A Novel Bradycardia-Associated Variant in HCN4 as a Candidate Modifier in Type 3 Long QT Syndrome: Case Report and Deep In Silico Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Investigation
2.2. Genetic Testing
2.3. In Silico Functional Analysis
3. Results
3.1. Clinical Presentation of the Proband
3.2. Phenotypic Cascade Screening of the Relatives
3.3. Genetic Testing Results
3.4. In Silico Functional Analysis of HCN4 and SCN5A Variants
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwartz, P.J.; Stramba-Badiale, M.; Crotti, L.; Pedrazzini, M.; Besana, A.; Bosi, G.; Gabbarini, F.; Goulene, K.; Insolia, R.; Mannarino, S.; et al. Prevalence of the congenital long-QT syndrome. Circulation 2009, 120, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J. 1970–2020: 50 Years of Research on the Long QT Syndrome-from Almost Zero Knowledge to Precision Medicine. Eur. Heart J. 2021, 42, 1063–1072. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Ackerman, M.J. The long QT syndrome: A transatlantic clinical approach to diagnosis and therapy. Eur. Heart J. 2013, 34, 3109–3116. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Novelli, V.; Amin, A.S.; Abiusi, E.; Care, M.; Nannenberg, E.A.; Feilotter, H.; Amenta, S.; Mazza, D.; Bikker, H.; et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation 2020, 141, 418–428. [Google Scholar] [CrossRef]
- Asatryan, B.; Murray, B.; Gasperetti, A.; McClellan, R.; Barth, A.S. Unraveling Complexities in Genetically Elusive Long QT Syndrome. Circ. Arrhythm. Electrophysiol. 2024, 17, e012356. [Google Scholar] [CrossRef] [PubMed]
- Giudicessi, J.R.; Ackerman, M.J. Determinants of Incomplete Penetrance and Variable Expressivity in Heritable Cardiac Arrhythmia Syndromes. Transl. Res. 2013, 161, 1–14. [Google Scholar] [CrossRef]
- de Villiers, C.P.; van der Merwe, L.; Crotti, L.; Goosen, A.; George, A.L., Jr.; Schwartz, P.J.; Brink, P.A.; Moolman-Smook, J.C.; Corfield, V.A. AKAP9 Is a Genetic Modifier of Congenital Long-QT Syndrome Type 1. Circ. Cardiovasc. Genet. 2014, 7, 599–606. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Amin, A.S. