Solid Organ Transplants Caused by COVID-19 Infection and the Outcome of Transplantation Post-COVID-19: A Systematic Review
Abstract
:1. Introduction
1.1. COVID-19 Infection May Cause Organ Damage Requiring Organ Transplants
1.2. Immune Dysregulation and the Outcome of Transplanation Post-COVID-19 Infection
1.2.1. The Outcome of Solid Organ Transplants in Patients Who Had Organ Damage Caused by COVID-19
1.2.2. The Outcome of Solid Organ Transplants in Patients Who Contracted COVID-19 During the Waiting Period
1.2.3. The Outcome of Solid Organ Transplants in Patients Who Received Organs from Donors Who Were Previously Infected with COVID-19
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection and Data Collection
2.4. Data Items
2.5. Risk of Bias and Quality Assessment
2.6. Data Analysis
3. Results
3.1. Types of Studies and Demographic Data
3.2. Clinical Data
3.2.1. Organ Transplant Due to Organ Damage Caused by COVID-19
Lung Transplants Due to COVID-19
Liver Transplants Due to COVID-19
Heart Transplants Due to COVID-19
3.2.2. Transplants Post-COVID-19 Infection (Not Caused by COVID-19)
3.2.3. Transplants with Organs from Donors Who Had COVID-19
4. Discussion
4.1. Post-COVID-19 Recipient with Organ Damage Due to COVID-19
4.1.1. Lung Transplants Caused by COVID-19 Infection
4.1.2. Liver Transplants Caused by COVID-19 Infection
4.1.3. Heart Transplants Caused by COVID-19 Infection
4.1.4. Mechanism of Organ Damage by COVID-19
Mechanism of Lung Damage by COVID-19
Mechanism of Liver Damage by COVID-19
Mechanism of Heart Damage by COVID-19
4.2. Transplants Post-COVID-19 Infection (Not Caused by COVID-19)
4.3. Transplants with Organs from Donors Who Had COVID-19
4.4. Impact of Previous COVID-19 Infection on Transplant Outcomes
4.4.1. Impact on Lung Transplant Outcomes—Recipient COVID-19+, Organ Damage by COVID-19
4.4.2. Impact on Liver Transplant Outcomes—Recipient COVID-19+, Organ Damage by COVID-19
4.4.3. Impact on Heart Transplant Outcomes—Recipient COVID-19+, Organ Damage by COVID-19
4.4.4. Impact on Transplant Outcomes—Recipient COVID-19+, Organ Damage by Non-COVID-19 Causes
4.4.5. Impact on Transplant Outcomes—Donor COVID-19+
4.5. Effect of COVID-19 Infection on the Outcome of Organ Transplants
4.6. Study Limitations
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Pacheco, M.; Silva, P.L.; Cruz, F.F.; Battaglini, D.; Robba, C.; Pelosi, P.; Morales, M.M.; Neves, C.C.; Rocco, P.R.M. Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Front. Physiol. 2021, 12, 593223. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Narayan, R.K.; Prasoon, P.; Kumari, C.; Kaur, G.; Kumar, S.; Kulandhasamy, M.; Sesham, K.; Pareek, V.; Faiq, M.A.; et al. COVID-19 Mechanisms in the Human Body—What We Know So Far. Front. Immunol. 2021, 12, 693938. [Google Scholar] [CrossRef] [PubMed]
- Post COVID-19 Condition [Internet]. Available online: https://www.who.int/teams/health-care-readiness/post-covid-19-condition (accessed on 26 June 2024).
- Lakhani, J.D.; Kapadia, S.; Choradiya, R.; Preet Gill, R.; Lakhani, S.J. COVID-19 and Multiorgan Dysfunction Syndrome. In Fighting the COVID-19 Pandemic [Internet]; Mohammad Baddour, M., Ed.; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/books/fighting-the-covid-19-pandemic/covid-19-and-multiorgan-dysfunction-syndrome (accessed on 3 July 2024).
- Iqbal, P.; Ata, F.; Chaudhry, H.; Muthanna, B.; Waqas Younas, H.; ul Munamm, S.A.; Sharma, R.; Fadah, K.; Elazzazy, S.; Hamad, A.; et al. Post-COVID-19-associated multiorgan complications or “long COVID” with literature review and management strategy discussion: A meta-analysis. Health Sci. Rep. 2023, 6, e1211. [Google Scholar] [CrossRef]
- Greer, N.; Bart, B.; Billington, C.J.; Diem, S.J.; Ensrud, K.E.; Kaka, A.; Klein, M.; Melzer, A.C.; Reule, S.; Shaukat, A.; et al. COVID-19 postacute care major organ damage: A systematic review. BMJ Open 2022, 12, e061245. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L.; Chen, Y.; Xu, Z.; Wang, H.; Zhang, X. A longitudinal follow-up of COVID-19 patients in the convalescent phase showed recovery in radiological results, the dynamics of lymphocytes, and a decrease in the level of IgG antibody: A single-centre, observational study. J. Thorac. Dis. 2021, 13, 2986–3000. [Google Scholar] [CrossRef]
- Berentschot, J.C.; Drexhage, H.A.; Aynekulu Mersha, D.G.; Wijkhuijs, A.J.M.; GeurtsvanKessel, C.H.; Koopmans, M.P.G.; Voermans, J.J.C.; Hendriks, R.W.; Bek, L.M.; Heijenbrok-Kal, M.H.; et al. Immunological profiling in long COVID: Overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity. Front. Immunol. 2023, 14, 1254899. [Google Scholar] [CrossRef]
- Ruenjaiman, V.; Sodsai, P.; Kueanjinda, P.; Bunrasmee, W.; Klinchanhom, S.; Reantragoon, R.; Tunvirachaisakul, C.; Manothummetha, K.; Mejun, N.; Liengswangwong, K.; et al. Impact of SARS-CoV-2 infection on the profiles and responses of innate immune cells after recovery. J. Microbiol. Immunol. Infect. 2022, 55, 993–1004. [Google Scholar] [CrossRef]
- Piemonti, L.; Sordi, V.; Pellegrini, S.; Scotti, G.M.; Scavini, M.; Sioli, V.; Castiglione, A.G.; Cardillo, M. Circulating CXCL10 and IL-6 in solid organ donors after brain death predict graft outcomes. Sci. Rep. 2021, 11, 6624. [Google Scholar] [CrossRef]
- Harmon, C.; Sanchez-Fueyo, A.; O’Farrelly, C.; Houlihan, D.D. Natural Killer Cells and Liver Transplantation: Orchestrators of Rejection or Tolerance? Am. J. Transplant. 2016, 16, 751–757. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.K.L.; Mertz, D.; Loeb, M. Newcastle-Ottawa Scale: Comparing reviewers’ to authors’ assessments. BMC Med. Res. Methodol. 2014, 14, 45. [Google Scholar] [CrossRef]
- Murad, M.H.; Sultan, S.; Haffar, S.; Bazerbachi, F. Methodological quality and synthesis of case series and case reports. BMJ Evid. Based Med. 2018, 23, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Anderle, K.; Machold, K.; Kiener, H.P.; Bormann, D.; Hoetzenecker, K.; Geleff, S.; Prosch, H.; Laccone, F.; Heil, P.M.; Petzelbauer, P.; et al. COVID-19 as a putative trigger of anti-MDA5-associated dermatomyositis with acute respiratory distress syndrome (ARDS) requiring lung transplantation, a case report. BMC Rheumatol. 2022, 6, 42. [Google Scholar] [CrossRef]
- Rohr, J.M.; Strah, H.; Berkheim, D.; Siddique, A.; Radio, S.J.; Swanson, B.J. Pulmonary Hypertensive Changes Secondary to COVID-19 Pneumonia in a Chronically SARS-CoV-2-Infected Bilateral Lung Explant. Int. J. Surg. Pathol. 2022, 30, 443–447. [Google Scholar] [CrossRef]
- Rossi Neto, J.M.; Rossi, R.M.; Wolf, P.J.W.; De Mello, V.B.; Dantas, D.C.; Santos, C.C.D.; Finger, M.A. Long Covid as an Indication for Heart Transplantation and Its Characteristics. Transplant. Proc. 2023, 55, 1870–1872. [Google Scholar] [CrossRef]
- Rossi, V.; Tammaro, S.; Santambrogio, M.; Retucci, M.; Gallo, F.; Crotti, S.; Mantero, M.; Nosotti, M.; Privitera, E.; Palleschi, A. Physiotherapy approach after lung transplantation in a critically ill COVID-19 patient: A case report. Monaldi Arch. Chest Dis. 2021, 92, 105–108. Available online: https://www.monaldi-archives.org/index.php/macd/article/view/2004 (accessed on 2 July 2024). [CrossRef]
- Sajid, F.; Ahmed, T.; Baz, M.A.; Anstead, M.I. Lung Transplantation in a Patient with COVID-19-Associated Acute Respiratory Failure. Cureus 2021, 13, e17152. Available online: https://www.cureus.com/articles/66210-lung-transplantation-in-a-patient-with-covid-19-associated-acute-respiratory-failure (accessed on 3 July 2024). [CrossRef]
