Clinical Outcome of Conversion Surgery for Stage IV Esophageal Cancer Following Chemoradiation
Abstract
:1. Introduction
2. Patients and Methods
2.1. Treatment
2.2. Statistics and Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thrift, A.P. Barrett’s Esophagus and Esophageal Adenocarcinoma: How Common Are They Really? Dig. Dis. Sci. 2018, 63, 1988–1996. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Toh, Y.; Ishihara, R.; Kono, K.; Matsubara, H.; Miyazaki, T.; Morita, M.; Murakami, K.; Muro, K.; Numasaki, H.; et al. Comprehensive registry of esophageal cancer in Japan, 2015. Esophagus 2023, 20, 1–28. [Google Scholar] [CrossRef]
- Seyedin, S.N.; Parekh, K.R.; Ginader, T.; Caster, J.M. The Role of Definitive Radiation and Surgery in Metastatic Esophageal Cancer: An NCDB Investigation. Ann. Thorac. Surg. 2021, 112, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Bleiberg, H.; Conroy, T.; Paillot, B.; Lacave, A.J.; Blijham, G.; Jacob, J.H.; Bedenne, L.; Namer, M.; DeBesi, P.; Gay, F.; et al. Randomised phase II study of cisplatin and 5-fluorouracil (5-FU) versus cisplatin alone in advanced squamous cell oesophageal cancer. Eur. J. Cancer 1997, 33, 1216–1220. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, S.; Kim, M.; Lee, J.; Park, Y.H.; Im, Y.H.; Park, S.H. Capecitabine in combination with either cisplatin or weekly paclitaxel as a first-line treatment for metastatic esophageal squamous cell carcinoma: A randomized phase II study. BMC Cancer 2015, 15, 693. [Google Scholar] [CrossRef]
- Moehler, M.; Maderer, A.; Thuss-Patience, P.C.; Brenner, B.; Meiler, J.; Ettrich, T.J.; Hofheinz, R.D.; Al-Batran, S.E.; Vogel, A.; Mueller, L.; et al. Cisplatin and 5-fluorouracil with or without epidermal growth factor receptor inhibition panitumumab for patients with non-resectable, advanced or metastatic oesophageal squamous cell cancer: A prospective, open-label, randomised phase III AIO/EORTC trial (POWER). Ann. Oncol. 2020, 31, 228–235. [Google Scholar]
- Sun, J.M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.P.; Li, Z.; Kim, S.B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef]
- Hartley-Blossom, Z.; Alam, M.; Stone, J.; Iannuccilli, J. Microwave Ablation in the Liver: An Update. Surg. Technol. Int. 2020, 37, 72–78. [Google Scholar]
- Lee, Y.K.; Lin, M.W.; Chen, K.C.; Huang, P.M.; Kuo, S.W.; Lee, J.M. A review of surgery for lung metastasis from colorectal cancer. Formos. J. Surg. 2023, 56, 80–83. [Google Scholar] [CrossRef]
- Herrera Kok, J.H.; Marano, L.; van den Berg, J.W.; Shetty, P.; Vashist, Y.; Lorenzon, L.; Rau, B.; van Hillegersberg, R.; de Manzoni, G.; Spallanzani, A.; et al. Current trends in the management of Gastro-oEsophageal cancers: Updates to the ESSO core curriculum (ESSO-ETC-UGI-WG initiative). Eur. J. Surg. Oncol. 2024, 50, 108387. [Google Scholar] [CrossRef]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Illerhaus, G.; Martens, U.M.; Stoehlmacher, J.; Schmalenberg, H.; Luley, K.B.; Prasnikar, N.; Egger, M.; et al. Effect of Neoadjuvant Chemotherapy Followed by Surgical Resection on Survival in Patients With Limited Metastatic Gastric or Gastroesophageal Junction Cancer The AIO-FLOT3 Trial. JAMA Oncol. 2017, 3, 1237–1244. [Google Scholar] [CrossRef]
