The Clinicopathological and Prognostic Value of CCR7 Expression in Breast Cancer Throughout the Literature: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection and Screening
2.5. Data Extraction
2.6. Quality of Studies
2.7. Outcomes
2.8. Data Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics and Data Collection
3.3. Quality Assessment
3.4. CCR7 Expression and Age
3.5. CCR7 Expression and Clinicopathological Features
3.6. CCR7 Expression and Breast Cancer Biomarkers
3.7. CCR7 Expression and Overall Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.S.; Lu, C.T. Recent perspectives of breast cancer prognosis and predictive factors. Oncol. Lett. 2016, 12, 3674–3678. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef]
- Förster, R.; Davalos-Misslitz, A.C.; Rot, A. CCR7 and its ligands: Balancing immunity and tolerance. Nat. Rev. Immunol. 2008, 8, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Zhou, M.; Qiu, W.; Ye, J.; Feng, Q. CCR7 mediates human breast cancer cell invasion, migration by inducing epithelial-mesenchymal transition and suppressing apoptosis through AKT pathway. Cancer Med. 2017, 6, 1062–1071. [Google Scholar] [CrossRef]
- Tutunea-Fatan, E.; Majumder, M.; Xin, X.; Lala, P.K. The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis. Mol. Cancer 2015, 14, 35. [Google Scholar] [CrossRef]
- Sonbul, S.N.; Gorringe, K.L.; Aleskandarany, M.A.; Mukherjee, A.; Green, A.R.; Ellis, I.O.; Rakha, E.A. Chemokine (C-C motif) receptor 7 (CCR7) associates with the tumour immune microenvironment but not progression in invasive breast carcinoma. J. Pathol. Clin. Res. 2017, 3, 105–114. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Li, N.; Gao, J.; Yu, J.; Zhao, J.; Li, M.; Zhao, Z. High Expression of CCR7 Predicts Lymph Node Metastasis and Good Prognosis in Triple Negative Breast Cancer. Cell. Physiol. Biochem. 2017, 43, 531–539. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Clark, J.M.; Sanders, S.; Carter, M.; Honeyman, D.; Cleo, G.; Auld, Y.; Booth, D.; Condron, P.; Dalais, C.; Bateup, S.; et al. Improving the translation of search strategies using the Polyglot Search Translator: A randomized controlled trial. J. Med. Libr. Assoc. JMLA 2020, 108, 195–207. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.C.; Glass, K.; Clark, J.; Ritskes-Hoitinga, M.; Munn, Z.; Tugwell, P.; Doi, S.A.R. The MethodologicAl STandards for Epidemiological Research (MASTER) scale demonstrated a unified framework for bias assessment. J. Clin. Epidemiol. 2021, 134, 52–64. [Google Scholar] [CrossRef]
- Elmakaty, I.; Elsayed, B.; Elmarasi, M.; Kujan, O.; Malki, M.I. Clinicopathological and prognostic value of chemokine receptor CCR7 expression in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Expert Rev. Anticancer. Ther. 2023, 23, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Doi, S.A.; Thalib, L. A quality-effects model for meta-analysis. Epidemiology 2008, 19, 94–100. [Google Scholar] [CrossRef]
- Doi, S.A.; Barendregt, J.J.; Khan, S.; Thalib, L.; Williams, G.M. Advances in the meta-analysis of heterogeneous clinical trials II: The quality effects model. Contemp. Clin. Trials 2015, 45, 123–129. [Google Scholar] [CrossRef]
- Stone, J.C.; Gurunathan, U.; Aromataris, E.; Glass, K.; Tugwell, P.; Munn, Z.; Doi, S.A.R. Bias Assessment in Outcomes Research: The Role of Relative Versus Absolute Approaches. Value Health J. Int. Soc. Pharmacoeconomics Outcomes Res. 2021, 24, 1145–1149. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Kanamori, L.; Barendregt, J.J.; Doi, S.A.R. A new improved graphical and quantitative method for detecting bias in meta-analysis. Int. J. Evid. Based Healthc. 2018, 16, 195–203. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef]
