Correlation Analysis of Macular Function and Peripapillary Retinal Nerve Fiber Layer Thickness Following Successful Rhegmatogenous Retinal Detachment Surgery
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Demographics
3.2. Differences Between Groups
3.3. Correlations Within the RRD Group Between Peripapillary OCT and Other Variables
3.4. Subgroups Analysis According to Macular Status Prior to Surgery
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AL | axial length |
AMD | age-related macular degeneration |
BCEA | bivariate contour ellipse |
BCVA | best corrected visual acuity |
C | central |
Cc | correlation coefficient |
dB | decibels |
DR | diabetic retinopathy |
DRI | deep-range imaging |
ERM | epiretinal membrane |
I | (being the second letter of the abbreviation) inner |
I | (being the first letter of the abbreviation) inferior |
IC | inferior central |
II | inferior inner |
IO | inferior outer |
IOP | intraocular pressure |
LE | left eye |
MAIA | macular integrity assessment |
MP | microperimetry |
N | nasal |
n | sample size |
NC | nasal central |
NI | nasal inner |
NO | nasal outer |
O | outer |
OCT | optical coherence tomography |
OCTA | optical coherence tomography angiography |
ON | optic nerve |
PPV | pars plana vitrectomy |
pRNFL | peripapillary retinal nerve fiber layer |
RE | left eye |
RNFL | retinal nerve fiber layer |
RPCP | radial peripapillary capillary plexus |
RRD | rhegmatogenous retinal detachment |
S | superior |
SB | scleral buckling |
SC | superior central |
SCP | superficial capillary plexus |
SD | standard deviation |
SF6 | sulfur-hexafluoride |
SI | superior inner |
Sig. | statistical significance |
SO | superior outer |
SS-OCT | swept-source–optical coherence tomography |
T | temporal |
TC | temporal central |
TI | temporal inner |
TO | temporal outer |
TR | total retina |
VD | vessel density |
VF | visual field |
References
- Li, J.Q.; Welchowski, T.; Schmid, M.; Holz, F.G.; Finger, R.P. Incidence of Rhegmatogenous Retinal Detachment in Europe—A Systematic Review and Meta-Analysis. Ophthalmologica 2019, 2, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhu, X.H. Advances in the treatment of rhegmatogenous retinal detachment. Int. J. Ophthalmol. 2019, 12, 660–667. [Google Scholar] [PubMed]
- Okuda, T.; Higashide, T.; Sugiyama, K. Metamorphopsia and outer retinal morphologic changes after successful vitrectomy surgery for macula-off rhegmatogenous retinal detachment. Retina 2018, 38, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Smretschnig, E.; Falkner-Radler, C.I.; Binder, S.; Spörl, J.; Ristl, R.; Glittenberg, C.; Krepler, K. Vision-related quality of life and visual function after retinal detachment surgery. Retina 2016, 36, 967–973. [Google Scholar] [CrossRef]
- Bonfiglio, V.; Ortisi, E.; Nebbioso, M.; Reibaldi, M.; Lupidi, M.; Russo, A.; Fallico, M.; Scollo, D.; Macchi, I.; Pizzo, A.; et al. Optical coherence tomography angiography evaluation of peripapillary microvascular changes after rhegmatogenous retinal detachment repair. Retina 2021, 41, 2540–2548. [Google Scholar] [CrossRef]