- Kinoshita, J.; Yamaguchi, T.; Moriyama, H.; Fushida, S. Current status of conversion surgery for stage IV gastric cancer. Surg. Today 2021, 51, 1736–1754. [Google Scholar] [CrossRef]
- Yoshida, K.; Yasufuku, I.; Terashima, M.; Young Rha, S.; Moon Bae, J.; Li, G.; Katai, H.; Watanabe, M.; Seto, Y.; Hoon Noh, S.; et al. International Retrospective Cohort Study of Conversion Therapy for Stage IV Gastric Cancer 1 (CONVO-GC-1). Ann. Gastroenterol. Surg. 2022, 6, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Cheng, J.W.; Lin, M.T.; Huang, P.M.; Chen, J.S.; Lee, Y.C. Is there any benefit to incorporating a laparoscopic procedure into minimally invasive esophagectomy? The impact on perioperative results in patients with esophageal cancer. World J. Surg. 2011, 35, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Chen, S.C.; Yang, S.M.; Tseng, Y.F.; Yang, P.W.; Huang, P.M. Comparison of single- and multi-incision minimally invasive esophagectomy (MIE) for treating esophageal cancer: A propensity-matched study. Surg. Endosc. 2017, 31, 2925–2931. [Google Scholar] [CrossRef] [PubMed]
- Igaue, S.; Nozaki, R.; Utsunomiya, D.; Kubo, Y.; Kubo, K.; Kurita, D.; Yamamoto, S.; Ishiyama, K.; Oguma, J.; Kato, K.; et al. Significance of Surgery for Resectable M1 Lymph Node Metastases Without Organ Metastasis in Esophageal Carcinoma in the Era of Neoadjuvant Treatment. Ann. Surg. Oncol. 2024, 31, 1525–1535. [Google Scholar] [CrossRef]
- Sugimura, K.; Tanaka, K.; Sugase, T.; Momose, K.; Kanemura, T.; Yamashita, K.; Makino, T.; Shiraishi, O.; Motoori, M.; Yamasaki, M.; et al. Clinical Impact of Conversion Surgery After Induction Therapy for Esophageal Cancer with Synchronous Distant Metastasis: A Multi-Institutional Retrospective Study. Ann. Surg. Oncol. 2024, 31, 3437–3447. [Google Scholar] [CrossRef]
- Matsuda, S.; Tsushima, T.; Kato, K.; Hsu, C.H.; Lee, J.M.; Wong, I.Y.; Wang, H.C.; Kang, C.H.; Guo, X.; Yamamoto, S.; et al. Defining conversion therapy for esophageal squamous cell carcinoma. Ann. Gastroenterol. Surg. 2023, 7, 7–9. [Google Scholar] [CrossRef]
- Mathew, G.; Agha, R.; Albrecht, J.; Goel, P.; Mukherjee, I.; Pai, P.; D’Cruz, A.K.; Nixon, I.J.; Roberto, K.; Enam, S.A.; et al. STROCSS 2021: Strengthening the reporting of cohort, cross-sectional and case-control studies in surgery. Int. J. Surg. 2021, 96, 106165. [Google Scholar] [CrossRef]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Zhao, Q.Y.; Luo, J.C.; Su, Y.; Zhang, Y.J.; Tu, G.W.; Luo, Z. Propensity score matching with R: Conventional methods and new features. Ann. Transl. Med. 2021, 9, 812. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Ferrando, C.; Martinez, D.; Ambros, A.; Munoz, T.; Soler, J.A.; Aguilar, G.; Alba, F.; Gonzalez-Higueras, E.; Conesa, L.A.; et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir. Med. 2020, 8, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Saddoughi, S.A.; Reinersman, J.M.; Zhukov, Y.O.; Taswell, J.; Mara, K.; Harmsen, S.W.; Blackmon, S.H.; Cassivi, S.D.; Nichols, F., 3rd; Shen, K.R.; et al. Survival After Surgical Resection of Stage IV Esophageal Cancer. Ann. Thorac. Surg. 2017, 103, 261–266. [Google Scholar] [CrossRef]
