt | Less than 20 nt | More than 20 nt | Less than 20 nt | ||
Euro-American | 900 | 55 | 4 | 55 | 4 |
Haarlem | 877 | 45 | 3 | 55 | 3 |
LAM | 760 | 43 | 4 | 45 | 2 |
mainly T | 494 | 33 | 2 | 32 | 1 |
S-type | 760 | 37 | 4 | 47 | 3 |
X-type | 863 | 45 | 6 | 55 | 3 |
Roary Pipeline | BPGA Pipeline | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | Core Genes | Accessory Gene | Cloud Gene | Pangenome | Core Genes | Accessory Gene | Cloud Gene | Pangenome | |
Total | 88 | 3032 | 2073 | 1598 | 6703 | 3104 | 659 | 767 | 4397 |
Genomic resistance | |||||||||
Resistant_isolate | 64 | 3054 | 1940 | 1518 | 6522 | 3123 | 646 | 756 | 5145 |
Sensitive_isolate | 24 | 3573 | 817 | 504 | 4894 | 3477 | 255 | 198 | 4188 |
Lineages | |||||||||
LAM | 39 | 3281 | 1385 | 1073 | 5739 | 3330 | 443 | 463 | 4649 |
X_Type | 21 | 3306 | 1281 | 874 | 5461 | 3352 | 392 | 563 | 4655 |
S_type | 10 | 3684 | 573 | 269 | 4526 | 3589 | 150 | 239 | 4095 |
Haarlem | 9 | 3674 | 593 | 224 | 4491 | 3540 | 209 | 190 | 4146 |
mainly_T | 5 | 3754 | 394 | 290 | 4438 | 3618 | 112 | 194 | 3990 |
Euro-American | 4 | 3760 | 334 | 268 | 4362 | 3616 | 144 | 118 | 3985 |
Function | Functional Categories | Locus | Gene Name | AA Change |
---|---|---|---|---|
Regulatory proteins | Rv0015c | pknA | Ser385Arg (agc/agG) | |
Regulatory proteins | Rv0324 | Thr168Ala (act/Gct) | ||
Lipid metabolism | Rv0642c | mmaA4 | Asn165Ser (aac/aGc) | |
Conserved hypotheticals | Rv0791c | - | Ser100Cys (tcc/tGc) | |
Intermediary metabolism and respiration | Rv0948c | - | Lys59Thr (aag/aCg) | |
Insertion seqs and phages | Rv1128c | - | Glu270Gly (gaa/gGa) | |
Intermediary metabolism and respiration | Rv1606 | hisI | Thr99Ile (acc/aTc) | |
Cell wall and cell processes | Rv1987 | - | Ser36Asn (agt/aAt) | |
Conserved hypotheticals | Rv2022c | - | Val118Ala (gtg/gCg) | |
Information pathways | Rv2756c | hsdM | Leu306Pro (ctg/cCg) | |
Intermediary metabolism and respiration | Rv3057c | - | Asp112Ala (gat/gCt)/His111His (cac/caT) | |
Conserved hypotheticals | Rv3365c | - | Ala266Thr (gcg/Acg) | |
Cell wall and cell processes | Rv3451 | cut3 | Gly209Asp (ggc/gAc)/Leu259Arg (ctg/cGg) | |
Lipid metabolism | Rv3824c | papA1 | Leu35Phe (ctt/Ttt) | |
Cell wall and cell processes | Rv3884c | eccA2 | Ala189Ala (gcc/gcG) | |
PG synthesis | Cell wall and cell processes | Rv2155c | murD | Arg247Gly (cgg/Ggg) |
PG synthesis | Cell wall and cell processes | Rv2981c | ddlA | Thr365Ala (aca/Gca) |
PG hydrolysis | Cell wall and cell processes | Rv1884c | rpfC | His16Arg (cac/cGc) |
PG hydrolysis | Cell wall and cell processes | Rv2450c | rpfE | Arg126Gln (cgg/cAg) |
PG assembly | Cell wall and cell processes | Rv0050 | ponA1 | Ala244Ala (gca/gcG) |
PG assembly | Conserved hypotheticals | Rv0192 | - | Ser127Pro (tcg/Ccg) |
Cell division | Cell wall and cell processes | Rv0008c | - | Ser145Pro (tcc/Ccc) |
Cell division | Cell wall and cell processes | Rv2748c | ftsK | Met298Val (atg/Gtg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morey-León, G.; Fernández-Cadena, J.C.; Andrade-Molina, D.; Berná, L. Decoding Ecuadorian Mycobacterium tuberculosis Isolates: Unveiling Lineage-Associated Signatures in Beta-Lactamase Resistance via Pangenome Analysis. Biomedicines 2025, 13, 313. https://doi.org/10.3390/biomedicines13020313
Morey-León G, Fernández-Cadena JC, Andrade-Molina D, Berná L. Decoding Ecuadorian Mycobacterium tuberculosis Isolates: Unveiling Lineage-Associated Signatures in Beta-Lactamase Resistance via Pangenome Analysis. Biomedicines. 2025; 13(2):313. https://doi.org/10.3390/biomedicines13020313
Chicago/Turabian StyleMorey-León, Gabriel, Juan Carlos Fernández-Cadena, Derly Andrade-Molina, and Luisa Berná. 2025. "Decoding Ecuadorian Mycobacterium tuberculosis Isolates: Unveiling Lineage-Associated Signatures in Beta-Lactamase Resistance via Pangenome Analysis" Biomedicines 13, no. 2: 313. https://doi.org/10.3390/biomedicines13020313
APA StyleMorey-León, G., Fernández-Cadena, J. C., Andrade-Molina, D., & Berná, L. (2025). Decoding Ecuadorian Mycobacterium tuberculosis Isolates: Unveiling Lineage-Associated Signatures in Beta-Lactamase Resistance via Pangenome Analysis. Biomedicines, 13(2), 313. https://doi.org/10.3390/biomedicines13020313