- Pinilla, I.; Ruiz-Moreno, J.M.; Cuenca, N. Correlación de la tomografía de coherencia óptica con la histología retiniana. Arch. Soc. Española Oftalmol. 2012, 87, 275–277. [Google Scholar] [CrossRef]
- Danese, C.; Lanzetta, P. Optical Coherence Tomography Findings in Rhegmatogenous Retinal Detachment: A Systematic Review. J. Clin. Med. 2022, 11, 5819. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Jin, X.; Zhang, Y.; Li, R.; Liu, T. Macular microcirculation changes after repair of rhegmatogenous retinal detachment assessed with optical coherence tomography angiography: A systematic review and meta-analysis. Front. Physiol. 2022, 13, 995353. [Google Scholar] [CrossRef]
- Bartolomé-Sesé, I.; Díaz-Barreda, M.D.; Orduna-Hospital, E.; Boned-Murillo, A.; Ascaso, F.J.; Pinilla, I. Long-Term Follow-Up of Macular Perfusion Evaluated by Optical Coherence Tomography Angiography after Rhegmatogenous Retinal Detachment Surgery. J. Clin. Med. 2022, 11, 6725. [Google Scholar] [CrossRef]
- Díaz-Barreda, M.D.; Bartolomé-Sesé, I.; Boned-Murillo, A.; Ferreras, A.; Orduna-Hospital, E.; Ascaso, F.J.; Pinilla, I. Microperimetry-Assessed Functional Alterations and OCT-Changes in Patients after Retinal Detachment Surgery Using Pars Plana Vitrectomy and SF6 Tamponade. Diagnostics 2021, 11, 1157. [Google Scholar] [CrossRef]
- Molina-Martin, A.; Perez-Cambrodi, R.J.; Pinero, D.P. Current Clinical Application of Microperimetry: A Review. Semin. Ophthalmol. 2018, 33, 620–628. [Google Scholar] [CrossRef]
- Hirooka, K.; Misaki, K.; Nitta, E.; Ukegawa, K.; Sato, S.; Tsujikawa, A. Comparison of Macular Integrity Assessment (MAIA), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula. PLoS ONE 2016, 11, e0151000. [Google Scholar] [CrossRef] [PubMed]
- Huz, J.I.; Xia, T.; Frohman, L.; Turbin, R.E.; Bhagat, N. Optic neuropathy after repair of rhegmatogenous retinal detachment. Eye 2019, 33, 514–515. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, R.; Sugiyama, T.; Ubuka, M.; Maeno, T. Autoregulation of Optic Nerve Head Blood Flow Induced by Elevated Intraocular Pressure during Vitreous Surgery. Curr. Eye Res. 2017, 42, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Takkar, B.; Azad, R.; Kamble, N. Retinal Nerve Fiber Layer Changes Following Primary Retinal Detachment Repair with Silicone Oil Tamponade and Subsequent Oil Removal. J. Ophthalmic Vis. Res. 2018, 13, 124–129. [Google Scholar] [CrossRef]
- Lai, W.W.; Leung, G.Y.; Chan, C.W.; Yeung, I.Y.L.; Wong, D. Simultaneous spectral domain OCT and fundus autofluorescence imaging of the macula and microperimetric correspondence after successful repair of rhegmatogenous retinal detachment. Br. J. Ophthalmol. 2010, 94, 311–318. [Google Scholar] [CrossRef]
- Noda, H.; Kimura, S.; Hosokawa, M.M.; Shiode, Y.; Doi, S.; Takahashi, K.; Matoba, R.; Kanzaki, Y.; Fujiwara, A.; Morizane, Y. Effect of rhegmatogenous retinal detachment on preoperative and postoperative retinal sensitivities. Sci. Rep. 2020, 10, 21497. [Google Scholar] [CrossRef]
- Borowicz, D.; Nowomiejska, K.; Nowakowska, D.; Brzozowska, A.; Toro, M.D.; Avitabile, T.; Jünemann, A.G.; Rejdak, R. Functional and morphological results of treatment of macula-on and macula-off rhegmatogenous retinal detachment with pars plana vitrectomy and sulfur hexafluoride gas tamponade. BMC Ophthalmol. 2019, 19, 118. [Google Scholar] [CrossRef]
- Lee, S.B.; Shin, Y.I.; Jo, Y.J.; Kim, J.-Y. Longitudinal changes in retinal nerve fiber layer thickness after vitrectomy for epiretinal membrane. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6607–6611. [Google Scholar] [CrossRef]
- Ohashi, H.; Kasuga, Y.; Hata, N.; Manabe, S.-I.; Takashima, Y.; Lee, S.; Yamakawa, R. Morphological changes in the optic disc after vitrectomy and fluid-air exchange. Graefes Arch. Clin. Exp. Ophthalmol. 2004, 242, 484–488. [Google Scholar] [CrossRef]
- Jansonius, N.M.; Schiefer, J.; Nevalainen, J.; Paetzold, J.; Schiefer, U. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye: Average course, variability, and influence of refraction, optic disc size and optic disc position. Exp. Eye Res. 2012, 105, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, A.R.; Iyer, P.G.; Flynn, H.W.; Yannuzzi, N.A. Retinal displacement following repair of rhegmatogenous retinal detachment. Oman J. Ophthalmol. 2023, 16, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.S.; Hsu, J.; Garg, S.J.; Sivalingam, A.; Vander, J.F.; Moster, M.; Maguire, J.I.; Regillo, C.D. Optic neuropathy after vitrectomy for retinal detachment: Clinical features and analysis of risk factors. Ophthalmology 2012, 119, 2364–2370. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S. Blood flow in the optic nerve head and factors that may influence it. Prog. Retin. Eye Res. 2001, 20, 595–624. [Google Scholar] [CrossRef]
- Huber, K.K.; Remky, A. Effect of retrobulbar versus subconjunctival anaesthesia on retrobulbar haemodynamics. Br. J. Ophthalmol. 2005, 89, 719–723. [Google Scholar] [CrossRef]
- Koutsandrea, C.; Kanakis, M.; Papaconstantinou, D.; Brouzas, D.; Ladas, I.; Petrou, P.; Georgalas, I. Scleral Buckling versus Vitrectomy for Retinal Detachment Repair: Comparison of Visual Fields and Nerve Fiber Layer Thickness. Ophthalmologica 2016, 235, 10–17. [Google Scholar] [CrossRef]
- Sverdlichenko, I.; Lim, M.; Popovic, M.M.; Pimentel, M.C.; Kertes, P.J.; Muni, R.H. Postoperative positioning regimens in adults who undergo retinal detachment repair: A systematic review. Surv. Ophthalmol. 2023, 68, 113–125. [Google Scholar] [CrossRef]
- Reumueller, A.; Wassermann, L.; Salas, M.; Karantonis, M.G.; Sacu, S.; Georgopoulos, M.; Drexler, W.; Pircher, M.; Pollreisz, A.; Schmidt-Erfurth, U. Morphologic and Functional Assessment of Photoreceptors After Macula-Off Retinal Detachment With Adaptive-Optics OCT and Microperimetry. Am. J. Ophthalmol. 2020, 214, 72–85. [Google Scholar] [CrossRef]
- Karacorlu, M.; Sayman Muslubas, I.; Hocaoglu, M.; Arf, S.; Ersoz, M.G. Correlation between morphological changes and functional outcomes of recent-onset macula-off rhegmatogenous retinal detachment: Prognostic factors in rhegmatogenous retinal detachment. Int. Ophthalmol. 2018, 38, 1275–1283. [Google Scholar] [CrossRef]
RRD GROUP | CONTROL GROUP | |||
---|---|---|---|---|
Eyes analyzed (n = 200) | 64 | 136 | ||
31 macula-ON | 33 macula-OFF | |||
Sex | Female | 21 (32.8%) | 40 (29.4%) | |
Male | 43 (67.2%) | 96 (70.6%) | ||
Studied eye | Right eye | 27 (42.2%) | 52 (38.3%) | |
Left eye | 37 (57.8%) | 84 (61.7%) | ||
Mean age (years) ± SD | 59 ± 11.19 (33–84) | 57 ± 10 (43–83) | ||
Axial length (mm) ± SD | 23.35 ± 2.27 (22.01–25.40) | 24.49 ± 2.79 (21.51–26.40) | ||
IOP (mmHg) ± SD | 15 ± 2.39 (9–21) | 13 ± 2.40 (9–19) | ||
BCVA (LogMAR) at the time of the examination | 0.25 ± 0.28 (1.0–0.0) | 0.06 ± 0.12 (1.0–0.0) | ||
Location of the tear | S | 40 (62.5%) | ||
T | 19 (29.7%) | |||
I | 0 (0%) | |||
N | 5 (7.8%) | |||
Time from the onset of symptoms to the first ophthalmological examination (patients) | 1 to 6 days | 51 (79.69%) | ||
7 to 14 days | 7 (10.94%) | |||
Over 15 days | 6 (9.37%) | |||
Medium (days) | 3.00 ± 5.96 (0–30) | |||
Mean time elapsed between the onset of symptoms and the patient undergoing surgery (days) | 8.00 ± 6.39 (1–35) |
BCVA | AL | Days from Surgery to Test | ||
---|---|---|---|---|
ON OCT TR S | Cc | −0.338 ** | −0.321 ** | −0.195 |
Sig. | 0.006 | 0.010 | 0.126 | |
ON OCT TR T | Cc | −0.130 | −0.173 | 0.005 |
Sig. | 0.306 | 0.172 | 0.969 | |
ON OCT TR I | Cc | −0.174 | −0.282 * | −0.124 |
Sig. | 0.169 | 0.024 | 0.334 | |
ON OCT TR N | Cc | −0.114 | −0.277 * | −0.058 |
Sig. | 0.368 | 0.027 | 0.652 | |
ON OCT TR total thickness | Cc | −0.247 * | −0.282 * | −0.123 |
Sig. | 0.049 | 0.024 | 0.337 | |
ON OCT pRNFL S | Cc | −0.272 * | −0.384 ** | −0.293 * |
Sig. | 0.030 | 0.002 | 0.020 | |
ON OCT pRNFL T | Cc | 0.003 | −0.178 | −0.076 |
Sig. | 0.981 | 0.158 | 0.552 | |
ON OCT pRNFL I | Cc | −0.070 | −0.311 * | −0.293 * |
Sig. | 0.585 | 0.012 | 0.020 | |
ON OCT pRNFL N | Cc | 0.100 | −0.315 * | −0.293 * |
Sig. | 0.432 | 0.011 | 0.020 | |
ON OCT pRNFL total thickness | Cc | −0.121 | −0.399 ** | −0.303 * |
Sig. | 0.342 | 0.001 | 0.016 |
ON OCT TR S Sector | ON OCT TR T Sector | ON OCT TR I Sector | ON OCT TR N Sector | ON OCT TR Total Thickness | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cc | Sig. | Cc | Sig. | Cc | Sig. | Cc | Sig. | Cc | Sig. | |
MP SO | −0.024 | 0.854 | 0.063 | 0.62 | −0.002 | 0.99 | −0.014 | 0.912 | 0.036 | 0.776 |
MP TO | 0.028 | 0.827 | 0.166 | 0.191 | 0.076 | 0.549 | 0.08 | 0.527 | 0.094 | 0.458 |
MP IO | 0.116 | 0.363 | 0.205 | 0.104 | 0.304 * | 0.015 | 0.263 * | 0.036 | 0.274 * | 0.029 |