- Sambommatsu, Y.; Mouch, C.; Kulkarni, A.V.; Bruno, D.A.; Eslami, M.; Imai, D.; Lee, S.D.; Khan, A.A.; Sharma, A.; Saeed, M.; et al. Liver transplantation for post-COVID-19 cholangiopathy: A case series. Clin. Transplant. 2023, 37, e15141. [Google Scholar] [CrossRef]
- Bermudez, C.; Bermudez, F.; Courtwright, A.; Richards, T.; Diamond, J.; Cevasco, M.; Blumberg, E.; Christie, J.; Usman, A.; Crespo, M.M. Lung transplantation for COVID-2019 respiratory failure in the United States: Outcomes 1-year posttransplant and the impact of preoperative extracorporeal membrane oxygenation support. J. Thorac. Cardiovasc. Surg. 2023, 167, 384–395.e3. [Google Scholar] [CrossRef]
- Durazo, F.A.; Nicholas, A.A.; Mahaffey, J.J.; Sova, S.; Evans, J.J.; Trivella, J.P.; Loy, V.; Kim, J.; Zimmerman, M.A.; Hong, J.C. Post–COVID-19 Cholangiopathy—A New Indication for Liver Transplantation: A Case Report. Transplant. Proc. 2021, 53, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Florissi, I.S.; Etchill, E.W.; Barbur, I.; Verdi, K.G.; Merlo, C.; Bush, E.L. Lung Transplantation in Patients With COVID-19-The Early National Experience. Semin. Thorac. Cardiovasc. Surg. 2022, 35, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Gogia, P.; Attawar, S.; Singh, V.; Bhatnagar, T.; Sharma, S.; Batra, K.; Khare, S. Lung transplantation for post-COVID-19 pulmonary fibrosis. Respirol. Case Rep. 2021, 9, e0862. [Google Scholar] [CrossRef]
- Schwarz, S.; Lang, C.; Harlander, M.; Štupnik, T.; Slambrouck, J.V.; Ceulemans, L.J.; Ius, F.; Gottlieb, J.; Kuhnert, S.; Hecker, M.; et al. Gamma-glutamyltransferase is a strong predictor of secondary sclerosing cholangitis after lung transplantation for COVID-19 ARDS. J. Heart Lung Transplant. 2022, 41, 1501–1510. [Google Scholar] [CrossRef]
- Shah, U.; Rahulan, V.; Ravipati, S.; Kumar, S.; Kamath, A.M.; Kori, S.; Panda, S.; Singh, V.; Kumar, P.; Gopalam, P.; et al. Clinico-Radiological-Pathologic Profile and Outcomes of Lung Transplant in Post–COVID-19 Phenotype: A Single Center Experience. Transplant. Proc. 2022, 54, 1494–1503. [Google Scholar] [CrossRef]
- Shimizu, S.; Kimura, K. Anesthetic management of living-donor lung transplantation for end-stage COVID-19 lung failure. JA Clin. Rep. 2022, 8, 21. [Google Scholar] [CrossRef]
- Franco-Palacios, D.J.; Allenspach, L.; Stagner, L.; Pinto, J.; Olexsey, K.; Sherbin, E.; Dillon, W.; Sternberg, D.; Bryce, K.; Simanovski, J.; et al. A center experience with lung transplantation for COVID-19 ARDS. Respir. Med. Case Rep. 2022, 36, 101597. [Google Scholar] [CrossRef]
- Gaudriot, B.; Mansour, A.; Thibault, V.; Lederlin, M.; Cauchois, A.; Lelong, B.; Ross, J.T.; Leurent, G.; Tadié, J.-M.; Revest, M.; et al. Successful heart transplantation for COVID-19-associated post-infectious fulminant myocarditis. ESC Heart Fail. 2021, 8, 2625–2630. [Google Scholar] [CrossRef]
- Okumura, K.; Jyothula, S.; Kaleekal, T.; Dhand, A. 1-Year Outcomes of Lung Transplantation for Coronavirus Disease 2019–Associated End-Stage Lung Disease in the United States. Clin. Infect. Dis. 2023, 76, 2140–2147. [Google Scholar] [CrossRef]
- Reis, F.P.D.; Fernandes, L.M.; Abdalla, L.G.; Campos, S.V.; Camargo, P.C.L.B.D.; Santos, S.L.D.; de Aguiar, I.T.; Pires, J.P.; Costa, A.N.; Carraro, R.M.; et al. Brazilian initial experience with lung transplantation due to irreversible lung fibrosis post-COVID-19 in a national reference center: A cohort study. Sao Paulo Med. J. 2021, 140, 153–159. [Google Scholar] [CrossRef]
- Rela, M.; Rajakannu, M.; Veerankutty, F.H.; Vij, M.; Rammohan, A. First report of auxiliary liver transplantation for severe cholangiopathy after SARS-CoV-2 respiratory infection. Am. J. Transplant. 2022, 22, 3143–3145. [Google Scholar] [CrossRef]
