Assessment of CRB1-Associated Retinopathies Using the S-MAIA Fast Protocol and Spectral-Domain Optical Coherence Tomography
Abstract
:1. Introduction
2. Methods
2.1. Participant Recruitment and Genetic Testing
2.2. Phenotype Classification
2.3. Clinical Assessment
2.4. Eccentric Fixation
2.5. Imaging Assessment
2.6. Data Quality Control
2.7. Statistical Analysis
3. Results
3.1. Data Screening and Participant Compliance
3.2. Demographic and Clinical Characteristics
3.3. S-MAIA Analyses
3.4. Eccentric Fixation
3.5. OCT Analyses
3.5.1. Qualitative Analyses
3.5.2. Foveal Thickness and Retinal Volume Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. To Calculate Actual Test Time
Appendix A.2. To Calculate Timecr
Appendix A.3. To Calculate Timewr
Appendix A.4. To Calculate Rate of False Positives
References
- Ehrenberg, M.; Pierce, E.A.; Cox, G.F.; Fulton, A.B. CRB1: One Gene, Many Phenotypes. Semin. Ophthalmol. 2013, 28, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.T.A.; Talib, M.; van Schooneveld, M.J.; Wijnholds, J.; van Genderen, M.M.; Schalij-Delfos, N.E.; Klaver, C.C.W.; Talsma, H.E.; Fiocco, M.; Florijn, R.J.; et al. CRB1-Associated Retinal Dystrophies: A Prospective Natural History Study in Anticipation of Future Clinical Trials. Am. J. Ophthalmol. 2022, 234, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.G.; Cideciyan, A.V.; Aleman, T.S.; Pianta, M.J.; Sumaroka, A.; Schwartz, S.B.; Smilko, E.E.; Milam, A.H.; Sheffield, V.C.; Stone, E.M. Crumbs Homolog 1 (CRB1) Mutations Result in a Thick Human Retina with Abnormal Lamination. Hum. Mol. Genet. 2003, 12, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.N.; Robson, A.; Mahroo, O.A.R.; Arno, G.; Inglehearn, C.F.; Armengol, M.; Waseem, N.; Holder, G.E.; Carss, K.J.; Raymond, L.F.; et al. A Clinical and Molecular Characterisation of CRB1-Associated Maculopathy. Eur. J. Hum. Genet. 2018, 26, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Jolly, J.K.; Bridge, H.; MacLaren, R.E. Outcome Measures Used in Ocular Gene Therapy Trials: A Scoping Review of Current Practice. Front. Pharmacol. 2019, 10, 445243. [Google Scholar] [CrossRef]
- Csaky, K.G.; Richman, E.A.; Ferris, F.L. Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium. Investig. Ophthalmol. Vis. Sci. 2008, 49, 479–489. [Google Scholar] [CrossRef]
- Wood, L.J.; Jolly, J.K.; Josan, A.S.; Buckley, T.M.W.; Maclaren, R.E. Low Luminance Visual Acuity and Low Luminance Deficit in Choroideremia and RPGR-Associated Retinitis Pigmentosa. Transl. Vis. Sci. Technol. 2021, 10, 28. [Google Scholar] [CrossRef]
- Jolly, J.K.; Nanda, A.; Buckley, T.M.W.; Pfau, M.; Bridge, H.; Maclaren, R.E. Assessment of Scotopic Function in Rod–Cone Inherited Retinal Degeneration With the Scotopic Macular Integrity Assessment. Transl. Vis. Sci. Technol. 2023, 12, 10. [Google Scholar] [CrossRef]
- Dimopoulos, I.S.; Tseng, C.; Macdonald, I.M. Microperimetry as an Outcome Measure in Choroideremia Trials: Reproducibility and Beyond. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4151–4161. [Google Scholar] [CrossRef]
- Montesano, G.; Naska, T.K.; Higgins, B.E.; Wright, D.M.; Hogg, R.E.; Crabb, D.P. Determinants of Test Variability in Scotopic Microperimetry: Effects of Dark Adaptation and Test Indices. Transl. Vis. Sci. Technol. 2021, 10, 26. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, A.C.; Higgins, B.E.; Tailor-Hamblin, V.; Malka, S.; Cheloni, R.; Collins, A.M.; Bladen, J.; Henderson, R.; Moosajee, M. Foveal Hypoplasia in CRB1-Related Retinopathies. Int. J. Mol. Sci. 2023, 24, 13932. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Hayward, J.D.; Tailor, V.; Nyanhete, R.; Ahlfors, H.; Gabriel, C.; Jannini, T.B.; Abbou-Rayyah, Y.; Henderson, R.; Nischal, K.K.; et al. The Oculome Panel Test: Next-Generation Sequencing to Diagnose a Diverse Range of Genetic Developmental Eye Disorders. Ophthalmology 2019, 126, 888–907. [Google Scholar] [CrossRef]
- Crossland, M.D.; Dunbar, H.M.P.; Rubin, G.S. Fixation Stability Measurement Using the MP1 Microperimeter. Retina 2009, 29, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dunbar, H. Clinical Perspectives and Trends: Microperimetry as a Trial Endpoint in Retinal Disease. Ophthalmologica 2021, 244, 418–450. [Google Scholar] [CrossRef] [PubMed]
- Crossland, M.D.; Engel, S.A.; Legge, G.E. The Preferred Retinal Locus in Macular Disease: Toward a Consensus Definition. Retina 2011, 31, 2109–2114. [Google Scholar] [CrossRef]
- Chan, A.; Duker, J.S.; Ko, T.H.; Fujimoto, J.G.; Schuman, J.S. Normal Macular Thickness Measurements in Healthy Eyes Using Stratus Optical Coherence Tomography. Arch. Ophthalmol. 2006, 124, 193–198. [Google Scholar] [CrossRef]
- Daich Varela, M.; Georgiou, M.; Alswaiti, Y.; Kabbani, J.; Fujinami, K.; Fujinami-Yokokawa, Y.; Khoda, S.; Mahroo, O.A.; Robson, A.G.; Webster, A.R.; et al. CRB1-Associated Retinal Dystrophies: Genetics, Clinical Characteristics, and Natural History. Am. J. Ophthalmol. 2023, 246, 107–121. [Google Scholar] [CrossRef]
- Talib, M.; Van Cauwenbergh, C.; De Zaeytijd, J.; Van Wynsberghe, D.; De Baere, E.; Boon, C.J.F.; Leroy, B.P. CRB1-Associated Retinal Dystrophies in a Belgian Cohort: Genetic Characteristics and Long-Term Clinical Follow-Up. Br. J. Ophthalmol. 2022, 106, 696–704. [Google Scholar] [CrossRef]
- Murthy, R.K.; Diaz, M.; Chalam, K.V.; Grover, S. Normative Data for Macular Volume with High-Definition Spectral-Domain Optical Coherence Tomography (Spectralis). Eur. J. Ophthalmol. 2015, 25, 546–551. [Google Scholar] [CrossRef]
- Grover, S.; Murthy, R.K.; Brar, V.S.; Chalam, K.V. Normative Data for Macular Thickness by High-Definition Spectral-Domain Optical Coherence Tomography (Spectralis). Am. J. Ophthalmol. 2009, 148, 266–271. [Google Scholar] [CrossRef]
- Morales, M.U.; Saker, S.; Wilde, C.; Pellizzari, C.; Pallikaris, A.; Notaroberto, N.; Rubinstein, M.; Rui, C.; Limoli, P.; Smolek, M.K.; et al. Reference Clinical Database for Fixation Stability Metrics in Normal Subjects Measured with the MAIA Microperimeter. Transl. Vis. Sci. Technol. 2016, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Buckley, T.M.W.; Jolly, J.K.; Menghini, M.; Wood, L.J.; Nanda, A.; MacLaren, R.E. Test-Retest Repeatability of Microperimetry in Patients with Retinitis Pigmentosa Caused by Mutations in RPGR. Clin. Exp. Ophthalmol. 2020, 48, 714–715. [Google Scholar] [CrossRef] [PubMed]
- Roshandel, D.; Thompson, J.A.; Heath Jeffery, R.C.; Sampson, D.M.; Chelva, E.; Mc Laren, T.L.; Lamey, T.M.; De Roach, J.N.; Durkin, S.R.; Chen, F.K. Multimodal Retinal Imaging and Microperimetry Reveal a Novel Phenotype and Potential Trial End Points in CRB1-Associated Retinopathies. Transl. Vis. Sci. Technol. 2021, 10, 38. [Google Scholar] [CrossRef]
- Falkenberg, H.K.; Rubin, G.S.; Bex, P.J. Acuity, Crowding, Reading and Fixation Stability. Vis. Res. 2007, 47, 126–135. [Google Scholar] [CrossRef]
- Russell, R.A.; Garway-Heath, D.F.; Crabb, D.P. New Insights into Measurement Variability in Glaucomatous Visual Fields from Computer Modelling. PLoS ONE 2013, 8, 83595. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.R.; Yasoubi, N.; Nardini, M.; Rubin, G.S. Feasibility of Macular Integrity Assessment (MAIA) Microperimetry in Children: Sensitivity, Reliability, and Fixation Stability in Healthy Observers. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6349–6359. [Google Scholar] [CrossRef]
- Aleman, T.S.; Cideciyan, A.V.; Aguirre, G.K.; Huang, W.C.; Mullins, C.L.; Roman, A.J.; Sumaroka, A.; Olivares, M.B.; Tsai, F.F.; Schwartz, S.B.; et al. Human CRB1-Associated Retinal Degeneration: Comparison with the Rd8 Crb1-Mutant Mouse Model. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6898–6910. [Google Scholar] [CrossRef]
- Simonelli, F.; Ziviello, C.; Testa, F.; Rossi, S.; Fazzi, E.; Bianchi, P.E.; Fossarello, M.; Signorini, S.; Bertone, C.; Galantuomo, S.; et al. Clinical and Molecular Genetics of Leber’s Congenital Amaurosis: A Multicenter Study of Italian Patients. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4284–4290. [Google Scholar] [CrossRef]
- McKay, G.J.; Clarke, S.; Davis, J.A.; Simpson, D.A.C.; Silvestri, G. Pigmented Paravenous Chorioretinal Atrophy Is Associated with a Mutation within the Crumbs Homolog 1 (CRB1) Gene. Investig. Ophthalmol. Vis. Sci. 2005, 46, 322–328. [Google Scholar] [CrossRef]
- Dumville, J.C.; Torgerson, D.J.; Hewitt, C.E. Research Methods: Reporting Attrition in Randomised Controlled Trials. BMJ Br. Med. J. 2006, 332, 969. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Swider, M.; Aleman, T.S.; Feuer, W.J.; Schwartz, S.B.; Russell, R.C.; Steinberg, J.D.; Stone, E.M.; Jacobson, S.G. Macular Function in Macular Degenerations: Repeatability of Microperimetry as a Potential Outcome Measure for ABCA4-Associated Retinopathy Trials. Investig. Ophthalmol. Vis. Sci. 2012, 53, 841–852. [Google Scholar] [CrossRef]
ID | Gender | Ethnicity | Age (Years) | Family Number | Phenotype | Age of Onset (Years) | Zygosity | Variant 1 cDNA Variant 1 Protein | Variant 1 cDNA Variant 1 Protein | BCVA (logMAR) | Reliable Data from SD-OCT | Reliable Data from S-MAIA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
001 | F | Black | 29 | 45590 | MD | 10 | Homozygous | c.2506C>A p.Pro836Thr | 0.32 | Y | Y | |
002 | F | White | 17 | 46120 | EOSRD/LCA | 4 | Compound Heterozygous | c.455G>A p.Cys152Tyr | c.3014A>T p.Asp1005Val | 0.5 | Y | Y |
003 | M | White | 39 | 35083 | MD | 30 | Compound Heterozygous | c.498_506del p.Ile167_Gly169del | c.4142C>G p.Pro1381Arg | 0.64 | Y | Y |
004 | F | White | 48 | 43560 | MD | 30 | Compound Heterozygous | c.1696G>T p.Glu556Ter | c.498_506del p.IIe167_Gly169del | 0.16 | Y | Y |
005 | M | White | 47 | 38236 | MD | 24 | Compound Heterozygous | c.498_506del p.Ile167_Gly169del | c.584G>T p.Cys195Phe | 1.2 | Y | Y |
006 | M | White | 24 | 38229 | EOSRD/LCA | 6 | Compound Heterozygous | c.2129A>T p.Glu710Val | c.3988del p.Glu1330Serfs*11 | 0.46 | Y | N |
007 | F | Asian | 13 | Z88904 | CORD | 5 | Compound Heterozygous | c.498_506del p.Ile167_Gly169del | c.4005+1G>A | 0.36 | Y | Y |
008 | M | White | 15 | - | MD | 12 | Compound Heterozygous | c.498_506del p.Ile167_Gly169del | c.1576C>T p.Arg525* | 0.5 | Y | Y |
009 | M | White | 52 | 42270 | MD | 40 | Compound Heterozygous | c.2401A>T p.Lys801* | c.498_506del p.Ile167_Gly169del | 0.32 | Y | Y |
010 | F | White | 16 | 31953 | EOSRD/LCA | <1 | Compound Heterozygous | c.2548G>A p.Gly850Ser | c.4006-10A>G | 0.32 | Y | Y |
011 | M | White | 17 | 37161 | MD | 8 | Compound Heterozygous | c.498_506del p.Ile167_Gly169del | c.2308G>T p.Gly770Cys | 0.02 | Y | N |
012 | M | White | 10 | 46830 | EOSRD/LCA | 2 | Compound Heterozygous | c.2843G>A p.Cys948Tyr | c.1712A>C p.Glu571Ala | 0.56 | Y | Y |
013 | F | White | 11 | 44092 | MD | 4 | Compound Heterozygous | c.498_506del p.lle167_Gly169del | c.2843G>A p.Cys948Tyr | 0.32 | Y | Y |
014 | M | White | 40 | 32038 | CORD | 20 | Compound Heterozygous | c.498_506del p.IIe167_Gly169del | c.1431delG | 1.4 | Y | Y |
015 | M | White | 29 | 33707 | MD | 18 | Compound Heterozygous | c.498_506del p.IIe167_Gly169del | c.3827_3828del p.Glu1276Valfs*4 | 0.32 | Y | Y |
016 | M | White | 18 | 47941 | EOSRD/LCA | 5 | Homozygous | c.2291G>A p.Arg764His | 0.26 | Y | Y | |
017 | M | White | 33 | 21819 | CORD | 6 | Compound Heterozygous | c.470G>C p.C157Sp.Cys157Ser | c.2506C>A p.Pro836Thr | 0.88 | Y | N |
018 | F | White | 34 | 35229 | MD | 25 | Compound Heterozygous | c.2290C>T p.Arg764Cys | c.498_506del p.Ile167_Gly169del | 0.86 | Y | N |
MD (n = 8) | CORD (n = 2) | EOSRD/LCA (n = 4) | Whole Cohort (n = 14) | ||
---|---|---|---|---|---|
Median (IQR) | |||||
Fixation Losses | 0 (0,0) | 0 (0,0) | 0 (0,3.25) | 0 (0,0) | |
BCEA 95% (deg2) | 1.6 (0.8,3.43) | 14.35 (8.03,20.68) | 4.25 (3,5.15) | 2.15 (1.43,5.45) | |
Average Reaction Time * (ms) | 660.79 (601.5,754.75) | 699.39 (680.09,718.7) | 715.39 (632.84,795.25) | 660.79 (656.39,755) | |
Duration (s) | 168 (161,173) | 210.50 (193.25,227.75) | 170 (163.75,188,75) | 172.5 (163.25,176) | |
Rate of FP (%) | 0 (0,2) | 0 (0,0) | 0 (0,2.3) | 0 (0,0) | |
Fixation Eccentricity (deg) | 0.71 (0.32,3.18) | 1.10 (0.79,1.42) | 0.62 (0.43,1.06) | 0.70 (0.37,1.97) | |
No. of Loci | Abnormal (<25 dB) | 33 (25.75,35.5) | 36 (34.75,36.25) | 34 (29.75,37) | 34 (29.25,37) |
Suspect (≥25 dB, <27 dB) | 3 (0.75,7.5) | 1 (0.25,0.75) | 1 (0,2.25) | 1 (0,5.25) | |
Normal (≥27 dB) | 2 (0,3.25) | 1 (0.5,1.5) | 1 (0,3) | 2 (0,2.75) |
MD (n = 10) | CORD (n = 3) | EOSRD/LCA (n = 5) | Whole Cohort (n = 18) | |||
---|---|---|---|---|---|---|
Retina Lamination | Grade 1 | 3 | 0 | 1 | 4 | |
Grade 2 | 7 | 2 | 0 | 9 | ||
Grade 3 | 0 | 1 | 4 | 5 | ||
CMO Presence | 3 | 1 | 1 | 5 |
MD (n = 7) | CORD (n = 2) | EOSRD (n = 4) | Whole Cohort (n = 13) | Normative Reference | |
---|---|---|---|---|---|
Mean (SD) | |||||
Foveal Thickness (µm) | 191.71 (±51.44) | 136.50 (±27.58) | 214.25 (±36.65) | 190.15 (±48.96) | 275.16 (24.197) |
Foveal Volume (mm3) | 0.15 (±0.04) | 0.13 (±0.01) | 0.17 (±0.02) | 0.15 (±0.04) | 0.21 (±0.02) |
Superior Volume (mm3) | 0.46 (±0.05) | 0.47 (±0.07) | 0.53 (±0.05) | 0.48 (±0.06) | 0.26 (±0.02) |
Nasal Volume (mm3) | 0.47 (±0.07) | 0.49 (±0.02) | 0.54 (±0.06) | 0.49 (±0.06) | 0.26 (±0.02) |
Inferior Volume (mm3) | 0.44 (±0.05) | 0.47 (±0.10) | 0.54 (±0.03) | 0.48 (±0.06) | 0.26 (±0.01) |
Temporal Volume (mm3) | 0.41 (±0.04) | 0.40 (±0.11) | 0.50 (±0.02) | 0.43 (±0.06) | 0.25 (±0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higgins, B.E.; Rodriguez-Martinez, A.C.; Montesano, G.; Tailor-Hamblin, V.K.; Malka, S.; Henderson, R.H.; Moosajee, M. Assessment of CRB1-Associated Retinopathies Using the S-MAIA Fast Protocol and Spectral-Domain Optical Coherence Tomography. Biomedicines 2025, 13, 555. https://doi.org/10.3390/biomedicines13030555
Higgins BE, Rodriguez-Martinez AC, Montesano G, Tailor-Hamblin VK, Malka S, Henderson RH, Moosajee M. Assessment of CRB1-Associated Retinopathies Using the S-MAIA Fast Protocol and Spectral-Domain Optical Coherence Tomography. Biomedicines. 2025; 13(3):555. https://doi.org/10.3390/biomedicines13030555
Chicago/Turabian StyleHiggins, Bethany E., Ana Catalina Rodriguez-Martinez, Giovanni Montesano, Vijay K. Tailor-Hamblin, Samantha Malka, Robert H. Henderson, and Mariya Moosajee. 2025. "Assessment of CRB1-Associated Retinopathies Using the S-MAIA Fast Protocol and Spectral-Domain Optical Coherence Tomography" Biomedicines 13, no. 3: 555. https://doi.org/10.3390/biomedicines13030555
APA StyleHiggins, B. E., Rodriguez-Martinez, A. C., Montesano, G., Tailor-Hamblin, V. K., Malka, S., Henderson, R. H., & Moosajee, M. (2025). Assessment of CRB1-Associated Retinopathies Using the S-MAIA Fast Protocol and Spectral-Domain Optical Coherence Tomography. Biomedicines, 13(3), 555. https://doi.org/10.3390/biomedicines13030555