- Fisher, D.; Harris, R.; Bradburn, M.; Deeks, J.; Harbord, R.; Altman, D.; Steichen, T.; Sterne, J.; Higgins, J. METAN: Stata module for fixed and random effects meta-analysis. Stata J. Promot. Commun. Stat. Stata 2021, 8, 3–28. [Google Scholar]
- Cramond, F.; O’Mara-Eves, A.; Doran-Constant, L.; Rice, A.; Macleod, M.; Thomas, J. The development and evaluation of an online application to assist in the extraction of data from graphs for use in systematic reviews [version 3; peer review: 3 approved]. Wellcome Open Res. 2019, 3, 157. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Royston, P. Reconstructing time-to-event data from published Kaplan-Meier curves. Stata J. 2017, 17, 786–802. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Cabioglu, N.; Assi, H.; Sabourin, J.C.; Delaloge, S.; Sahin, A.; Broglio, K.; Spano, J.P.; Combadiere, C.; Bucana, C.; et al. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann. Oncol. 2006, 17, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Cabioglu, N.; Gong, Y.; Islam, R.; Broglio, K.R.; Sneige, N.; Sahin, A.; Gonzalez-Angulo, A.M.; Morandi, P.; Bucana, C.; Hortobagyi, G.N.; et al. Expression of growth factor and chemokine receptors: New insights in the biology of inflammatory breast cancer. Ann. Oncol. 2007, 18, 1021–1029. [Google Scholar] [CrossRef]
- Cabioglu, N.; Yazici, M.S.; Arun, B.; Broglio, K.R.; Hortobagyi, G.N.; Price, J.E.; Sahin, A. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin. Cancer Res. 2005, 11, 5686–5693. [Google Scholar] [CrossRef]
- Chen, D.; Bao, C.; Zhao, F.; Yu, H.; Zhong, G.; Xu, L.; Yan, S. Exploring Specific miRNA-mRNA Axes With Relationship to Taxanes-Resistance in Breast Cancer. Front. Oncol. 2020, 10, 1397. [Google Scholar] [CrossRef]
- Du, X.W.; Li, G.; Liu, J.; Zhang, C.Y.; Liu, Q.; Wang, H.; Chen, T.S. Comprehensive analysis of the cancer driver genes in breast cancer demonstrates their roles in cancer prognosis and tumor microenvironment. World J. Surg. Oncol. 2021, 19, 273. [Google Scholar] [CrossRef]
- Gurgel, D.C.; Wong, D.V.T.; Bandeira, A.M.; Pereira, J.F.B.; Gomes-Filho, J.V.; Pereira, A.C.; Barros Silva, P.G.; Távora, F.R.F.; Pereira, A.F.; Lima-Júnior, R.C.P.; et al. Cytoplasmic CCR7 (CCR7c) immunoexpression is associated with local tumor recurrence in triple-negative breast cancer. Pathol. Res. Pract. 2020, 216, 153265. [Google Scholar] [CrossRef]
- Lamy, P.J.; Fina, F.; Bascoul-Mollevi, C.; Laberenne, A.C.; Martin, P.M.; Ouafik, L.; Jacot, W. Quantification and clinical relevance of gene amplification at chromosome 17q12-q21 in human epidermal growth factor receptor 2-amplified breast cancers. Breast Cancer Res. 2011, 13, R15. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, R.; Li, J.; Gu, Q.; Zhao, X.; Sun, T.; Wang, J.; Li, J.; Du, Q.; Sun, B. Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis. J. Exp. Clin. Cancer Res. 2010, 29, 16. [Google Scholar] [CrossRef]
- Pan, M.R.; Hou, M.F.; Chang, H.C.; Hung, W.C. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J. Biol. Chem. 2008, 283, 11155–11163. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, L.; Ghasemi, M.; Yazdani, J.; Ranjbar, S.; Nouri, B.; Alizadeh, A.; Afshar, P. Investigation of CCR7 marker expression using immunohistochemical method and its association with clinicopathologic properties in patients with breast cancer. Int. J. Hematol. Oncol. Stem Cell Res. 2018, 12, 103–110. [Google Scholar] [PubMed]
- Li, J.; Sun, R.; Tao, K.; Wang, G. The CCL21/CCR7 pathway plays a key role in human colon cancer metastasis through regulation of matrix metalloproteinase-9. Dig. Liver Dis. 2011, 43, 40–47. [Google Scholar] [CrossRef]
- Ryu, H.; Baek, S.W.; Moon, J.Y.; Jo, I.S.; Kim, N.; Lee, H.J. C-C motif chemokine receptors in gastric cancer. Mol. Clin. Oncol. 2018, 8, 3–8. [Google Scholar] [CrossRef]
- Goto, M.; Liu, M. Chemokines and their receptors as biomarkers in esophageal cancer. Esophagus 2020, 17, 113–121. [Google Scholar] [CrossRef]
- Maolake, A.; Izumi, K.; Natsagdorj, A.; Iwamoto, H.; Kadomoto, S.; Makino, T.; Naito, R.; Shigehara, K.; Kadono, Y.; Hiratsuka, K.; et al. Tumor necrosis factor-alpha induces prostate cancer cell migration in lymphatic metastasis through CCR7 upregulation. Cancer Sci. 2018, 109, 1524–1531. [Google Scholar] [CrossRef]
- Zu, G.; Luo, B.; Yang, Y.; Tan, Y.; Tang, T.; Zhang, Y.; Chen, X.; Sun, D. Meta-analysis of the prognostic value of C-C chemokine receptor type 7 in patients with solid tumors. Cancer Manag. Res. 2019, 11, 1881–1892. [Google Scholar] [CrossRef] [PubMed]
- He, R.-W.; Ouyang, P.; Lin, B.-D.; Zhang, S.-Z.; Du, J.-L.; Pan, H.-Y.; Huang, Z.-G. Clinicopathological and prognostic value of chemokine receptor CCR7 expression in esophageal squamous cell carcinoma: A meta-analysis. Int. J. Clin. Exp. Med. 2018, 11, 10315–10325. [Google Scholar]
- Du, P.; Liu, Y.; Ren, H.; Zhao, J.; Zhang, X.; Patel, R.; Hu, C.; Gan, J.; Huang, G. Expression of chemokine receptor CCR7 is a negative prognostic factor for patients with gastric cancer: A meta-analysis. Gastric Cancer 2017, 20, 235–245. [Google Scholar] [CrossRef]
Study Characteristics | Tumor Characteristics | Age | Tumor Size | Clinical Stage | Nodal Metastasis | Histological Differentiation | Estrogen Receptor | Progesterone Receptor | HER2/Neu Receptor | Overall Survival | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | Study Design | Country | Tumor Type | Median Age | CCR7 | >50 | <50 | >2 cm | <=2 cm | III, IV | I, II | Yes | No | Poor | Well, Moderate | Low | High | Low | High | Low | High | HR | Lower Limit | Upper Limit |
(Andre et al., 2006) [23] | retrospective cohort | France | Axillary node positive BC | 49 | High | 35 | 58 | 93 | 0 | 44 | 39 | 83 | 10 | 0.97 * | 0.6 | 1.5 | ||||||||
Low | 14 | 35 | 44 | 0 | 28 | 13 | 40 | 4 | ||||||||||||||||
(Cabioglu et al., 2007) [24] | retrospective cohort | USA | Inflammatory BC | High | 4 | 6 | 10 | 0 | 5 | 5 | 2 | 8 | 7 | 3 | 1.25 | 0.56 | 2.76 | |||||||
Low | 16 | 18 | 34 | 0 | 13 | 18 | 9 | 24 | 18 | 16 | ||||||||||||||
(Cabioglu et al., 2005) [25] | retrospective cohort | USA | BC | High | 20 | 8 | 8 | 20 | 25 | 2 | 21 | 6 | 20 | 6 | ||||||||||
Low | 73 | 86 | 42 | 115 | 130 | 26 | 106 | 47 | 134 | 23 | ||||||||||||||
(Chen et al., 2020) [26] | retrospective cohort | China | BC | High | 0.66 | 0.479 | 0.908 | |||||||||||||||||
Low | ||||||||||||||||||||||||
(Du et al., 2021) [27] | retrospective cohort | China | BC | High | 1.023 * | 1.015 | 1.031 | |||||||||||||||||
Low | ||||||||||||||||||||||||
(Gurgel et al., 2020) [28] | Retrospective cohort | Brazil | Triple-negative BC | High | 1 | 31 b | 9 | 23 c | 14 | 7 | 1.19 | 0.48 | 2.91 | |||||||||||
Low | 6 | 33 | 9 | 29 | 25 | 14 | ||||||||||||||||||
(Lamy et al., 2011) [29] | Prospective cohort | France | HER2-amplified BC | High | 0.21 | 0.03 | 1.61 | |||||||||||||||||
Low | ||||||||||||||||||||||||