- Roda, S.; Ricciardi, A.; Maria Di Matteo, A.; Zecca, M.; Morbini, P.; Vecchia, M.; Pieri, T.C.; Giordani, P.; Tavano, A.; Bruno, R. Post-acute coronavirus disease 2019 (COVID 19) syndrome:HLH and cholangiopathy in a lung transplant recipient. Clin. Infect. Pract. 2022, 15, 100144. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.J.; Schulte, J.J.; Lewis, E.E.; Bommareddi, S.R.; Rohrer, C.T.; Sultan, S.; Maloney, J.D.; DeCamp, M.M.; McCarthy, D.P. Successful Lung Transplantation for Severe Post-COVID-19 Pulmonary Fibrosis. Ann. Thorac. Surg. 2022, 114, e17–e19. [Google Scholar] [CrossRef] [PubMed]
- Haslbauer, J.D.; Bratic-Hench, I.; Cima, K.; Luger, A.K.; Schmitz, K.; Augustin, F.; Krapf, C.; Hoefer, D.; Tancevski, I.; Tzankov, A.; et al. Interstitial Pulmonary Fibrosis and Extensive Dendriform Ossification with Persistent Viral Load: A Rare Presentation of Post-COVID-19 Condition in Need of Lung Transplantation. Pathobiology 2023, 90, 90138–90146. [Google Scholar] [CrossRef]
- Herrmann, T.; Iglesias, J.; Smith, S. Interdisciplinary Management for the First Patient with Post-COVID Double-Lung Transplantation in Inpatient Rehabilitation in the United States: A Case Report. Phys. Ther. 2022, 102, pzac070. [Google Scholar] [CrossRef]
- Javaid, H.; Nigo, M.; Zhao, B.; Trujillo, D.O.; Hasbun, R.; Ostrosky-Zeichner, L.; Patel, M.; Jyothula, S. Post–Lung Transplantation Outcomes and Ex Vivo Histopathological Findings in Severe Post-COVID-19 Pulmonary Disease—A Single-Center Experience. Open Forum Infect. Dis. 2022, 9, ofac425. [Google Scholar] [CrossRef]
- Kehara, H.; Mangukia, C.; Sunagawa, G.; Iturra, S.A.; Yanagida, R.; Kashem, M.; Persidsky, Y.; Shenoy, K.; Mamary, A.J.; Marchetti, N.D.; et al. Lung Transplantation for COVID-19 Pulmonary Sequelae. Transplantation 2023, 107, 449–456. [Google Scholar] [CrossRef]
- Kiyak, M.; Ayhan, R.; Yavuz, M.; Demirtas, C.; Akmak, S.; Altunöz, E.; İpek, S. Is Post COVID-19 Cholangiopathy an Appropriate Indication for Liver Transplantation? A Rare Case Report. Rev. Esp. Enferm. Dig. 2023, 116, 336–337. Available online: https://online.reed.es/fichaArticulo.aspx?iarf=256149673298284-463734795155 (accessed on 3 July 2024). [CrossRef]
- Koch, A.; Pizanis, N.; Bessa, V.; Herbstreit, F.; Gulbins, E.; Aigner, C.; Kamler, M. Lung Transplantation for Adult Respiratory Distress Syndrome after SARS-CoV-2 Infection. Thorac. Cardiovasc. Surg. Rep. 2022, 11, e23–e26. [Google Scholar] [CrossRef]
- Lang, C.; Ritschl, V.; Augustin, F.; Lang, G.; Moser, B.; Taghavi, S.; Murakoezy, G.; Lambers, C.; Flick, H.; Koestenberger, M.; et al. Clinical relevance of lung transplantation for COVID-19 ARDS: A nationwide study. Eur. Respir J. 2022, 60, 2102404. [Google Scholar] [CrossRef]
- Mortazavi, S.; De Peralta-Venturina, M.; Marchevsky, A.M. Nonspecific interstitial pneumonia pattern is a frequent finding in patients with post-acute COVID-19 syndrome treated with bilateral orthotopic lung transplantation: Current best evidence. Hum. Pathol. 2023, 141, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Ohsumi, A.; Takamatsu, J.; Yuasa, I.; Tanaka, S.; Yutaka, Y.; Hamaji, M.; Nakajima, D.; Yamazaki, K.; Nagao, M.; Date, H. Living-Donor Lung Transplantation for Post–COVID-19 Respiratory Failure. Ann. Thorac. Surg. 2022, 114, e21–e24. [Google Scholar] [CrossRef] [PubMed]
- Umemura, K.; Katada, Y.; Nakagawa, S.; Sugimoto, M.; Matsumura, K.; Yonezawa, A.; Nagao, M.; Ohsumi, A.; Date, H.; Terada, T. Improved absorption of itraconazole tablet by co-administration with lemon beverages in a lung transplant recipient: A case report. J. Infect. Chemother. 2022, 28, 1203–1207. [Google Scholar] [CrossRef] [PubMed]
- Uhl, K.; Paithankar, S.; Leshchiner, D.; Jager, T.E.; Abdelgied, M.; Tripp, K.; Peraino, A.M.; Kakazu, M.T.; Lawson, C.; Chesla, D.W.; et al. Bulk RNA-Sequencing of Small Airway Cell Cultures from IPF and Post-COVID Lung Fibrosis Patients Illustrates Disease Signatures and Differential Responses to TGF-β1 Treatment [Internet]. 2023. Available online: http://biorxiv.org/lookup/doi/10.1101/2023.03.01.530431 (accessed on 3 July 2024).