MP NO | 0.014 | 0.915 | 0.136 | 0.283 | 0.197 | 0.118 | 0.161 | 0.204 | 0.172 | 0.174 |
MP SI | 0.112 | 0.377 | 0.15 | 0.236 | 0.152 | 0.23 | 0.104 | 0.413 | 0.172 | 0.174 |
MP TI | 0.05 | 0.695 | 0.186 | 0.14 | 0.095 | 0.454 | 0.066 | 0.606 | 0.125 | 0.324 |
MP II | 0.108 | 0.398 | 0.217 | 0.085 | 0.267 * | 0.033 | 0.19 | 0.133 | 0.251 * | 0.045 |
MP NI | 0.006 | 0.962 | 0.146 | 0.25 | 0.153 | 0.228 | 0.146 | 0.251 | 0.129 | 0.308 |
MP C | −0.161 | 0.204 | 0.035 | 0.785 | −0.114 | 0.371 | −0.046 | 0.716 | −0.075 | 0.558 |
MP CS | 0.146 | 0.248 | 0.204 | 0.106 | 0.215 | 0.089 | 0.185 | 0.142 | 0.204 | 0.106 |
MP CT | −0.055 | 0.666 | 0.032 | 0.802 | 0.039 | 0.763 | 0.086 | 0.5 | 0.031 | 0.806 |
MP CI | 0.136 | 0.282 | 0.185 | 0.143 | 0.17 | 0.178 | 0.158 | 0.214 | 0.203 | 0.109 |
MP CN | 0.109 | 0.392 | 0.188 | 0.137 | 0.127 | 0.319 | 0.193 | 0.126 | 0.183 | 0.147 |
MP C global | 0.104 | 0.413 | 0.206 | 0.103 | 0.168 | 0.184 | 0.153 | 0.229 | 0.182 | 0.151 |
Macular integrity | 0.012 | 0.923 | −0.157 | 0.214 | −0.150 | 0.238 | 0.021 | 0.868 | −0.104 | 0.413 |
Average threshold | 0.112 | 0.377 | 0.249 * | 0.048 | 0.224 | 0.075 | 0.203 | 0.107 | 0.235 | 0.062 |
Fixation stability P1 | 0.256 * | 0.041 | 0.174 | 0.17 | 0.215 | 0.088 | 0.121 | 0.341 | 0.221 | 0.08 |
Fixation stability P2 | 0.208 | 0.099 | 0.123 | 0.332 | 0.123 | 0.333 | 0.091 | 0.473 | 0.172 | 0.173 |
BCEA 63% area | −0.260 * | 0.038 | −0.171 | 0.178 | −0.204 | 0.105 | −0.124 | 0.328 | −0.221 | 0.079 |
BCEA 63% angle | −0.112 | 0.378 | −0.268 * | 0.033 | −0.135 | 0.287 | 0.027 | 0.834 | −0.161 | 0.204 |
BCEA 95% area | −0.254* | 0.043 | −0.157 | 0.215 | −0.189 | 0.135 | −0.121 | 0.34 | −0.211 | 0.095 |
BCEA 95% angle | −0.128 | 0.315 | −0.255 * | 0.042 | −0.122 | 0.335 | 0.022 | 0.866 | −0.160 | 0.205 |
Fixation losses | −0.002 | 0.985 | −0.043 | 0.734 | −0.040 | 0.754 | −0.067 | 0.599 | 0.02 | 0.877 |
ON OCT pRNFL S Sector | ON OCT pRNFL T Sector | ON OCT pRNFL I Sector | ON OCT pRNFL N Sector | ON OCT pRNFL Total Thickness | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cc | Sig. | Cc | Sig. | Cc | Sig. | Cc | Sig. | Cc | Sig. | |
MP SO | −0.127 | 0.317 | −0.140 | 0.268 | −0.073 | 0.564 | −0.107 | 0.401 | −0.177 | 0.162 |
MP TO | −0.152 | 0.231 | −0.148 | 0.242 | −0.048 | 0.706 | −0.065 | 0.611 | −0.172 | 0.174 |
MP IO | −0.021 | 0.868 | 0.03 | 0.814 | 0.253 * | 0.044 | −0.020 | 0.873 | 0.06 | 0.64 |
MP NO | −0.161 | 0.204 | −0.067 | 0.598 | 0.102 | 0.425 | −0.064 | 0.617 | −0.078 | 0.54 |
MP SI | 0 | 0.998 | −0.045 | 0.722 | 0.109 | 0.392 | −0.057 | 0.655 | −0.022 | 0.863 |
MP TI | −0.101 | 0.428 | −0.098 | 0.443 | −0.006 | 0.963 | −0.084 | 0.508 | −0.120 | 0.345 |
MP II | −0.043 | 0.735 | 0.125 | 0.325 | 0.228 | 0.07 | −0.030 | 0.816 | 0.057 | 0.657 |
MP NI | −0.160 | 0.208 | 0.077 | 0.545 | 0.061 | 0.631 | −0.134 | 0.29 | −0.083 | 0.515 |
MP C | −0.248 * | 0.048 | −0.282 * | 0.024 | −0.212 | 0.093 | −0.196 | 0.121 | −0.339 ** | 0.006 |