(Li et al., 2017) [8] | Retrospective cohort | China | Triple-negative BC | High | 42 | 44 | 52 | 34 a | 14 | 72 | 69 | 17 | 17 | 69 | 0.633 * | 0.422 | 0.951 | |||||||
Low | 52 | 50 | 46 | 56 | 60 | 42 | 77 | 25 | 26 | 76 | ||||||||||||||
(Liu et al., 2010) [30] | Retrospective cohort | China | IDC | 51 | High | 54 | 57 | 74 | 37 | 17 | 92 | 70 | 41 | 32 | 79 | 59 | 52 | 59 | 52 | 80 | 31 | 1.62 | 0.93 | 2.79 |
Low | 52 | 37 | 58 | 31 | 6 | 83 | 30 | 59 | 22 | 67 | 41 | 48 | 40 | 49 | 73 | 16 | ||||||||
(Pan et al., 2008) [31] | Retrospective cohort | Taiwan | BC | High | 15 | 26 | 13 | 28 | 11 | 30 | 19 | 22 | 19 | 22 | 21 | 20 | ||||||||
Low | 21 | 17 | 15 | 23 | 4 | 34 | 27 | 11 | 26 | 12 | 14 | 24 | ||||||||||||
(Sonbul et al., 2017) [7] | Retrospective cohort | England | BC | High | 257 | 153 | 213 | 197 | 253 | 151 b | 151 | 255 c | 214 | 192 | 252 | 96 | 324 | 71 | ||||||
Low | 306 | 150 | 240 | 216 | 174 | 282 | 175 | 283 | 222 | 236 | 299 | 106 | 397 | 51 | ||||||||||
(Vahedi et al., 2018) [32] | Case-control | Iran | IDC | High | 27 | 37 | 51 | 13 | 33 | 31 | 42 | 22 | 10 | 54 | ||||||||||
Low | 2 | 4 | 3 | 3 | 0 | 6 | 0 | 6 | 0 | 6 |
Outcome | Study No. | Sample Size | Effect Size | Estimate | 95% CI | Z Score, p Value | I-Squared | Egger’s p Value |
---|---|---|---|---|---|---|---|---|
Age | 5 | 1368 | Odds ratio | 0.822 | 0.656, 1.029 | −1.709, 0.087 | 0.0 | 0.676 |
Tumor size | 5 | 1403 | Odds ratio | 1.062 | 0.630, 1.791 | 0.227, 0.820 | 57.5 | 0.621 |
Clinical stage | 6 | 1529 | Odds ratio | 1.753 | 0.231, 13.304 | 0.543, 0.587 | 92.7 | 0.465 |
Nodal metastasis | 7 | 1658 | Odds ratio | 1.252 | 0.571, 2.741 | 0.561, 0.575 | 74.6 | 0.184 |
Histological differentiation | 7 | 1646 | Odds ratio | 1.167 | 0.939, 1.450 | 1.392, 0.164 | 0.0 | 0.601 |
Estrogen receptor | 6 | 1380 | Odds ratio | 0.913 | 0.553, 1.507 | −0.356, 0.722 | 48.6 | 0.957 |
Progesterone receptor | 4 | 502 | Odds ratio | 1.018 | 0.500, 2.070 | 0.049, 0.961 | 51.0 | 0.535 |
HER2/neu | 6 | 1486 | Odds ratio | 1.425 | 0.906, 2.242 | 1.532, 0.126 | 34.4 | 0.172 |
Overall survival | 8 | 1917 | Hazard ratio | 0.996 | 0.659, 1.505 | −0.020, 0.984 | 61.3 | 0.351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhadary, M.; Elsayed, B.; Elshoeibi, A.M.; Karen, O.; Elmakaty, I.; Alhmoud, J.; Hamdan, A.; Malki, M.I. The Clinicopathological and Prognostic Value of CCR7 Expression in Breast Cancer Throughout the Literature: A Systematic Review and Meta-Analysis. Biomedicines 2025, 13, 1007. https://doi.org/10.3390/biomedicines13041007
Elhadary M, Elsayed B, Elshoeibi AM, Karen O, Elmakaty I, Alhmoud J, Hamdan A, Malki MI. The Clinicopathological and Prognostic Value of CCR7 Expression in Breast Cancer Throughout the Literature: A Systematic Review and Meta-Analysis. Biomedicines. 2025; 13(4):1007. https://doi.org/10.3390/biomedicines13041007
Chicago/Turabian StyleElhadary, Mohamed, Basel Elsayed, Amgad Mohamed Elshoeibi, Omar Karen, Ibrahim Elmakaty, Jehad Alhmoud, Ahmad Hamdan, and Mohammed Imad Malki. 2025. "The Clinicopathological and Prognostic Value of CCR7 Expression in Breast Cancer Throughout the Literature: A Systematic Review and Meta-Analysis" Biomedicines 13, no. 4: 1007. https://doi.org/10.3390/biomedicines13041007
APA StyleElhadary, M., Elsayed, B., Elshoeibi, A. M., Karen, O., Elmakaty, I., Alhmoud, J., Hamdan, A., & Malki, M. I. (2025). The Clinicopathological and Prognostic Value of CCR7 Expression in Breast Cancer Throughout the Literature: A Systematic Review and Meta-Analysis. Biomedicines, 13(4), 1007. https://doi.org/10.3390/biomedicines13041007