- Lee, A.; Wein, A.N.; Doyle, M.B.M.; Chapman, W.C. Liver transplantation for post-COVID-19 sclerosing cholangitis. BMJ Case Rep. 2021, 14, e244168. [Google Scholar] [CrossRef]
- Magnusson, J.M.; Silverborn, M.; Broomé, M.; Riise, G.C.; Dellgren, G. Long-term Extracorporeal Membrane Oxygenation Bridge to Lung Transplantation After COVID-19. Ann. Thorac. Surg. 2022, 113, e5–e8. [Google Scholar] [CrossRef]
- Cooper, S.; Tobar, A.; Konen, O.; Orenstein, N.; Kropach Gilad, N.; Landau, Y.E.; Mozer-Glassberg, Y.; Bar-Lev, M.R.; Shaoul, R.; Shamir, R.; et al. Long COVID-19 Liver Manifestation in Children. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 244–251. [Google Scholar] [CrossRef]
- Akbulut, S.; Barut, B.; Garzali, I.U.; Sarici, K.B.; Tamer, M.; Unsal, S.; Karabulut, E.; Baskiran, A.; Bayindir, Y.; Yilmaz, S. Effect of Pre-Transplant COVID-19 Exposure on Post-Liver Transplant Clinical Outcomes. Transplant. Proc. 2023, 55, 1176–1181. [Google Scholar] [CrossRef]
- Antal, O.; Daciana Elec, A.; Muntean, A.; Moisoiu, T.; Melinte, R.M.; Elec, F.I. The immunologically high-risk kidney recipient in the early post-COVID-19 period. To do or not to do? A case report. Front. Med. 2023, 10, 1147835. [Google Scholar] [CrossRef]
- Singh, N.; Tandukar, S.; Zibari, G.; Naseer, M.S.; Amiri, H.S.; Samaniego-Picota, M.D. Successful simultaneous pancreas and kidney transplant in a patient post–COVID-19 infection. Kidney Int. 2020, 98, 1615–1616. [Google Scholar] [CrossRef]
- Sherwood, K.R.; Nicholl, D.D.M.; Fenninger, F.; Wu, V.; Wong, P.; Benedicto, V.; Cina, D.P.; Wang, M.; Pobran, T.D.; De Marco, M.L.; et al. Comprehensive Immune Profiling of a Kidney Transplant Recipient with Peri-Operative SARS-CoV-2 Infection: A Case Report. Front. Immunol. 2021, 12, 753558. [Google Scholar] [CrossRef]
- Kute, V.; Ray, D.S.; Dalal, S.; Hegde, U.; Godara, S.; Pathak, V.; Bahadur, M.; Khullar, D.; Guleria, S.; Vishwanath, S.; et al. A Multicenter Cohort Study from India of ABO-Incompatible Kidney Transplantation in Post–COVID-19 Patients. Transplant. Proc. 2022, 54, 2652–2657. [Google Scholar] [CrossRef] [PubMed]
- Kute, V.B.; Ray, D.S.; Yadav, D.K.; Pathak, V.; Bhalla, A.K.; Godara, S.; Kumar, A.B.; Guleria, S.M.; Khullar, D.M.; Thukral, S.M.; et al. A Multicenter Cohort Study from India of 75 Kidney Transplants in Recipients Recovered After COVID-19. Transplantation 2021, 105, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.; Liu, K.; Marinelli, T. Successful liver transplantation for hepatitis B-related acute liver failure in a patient with active COVID-19. Transpl. Infect. Dis. 2022, 24, e13889. [Google Scholar] [CrossRef] [PubMed]
- Okubo, K.; Iqbal, S.; Lizaola-Mayo, B.; Aqel, B.; Graf, E.H.; Banacloche, J.C.G.; Singer, A.L.; Harbell, J.W. Liver Transplant in a Polymerase Chain Reaction–Positive COVID-19 Recipient: A Case Report. Transplant. Proc. 2021, 53, 2490–2494. [Google Scholar] [CrossRef] [PubMed]
- Juric, I.; Katalinic, L.; Furic-Cunko, V.; Basic-Jukic, N. Kidney Transplantation in Patients with the History of SARS-CoV-2 Infection. Transplant. Proc. 2022, 54, 2673–2676. [Google Scholar] [CrossRef]
- Sanchez-Vivaldi, J.A.; Patel, M.S.; Shah, J.A.; Wang, B.K.; Salcedo-Betancourt, J.D.; Hwang, C.S.; Wojciechowski, D.; La Hoz, R.M.; Vagefi, P.A. Short-term kidney transplant outcomes from severe acute respiratory syndrome coronavirus 2 lower respiratory tract positive donors. Transpl. Infect. Dis. 2022, 24, 13890. [Google Scholar] [CrossRef]
- Nguyen, M.C.; Lee, E.J.; Avery, R.K.; Dioverti-Prono, M.V.; Shoham, S.; Tobian, A.A.R.; Bloch, E.M.; Gurakar, A.; Rizkalla, N.A.; Cameron, A.M.; et al. Transplant of SARS-CoV-2–infected Living Donor Liver: Case Report. Transplant. Direct. 2021, 7, e721. [Google Scholar] [CrossRef]
- Alhumaid, S.; Rabaan, A.A.; Dhama, K.; Yong, S.J.; Nainu, F.; Hajissa, K.; Dossary, N.A.; Alajmi, K.K.; Saggar, A.E.A.; AlHarbi, F.A.; et al. Solid Organ Rejection following SARS-CoV-2 Vaccination or COVID-19 Infection: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1289. [Google Scholar] [CrossRef]