- Guttmann, D.M.; Mitra, N.; Bekelman, J.; Metz, J.M.; Plastaras, J.; Feng, W.; Swisher-McClure, S. Improved Overall Survival with Aggressive Primary Tumor Radiotherapy for Patients with Metastatic Esophageal Cancer. J. Thorac. Oncol. 2017, 12, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.J.; Lee, P.; Foo, A.Z.X.; Tan, E.H.; Ong, H.S.; Hsu, A.A.L. Characteristics and Outcomes of Airway Involvement in Esophageal Cancer. Ann. Thorac. Surg. 2021, 112, 912–920. [Google Scholar] [CrossRef]
- Verstegen, M.H.P.; Slaman, A.E.; Klarenbeek, B.R.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; Rosman, C.; van Workum, F. Outcomes of Patients with Anastomotic Leakage After Transhiatal, McKeown or Ivor Lewis Esophagectomy: A Nationwide Cohort Study. World J. Surg. 2021, 45, 3341–3349. [Google Scholar] [CrossRef]
Variable | Total | CCRT Only | CCRT + OP | p-Value |
---|---|---|---|---|
n = 162 | n = 124 | n = 38 | ||
Age | 0.058 | |||
<65 | 112 (69.1) | 81 (65.3) | 31 (81.6) | |
≥65 | 50 (30.9) | 43 (34.7) | 7 (18.4) | |
Gender | 1 | |||
Female | 13 (8.0) | 10 (8.1) | 3 (7.9) | |
Male | 149 (92.0) | 114 (91.9) | 35 (92.1) | |
Cell type | 0.739 | |||
SCC | 134 (88.7) | 101 (89.4) | 33 (86.8) | |
Adenocarcinoma | 15 (9.9) | 10 (8.8) | 5 (13.2) | |
Small cell | 1 (0.7) | 1 (0.9) | 0 | |
Others | 1 (0.7) | 1 (0.9) | 0 | |
Chemotherapy | 0.028 | |||
5Fu + cisplatin | 4 (19.0) | 4 (30.8) | 0 | |
Taxol or Taxotere + cisplatin | 8 (38.1) | 3 (23.1) | 5 (62.5) | |
5Fu + Taxol or Taxotere + cisplatin | 7 (33.3) | 6 (46.2) | 1 (12.5) | |
other | 2 (9.5) | 0 | 2 (25.0) | |
cT | 0.132 | |||
cT1 | 3 (1.9) | 2 (1.6) | 1 (2.6) | |
cT2 | 6 (3.7) | 5 (4.0) | 1 (2.6) | |
cT3 | 108 (66.7) | 77 (62.1) | 31 (81.6) | |
cT4 | 33 (20.4) | 30 (24.2) | 3 (7.9) | |
Unkown | 12 (7.4) | 10 (8.1) | 2 (5.3) | |
cN | 0.729 | |||
Negative | 6 (3.7) | 4 (3.2) | 2 (5.3) | |
Positive | 144 (88.9) | 110 (88.7) | 34 (89.5) | |
Unkown | 12 (7.4) | 10 (8.1) | 2 (5.3) | |
Tumor site | 0.523 | |||
Upper | 19 (16.4) | 13 (16.5) | 6 (16.2) | |
Middle | 30 (25.9) | 23 (29.1) | 7 (18.9) | |
Lower | 42 (36.2) | 27 (34.2) | 15 (40.5) | |
Multiple | 24 (20.7) | 16 (20.3) | 8 (21.6) | |
Other * | 1 (0.9) | 0 | 1 (2.7) | |
Number of metastatic organs | 0.205 | |||
0 ** | 23 (14.2) | 20 (16.1) | 3 (7.9) | |
1 organ | 78 (48.1) | 54 (43.5) | 24 (63.2) | |
2 organs | 47 (29.0) | 39 (31.5) | 8 (21.1) | |
3 or more organs | 14 (8.6) | 11 (8.9) | 3 (7.9) | |
Co mobility & | 0.556 | |||
No | 100 (61.7) | 75 (60.5) | 25 (65.8) | |
Yes | 62 (38.3) | 49 (39.5) | 13 (34.2) |