MP CS | −0.020 | 0.878 | −0.078 | 0.538 | 0.074 | 0.56 | −0.119 | 0.347 | −0.060 | 0.637 |
MP CT | −0.207 | 0.1 | −0.204 | 0.107 | −0.123 | 0.332 | −0.262 * | 0.036 | −0.263 * | 0.036 |
MP CI | −0.025 | 0.843 | 0.096 | 0.45 | 0.103 | 0.419 | −0.032 | 0.799 | 0.023 | 0.858 |
MP CN | −0.067 | 0.597 | 0.012 | 0.925 | 0.06 | 0.636 | −0.013 | 0.92 | −0.031 | 0.808 |
MP C global | −0.096 | 0.452 | −0.104 | 0.411 | 0.002 | 0.985 | −0.108 | 0.394 | −0.123 | 0.331 |
Macular integrity | 0.032 | 0.803 | −0.093 | 0.464 | −0.255 * | 0.042 | 0.035 | 0.781 | −0.041 | 0.746 |
Average threshold | −0.089 | 0.482 | −0.063 | 0.622 | 0.094 | 0.462 | −0.033 | 0.794 | −0.067 | 0.601 |
Fixation stability P1 | 0.248 * | 0.048 | 0.183 | 0.148 | 0.202 | 0.109 | 0.045 | 0.723 | 0.226 | 0.072 |
Fixation stability P2 | 0.15 | 0.238 | 0.16 | 0.207 | 0.138 | 0.275 | −0.006 | 0.96 | 0.152 | 0.23 |
BCEA 63% area | −0.227 | 0.072 | −0.188 | 0.137 | −0.182 | 0.149 | −0.024 | 0.85 | −0.210 | 0.097 |
BCEA 63% angle | −0.040 | 0.753 | −0.136 | 0.285 | −0.002 | 0.989 | −0.029 | 0.82 | −0.059 | 0.642 |
BCEA 95% area | −0.218 | 0.084 | −0.176 | 0.165 | −0.174 | 0.169 | −0.028 | 0.826 | −0.201 | 0.111 |
BCEA 95% angle | −0.052 | 0.681 | −0.144 | 0.257 | −0.008 | 0.947 | −0.052 | 0.685 | −0.078 | 0.539 |
Fixation losses | 0.125 | 0.327 | 0.14 | 0.269 | 0.05 | 0.697 | 0.106 | 0.404 | 0.092 | 0.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Barreda, M.D.; Boned-Murillo, A.; Bartolomé-Sesé, I.; Sopeña-Pinilla, M.; Orduna-Hospital, E.; Fernández-Espinosa, G.; Pinilla, I. Correlation Analysis of Macular Function and Peripapillary Retinal Nerve Fiber Layer Thickness Following Successful Rhegmatogenous Retinal Detachment Surgery. Biomedicines 2025, 13, 943. https://doi.org/10.3390/biomedicines13040943
Díaz-Barreda MD, Boned-Murillo A, Bartolomé-Sesé I, Sopeña-Pinilla M, Orduna-Hospital E, Fernández-Espinosa G, Pinilla I. Correlation Analysis of Macular Function and Peripapillary Retinal Nerve Fiber Layer Thickness Following Successful Rhegmatogenous Retinal Detachment Surgery. Biomedicines. 2025; 13(4):943. https://doi.org/10.3390/biomedicines13040943
Chicago/Turabian StyleDíaz-Barreda, María D., Ana Boned-Murillo, Isabel Bartolomé-Sesé, María Sopeña-Pinilla, Elvira Orduna-Hospital, Guisela Fernández-Espinosa, and Isabel Pinilla. 2025. "Correlation Analysis of Macular Function and Peripapillary Retinal Nerve Fiber Layer Thickness Following Successful Rhegmatogenous Retinal Detachment Surgery" Biomedicines 13, no. 4: 943. https://doi.org/10.3390/biomedicines13040943
APA StyleDíaz-Barreda, M. D., Boned-Murillo, A., Bartolomé-Sesé, I., Sopeña-Pinilla, M., Orduna-Hospital, E., Fernández-Espinosa, G., & Pinilla, I. (2025). Correlation Analysis of Macular Function and Peripapillary Retinal Nerve Fiber Layer Thickness Following Successful Rhegmatogenous Retinal Detachment Surgery. Biomedicines, 13(4), 943. https://doi.org/10.3390/biomedicines13040943