- Fenninger, F.; Sherwood, K.R.; Wu, V.; Wong, P.; DeMarco, M.L.; Wang, M.; Benedicto, V.; Dwarka, K.A.; Tate, L.; Kadatz, M.; et al. Comprehensive immune profiling of SARS-CoV-2 infected kidney transplant patients. Front. Transplant. 2023, 2, 1261023. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Brito-Zerón, P.; Mariette, X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat. Rev. Rheumatol. 2021, 17, 315–332. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782. [Google Scholar] [CrossRef] [PubMed]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and Cardiovascular Disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Silva-Junior, A.L.; Oliveira, L.S.; Dias, S.; Costa, T.C.C.; Xabregas, L.A.; Alves-Hanna, F.S.; Abrahim, C.M.M.; Neves, W.L.L.; Crispim, M.A.E.; Toro, D.M.; et al. Immunologic mediators profile in COVID-19 convalescence. Sci. Rep. 2024, 14, 20930. [Google Scholar] [CrossRef] [PubMed]
- Shuwa, H.A.; Shaw, T.N.; Knight, S.B.; Wemyss, K.; McClure, F.A.; Pearmain, L.; Prise, I.; Jagger, C.; Morgan, D.J.; Khan, S.; et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med 2021, 2, 720–735.e4. [Google Scholar] [CrossRef]
Authorde | Study Type/ Country | N (Total) Gender (F%/M%) | Age Mean ± SE/ Median (IQR) (Years) | Type of Organ Transplant | Information About the Donor | Outcome |
---|---|---|---|---|---|---|
Anderle et al. [16] | Case report Austria | 1 M | 20 | BLT | NA | In remission for 12 months |
Rohr et al. [17] | Case report USA | 1 M | 31 | ddBLT | Deceased donor | Recovering well |
Rossi et al. [19] | Case report Italy | 1 M | 18 | BLT | NA | Progressing well during the first month post-Tx |
Sajid et al. [20] | Case study USA | 1 M | 43 | BLT | NA | Discharged on day 89 Recovering well |
Bermudez et al. [22] | Retrospective cohort study USA | 305 65 F 240 M (21.3%, 78.7%) | 51 (42–57) | 279 (91%): BLT 9: dual organ Tx (7 lung–kidney + 2 heart–lung) | Median (IQR) donor age: 33 (23–43) years | Post-Tx survival: 97% at 1 month; 94.3% at 6 months; 87.1% at 12 months |
Florissi et al. [24] | Retrospective cohort study USA | 353 79 F 274 M (22%, 78%) | 51 (40–57) | 325 BLT 28 single LT | Median (IQR) age: 33 (24–43) years | Alive at 30-day follow-up (out of available data for 281): 273 Alive at 90-day follow-up (out of available data for 214): 202 |
Gogia et al. [25] | Case report India | 1 M | 34 | BLT | Donor was blood group- and size-matched to patient Deceased donor | Discharged on POD 15 Recovering and was undergoing rigorous therapy at POD 250 |
Schwarz et al. [26] | Retrospective cohort analysis Austria | 40 9 F 31 M (22.5%/77.5%) | SSC Group (n = 15): 57 (42–61) Non-SSC Group (n = 25): 54 (44.5–56) | SSC Group: 7 ddBLT 7 size reduction 1 lobar LT Non-SSC Group: 19 ddBLT 2 size reduction 4 lobar LT | Median age: 50 years Deceased donors | One-year survival rate: 90% (non-SSC group); 47% (SSC); eight deaths (five due to SSC) |
Shah et al. [27] | Retrospective case series India | 23 3 F 20 M (13%/87%) | 42 (34–58) | BLT | NA | Died due to the following: Sepsis: eight Neurologic CVA: one CMV infection: one |
Shimizu et al. [28] | Case report Japan | 1 F | 57 | ldLT | Right lower lobe from son Left lobe from husband | Recovered and was transferred to a rehabilitation hospital on POD 131 |
Franco-Palacios et al. [29] | Case series USA | 5 2F 3M (40%/60%) | 37 (33–54) | BLT | Deceased brain death donors | Died due to septic shock: one No clinically significant acute allograft rejection: four |
Okumura et al. [31] | Retrospective cohort study USA | COVID-19 cohort: 268 (26%/74%) Non-COVID-19 cohort: 268 (24%/76%) | COVID-19 cohort: 53.0 (44.0–59.0) Non-COVID-19 cohort: 55.0 (44.0–61.0) | LT Single LT: COVID-19 cohort: 9 Non-COVID-19 cohort: 26 BLT: COVID-19 cohort: 239 Non-COVID-19 cohort: 242 | Donors’ median age: in the COVID-19 cohort: 33 years Non-COVID-19 cohort: 34 years Deceased donors | [COVID-19 vs. non-COVID-19 cohort, p-value] No difference between both cohorts regarding primary graft failure [0 (0%) vs. 1 (0.4%), 0.99], 30-day [7 (2.6%) vs. 9 (3.4%), 0.61], 90-day [9 (3.4%) vs. 15 (5.6%), 0.21], 1-year [22 (8.2%) vs. 26 (9.7%), 0.55], COVID-19-related [2 (0.7%) vs. 0 (0%), 0.50], and overall patient deaths [22 (8.2%) vs. 34 (13%), 0.09] |