Variable | Total | Overall Survival | p-Value | Progression-Free Survival | p-Value |
---|---|---|---|---|---|
n = 162 | HR (95% CI) | HR (95% CI) | |||
Age | |||||
<65 | 112 | 1 | 1 | ||
≥65 | 50 | 0.82 (0.57–1.16) | 0.260 | 1.00 (0.70–1.41) | 0.977 |
Gender | |||||
Female | 13 | 1 | 1 | ||
Male | 149 | 1.18 (0.62–2.15) | 0.645 | 1.31 (0.70–2.43) | 0.399 |
Cell type | |||||
SCC | 134 | 1 | 1 | ||
Adenocarcinoma | 15 | 0.73 (0.41–1.29) | 0.276 | 0.61 (0.25–1.11) | 0.105 |
Small cell | 1 | 2.37 (0.33–17.16) | 0.393 | 1.82 (0.25–13.12) | 0.554 |
Others | 1 | 0.81 (0.11–5.81) | 0.834 | 0.58 (0.08–4.13) | 0.583 |
Chemotherapy ** | |||||
5FU + cisplatin | 4 | 1 | 1 | ||
Taxol or Taxotere + cisplatin | 8 | 0.30 (0.09–1.07) | 0.064 | 0.39 (0.11–1.37) | 0.141 |
5FU + Taxol or Taxotere + cisplatin | 7 | 0.36 (0.10–1.34) | 0.128 | 0.38 (0.10–1.39) | 0.143 |
other | 2 | 0.28 (0.05–1.67) | 0.163 | 0.46 (0.08–2.63) | 0.382 |
cT | |||||
cT1 | 3 | 1 | 1 | ||
cT2 | 6 | 1.73 (0.41–7.29) | 0.456 | 2.50 (0.59–10.58) | 0.213 |
cT3 | 108 | 2.12 (0.67–6.71) | 0.203 | 2.55 (0.80–8.10) | 0.113 |
cT4 | 33 | 2.29 (0.69–7.55) | 0.174 | 3.42 (1.03–11.31) | 0.044 |
Unknown | 12 | 2.47 (0.68–8.91) | 0.168 | 4.22 (1.17–15.23) | 0.028 |
cN | |||||
Negative | 6 | 1 | 1 | ||
Positive | 144 | 1.01 (0.44–2.29) | 0.988 | 1.10 (0.48–2.51) | 0.817 |
Unknown | 12 | 1.19 (0.44–3.24) | 0.731 | 1.75 (0.66–4.68) | 0.262 |
Tumor site | |||||
Upper | 19 | 1 | 1 | ||
Middle | 30 | 1.39 (0.77–2.49) | 0.275 | 1.16 (0.65–2.08) | 0.619 |
Lower | 42 | 0.68 (0.38–1.20) | 0.185 | 0.53 (0.30–0.92) | 0.025 |
Multiple | 24 | 1.54 (0.83–2.84) | 0.172 | 1.21 (0.65–2.23) | 0.548 |
Other * | 1 | 1.77 (0.23–13.42) | 0.579 | 0 | 0.968 |
Recurrence | |||||
0 | 22 | 1 | 1 | ||
Locoregional | 31 | 0.79 (0.44–1.43) | 0.433 | 0.82 (0.45–1.48) | 0.512 |
distant | 73 | 0.86 (0.52–1.42) | 0.550 | 0.90 (0.54–1.50) | 0.695 |
Local and distant metastasis | 36 | 0.76 (0.43–1.34) | 0.336 | 1.01 (0.58–1.77) | 0.974 |
Number of metastatic organs | |||||
0 ** | 23 | 1 | 1 | ||
1 organ | 78 | 0.87 (0.52–1.45) | 0.582 | 0.81 (0.49–1.35) | 0.417 |
2 organs | 47 | 0.95 (0.55–1.62) | 0.841 | 0.97 (0.56–1.65) | 0.898 |
3 or more organs | 14 | 0.91 (0.45–1.84) | 0.791 | 1.47 (0.74–2.94) | 0.275 |
OP | |||||
CCRT + OP | 38 | 1 | 1 | ||
No (only CCRT) | 124 | 1.77 (1.17–2.66) | 0.006 | 1.82 (1.19–2.77) | 0.006 |
Variable | Total | Overall Survival | p-Value | Progression-Free Survival | p-Value |
---|---|---|---|---|---|
n = 162 | HR (95% CI) | HR (95% CI) | |||
Age | |||||
<65 | 112 | 1 | 1 | ||
≥65 | 50 | 0.75 (0.51–1.09) | 0.127 | 0.96 (0.66–1.40) | 0.841 |
Gender | |||||
Female | 13 | 1 | 1 | ||
Male | 149 | 1.07 (0.55–2.06) | 0.850 | 1.24 (0.64–2.39) | 0.520 |
cT | |||||
cT1 | 3 | 1 | 1 | ||
cT2 | 6 | 2.06 (0.48–8.83) | 0.332 | 2.74 (0.64–11.70) | 0.173 |
cT3 | 108 | 2.33 (0.70–7.71) | 0.166 | 2.82 (0.86–9.31) | 0.088 |
cT4 | 33 | 2.19 (0.64–7.55) | 0.213 | 3.31 (0.97–11.32) | 0.057 |
Unkown | 12 | 1.65 (0.40–6.76) | 0.487 | 3.45 (0.85–14.09) | 0.084 |