Reis et al. [32] | Cohort study Brazil | 3 1 F 2 M | P1: 46 (M) P2: 34 (F) P3: 31 (M) | BLT | Donors: M (19, 34, 21 years, respectively) Deceased donors | P1 and P2 died due to fungal sepsis POD on 47 and 52, respectively P3 was discharged at POD 30 |
Roda et al. [34] | Case report Italy | 1 M | 63 | BLT | NA | Died in 06/2021, after another septic episode |
Hall et al. [35] | Case study USA | 1 F | 52 | BLT | NA | Quickly improved and discharged on POD 14 |
Haslbauer et al. [36] | Case report Austria | 1 M | 62 | BLT | NA | Intensive rehabilitative program Discharged two months post-Tx |
Herrmann et al. [37] | Case report USA | 1 F | 28 | BLT | NA | Successful Tx Discharged on POD 21 |
Javaid et al. [38] | Retrospective case series USA | 2 F 4 M (33%/66%) | 55 | BLT | 36 years | |
P1 M | 69 | P1: 39F Deceased donor | ||||
P2 M | 63 | P2: 40F Deceased donor | ||||
P3 F | 47 | P3: 49M Deceased donor | ||||
P4 M | 58 | P4: 28F Deceased donor | ||||
P5 M | 32 | P5: 22M Deceased donor | ||||
P6 F | 62 | P6: 37F Deceased donor | ||||
Kehara et al. [39] | Retrospective case series USA | 20 3 F 17 M (15%/85%) | Mean: 58 ± 12 62 (31–77) | Double LT (1 was REDO): 7 RLT (1 was w/CABG) *: 8 LLT (1 was w/CABG) *: 5 | Age: 38± 14 years 38 (14–61) years 3 donors w/diabetes 1 smoker | Death due to COVID-19-related myocarditis on POD 195: 1/20 COVID-19 recurrence after LT on POD 149, 257, and 326, alive: 3/20 Improvement in native lung: 5/13 single LT |
Koch et al. [41] | Case report Germany | 1 M | 31 | BLT | Age: 28 years M with ICH Deceased donor | Successful lung BLT Discharged 96 days after surgery |
Lang et al. [42] | Retrospective analysis Austria | 19 (16%/84%) | 56 (34–64) | BLT | NA | Died post-Tx (fully functional grafts): five P1, 2, and 3: Died PODs 65, 66, and 154 due to liver failure P 4: Died POD 111 due to recurrent infections P 5: Died POD 147 after being discharged (spontaneous ICH) Early post-operative outcome was worse in patients who developed ARDS due to COVID-19 |
Mortazavi et al. [43] | Case series USA | 20 (40%/60%) | 39 (24–66) | BOLT | NA | Three died on POD 13, 19, and 305 Overall, 17/20 were alive up to POD 495 despite COVID-19-related complications prior to OT |
Ohsumi et al. [44] | Case report Japan | 1 F | 57 | ldLLT | Right lower lobe: Patient’s son Left lower lobe: Patient’s husband | Four months post-Tx: no complications noted |
Umemura et al. [45] | Case report Japan | 1 F | 50 | ldLLT | NA | POD 117, patient was CMV-positive and was transferred to rehabilitation on POD 131 |
Uhl et al. [46] | Case series USA | 12 NA | NA | LT | NA | NA |
Magnusson et al. [48] | Case report Sweden | 1 M | 55 | BLT | NA | Successful BLT No signs of infection or Tx rejection Discharged on POD 34 |
Author | Study Type/ Country | N (Total) Gender (F%/M%) | Age Mean ± SE/ Median (IQR) (Years) | Type of Organ Transplant | Information About the Donor | Outcome |
---|---|---|---|---|---|---|
Sambommatsue et al. [21] | Retrospective case series USA | 7 1 F 6 M (14.3%/85.7%) | 61 | Whole LvT: 3 Right lobe LvT: 4 | Four living donors Three deceased donors | One died due to respiratory failure 5mo post-op Six recovering well (patient with longest f/u 18 mos) Patient and graft survival rate at a median f/u of 11 mos is 86% |
Durazo et al. [23] | Case report USA | 1 M | 47 | OLvT (whole) | Deceased donor | Discharged on POD 55 Normal allograft function 7 mos after Tx |
Rela et al. [33] | Case study India | 1 M | 50 | Right lobe APOLvT | Living donor: Daughter | Discharged on POD 9 Recovering well with good graft function at 6 mos |
Kiyak et al. [40] | Case report Turkey | 1 M | 35 | ldLvT | Living donor | All LFTs were normal within 3 mos of Tx |
Lee et al. [47] | Case report USA | 1 M | 64 | LvT | Deceased donor | Discharged on POD 4. No complications at 8 mos f/u |
Cooper et al. [49] | Retrospective case series Israel | 2 M | ||||
P1 | 3 mo | Live left lateral LvT | Father | Recovered well | ||
P2 | 5 mo | Live left lateral LvT | Mother | Recovered well |
Author | Study Type/ Country | N (Total) Gender (F%/M%) | Age Mean ± SE/ Median (IQR) (Years) | Type of Organ Transplant | Information About the Donor | Outcome |
---|---|---|---|---|---|---|
Rossi-Neto et al. [18] | Prospective cohort study Brazil | 45 | HT | |||
COVID-19 group: 4 (25%/75%) | COVID-19 group: 46.1 ± 15.7 | HT | NA | COVID-19 group: 0/3 deaths in patients after HT | ||
Non-COVID-19 group: 41 (31.7%/68.3%) | Non-COVID-19 group: 38.2 ± 9.1 | HT | NA | Non-COVID-19 group: 2/15 deaths in patients after HT | ||
Gaudriot et al. [30] | Case report France | 1 M | 38 | HT | NA | Recovered well |
Author | Study Type/ Country | N (Total) Gender (F%/M%) | Age Mean ± SE/ Median (IQR) (Years) | Type of Organ Transplant | Information About the Donor | Outcome |
---|---|---|---|---|---|---|
Akbulut et al. [50] | Observational retrospective study Case series Turkey | 35 (34.3%/65.7%) | 50 (95% CI 43–54) | LvT Liver graft type: Right: 27 Left: 4 Left lateral: 4 | Living donor: 3 Deceased donor: 2 | Post-Tx rejection: four at a median 25 days after LvT Dead: five within median 23 days after LvT Post-op f/u: median 574 days (95% CI 454–637) Exposure to, and infection with, COVID-19 before liver transplant does not affect the patients post-transplant or graft survival |
Antal et al. [51] | Case report Romania | 1 M | 47 | KT | Cadaver donor | Discharged on POD 28 |
Singh et al. [52] | Case report USA | 1 F | 66 | Simultaneous PT and KT | NA | Discharged on POD 5 Asymptomatic at 2 months f/u |
Sherwood et al. [53] | Case report Canada | 1 M | 30 | ldKT | Living | Discharged on POD 7 Symptoms fully resolved by POD 30 |
Kute et al. [54] | Retrospective cohort study India | 38 32 F 6 M | 38.5 (31.25–47.5) | KT | All donors were living females | One death at 6 months post-op due to fungal pyelonephritis Acute rejection: 13.1% Graft loss: 2.6% |
Kute et al. [55] | Retrospective cohort study India | 75 8 F 67 M | 39.4 ± 12, 40 (7–62) | KT | 52 F/23M Age: 47 ± 10, 47 (29–72) | Patient and graft survival: 100% F/U duration: 91 ± 47, 81 (56–117) days |
Jacob et al. [56] | Case report Australia | 1 F | 39 | LvT | Deceased donor | Discharged on POD 14 Recovered by POD 30 |
Okubo et al. [57] | Case report USA | 1 M | 65 | OLvT | NA | Discharged with home health services Last f/u on POD 30. COVID-19 PCR -ve. |
Juric et al. [58] | Retrospective case series Croatia | 9 5 M 4 F | 40.8 (18–71) | KT | Eight deceased donors | NA |
Author | Study Type/ Country | N (Total) Gender (F%/M%) | Age Mean ± SE/ Median (IQR) (Years) | Type of Organ Transplant | Information About the Donor | Outcome |
---|---|---|---|---|---|---|
Sanchez-Vivaldi et al. [59] | Retrospective case series USA | 9 5 F 4 M (55.6%/44.4%) | 45.0 (32.0–54.0) | KT | 13 SARS-CoV-2 deceased donors 28.6% F 71.4% M | No complications Median hospital stay of 4 days All recipients had satisfactory allograft function (median creatinine of 1.51 mg/dL) at 30-day follow-up |
Nguyen et al. [60] | Case report USA | 1 M | 24 | Right Lobe LvT | Live donor | Excellent post-op outcome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, S.; Sarkar, A.; AlMahmoud, L.; Alladaboina, S.; Syed, L.F.; Yaghmour, M.; Elmoh, S.; AlShebani, M.; Aly, K.; Al-Ansari, H.; et al. Solid Organ Transplants Caused by COVID-19 Infection and the Outcome of Transplantation Post-COVID-19: A Systematic Review. Biomedicines 2025, 13, 428. https://doi.org/10.3390/biomedicines13020428
Mahmoud S, Sarkar A, AlMahmoud L, Alladaboina S, Syed LF, Yaghmour M, Elmoh S, AlShebani M, Aly K, Al-Ansari H, et al. Solid Organ Transplants Caused by COVID-19 Infection and the Outcome of Transplantation Post-COVID-19: A Systematic Review. Biomedicines. 2025; 13(2):428. https://doi.org/10.3390/biomedicines13020428
Chicago/Turabian StyleMahmoud, Shadi, Aparajita Sarkar, Latifa AlMahmoud, Sushanth Alladaboina, Leena F. Syed, Mohammad Yaghmour, Safaa Elmoh, Meera AlShebani, Kareem Aly, Haya Al-Ansari, and et al. 2025. "Solid Organ Transplants Caused by COVID-19 Infection and the Outcome of Transplantation Post-COVID-19: A Systematic Review" Biomedicines 13, no. 2: 428. https://doi.org/10.3390/biomedicines13020428
APA StyleMahmoud, S., Sarkar, A., AlMahmoud, L., Alladaboina, S., Syed, L. F., Yaghmour, M., Elmoh, S., AlShebani, M., Aly, K., Al-Ansari, H., Al-Mohamedi, M., Yagan, L., & Zakaria, D. (2025). Solid Organ Transplants Caused by COVID-19 Infection and the Outcome of Transplantation Post-COVID-19: A Systematic Review. Biomedicines, 13(2), 428. https://doi.org/10.3390/biomedicines13020428