cN | |||||
Negative | 6 | 1 | 1 | ||
Positive | 144 | 0.77 (0.32–1.84) | 0.551 | 0.83 (0.35–1.98) | 0.671 |
OP | |||||
CCRT + OP | 38 | 1 | 1 | ||
No (only CCRT) | 124 | 1.91 (1.23–2.95) | 0.004 | 1.74 (1.12–2.70) | 0.014 |
Variable | Total | CCRT Only | CCRT + OP | p-Value |
---|---|---|---|---|
n = 114 (%) | n = 76 (%) | n = 38 (%) | ||
Age | 0.176 | |||
<65 | 84 (73.7) | 53 (69.7) | 31 (81.6) | |
≥65 | 30 (26.3) | 23 (30.3) | 7 (18.4) | |
Gender | 0.684 | |||
Female | 7 (6.1) | 4 (5.3) | 3 (7.9) | |
Male | 107 (93.9) | 72 (94.7) | 35 (92.1) | |
Cell type | 0.757 | |||
SCC | 101 (88.6) | 68 (89.5) | 33 (86.8) | |
Adenocarcinoma | 13 (11.4) | 8 (10.5) | 5 (13.2) | |
cT | 0.142 | |||
cT1 | 3 (2.6) | 2 (2.6) | 1 (2.6) | |
cT2 | 5 (4.4) | 4 (5.3) | 1 (2.6) | |
cT3 | 76 (66.7) | 45 (59.2) | 31 (81.6) | |
cT4 | 22 (19.3) | 19 (25.0) | 3 (7.9) | |
Unknown | 8 (7.0) | 6 (7.9) | 2 (5.3) | |
cN | 0.775 | |||
Negative | 4 (3.5) | 2 (2.6) | 2 (5.3) | |
Positive | 102 (89.5) | 68 (89.5) | 34 (89.5) | |
Unknown | 8 (7.0) | 6 (7.9) | 2 (5.3) | |
Tumor site | 0.654 | |||
Upper | 15 (16.9) | 9 (17.3) | 6 (16.2) | |
Middle | 22 (24.7) | 15 (28.8) | 7 (18.9) | |
Lower | 32 (36.0) | 17 (32.7) | 15 (40.5) | |
Multiple | 19 (21.3) | 11 (21.2) | 8 (21.6) | |
Other * | 1 (1.1) | 0 | 1 (2.7) | |
Number of metastatic organs | 0.248 | |||
0 ** | 12 (10.5) | 9 (11.8) | 3 (7.9) | |
1 organ | 58 (50.9) | 34 (44.7) | 24 (63.2) | |
2 organs | 36 (31.6) | 28 (36.8) | 8 (21.1) | |
3 or more organs | 8 (7.0) | 5 (6.6) | 3 (7.9) |
Perioperative Complication of the Patient After Esophagectomy | Total n = 38 (%) |
---|---|
Complication (Overall) | 14 (36.8) |
Leakage | 2 (5.3) |
Hoarseness | 3 (7.9) |
Pulmonary | 5 (13.2) |
Others * | 4 (10.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-L.C.; Chen, K.-C.; Huang, P.-M.; Hsu, C.-H.; Cheng, C.-H.; Hsu, F.-M.; Huang, T.-C.; Guo, J.-C.; Lee, J.-M. Clinical Outcome of Conversion Surgery for Stage IV Esophageal Cancer Following Chemoradiation. Biomedicines 2025, 13, 745. https://doi.org/10.3390/biomedicines13030745
Wang H-LC, Chen K-C, Huang P-M, Hsu C-H, Cheng C-H, Hsu F-M, Huang T-C, Guo J-C, Lee J-M. Clinical Outcome of Conversion Surgery for Stage IV Esophageal Cancer Following Chemoradiation. Biomedicines. 2025; 13(3):745. https://doi.org/10.3390/biomedicines13030745
Chicago/Turabian StyleWang, Hu-Lin Christina, Ke-Cheng Chen, Pei-Ming Huang, Chih-Hung Hsu, Chia-Hsien Cheng, Feng-Ming Hsu, Ta-Chen Huang, Jhe-Cyuan Guo, and Jang-Ming Lee. 2025. "Clinical Outcome of Conversion Surgery for Stage IV Esophageal Cancer Following Chemoradiation" Biomedicines 13, no. 3: 745. https://doi.org/10.3390/biomedicines13030745
APA StyleWang, H.-L. C., Chen, K.-C., Huang, P.-M., Hsu, C.-H., Cheng, C.-H., Hsu, F.-M., Huang, T.-C., Guo, J.-C., & Lee, J.-M. (2025). Clinical Outcome of Conversion Surgery for Stage IV Esophageal Cancer Following Chemoradiation. Biomedicines, 13(3), 745. https://doi.org/10.3390/biomedicines13030745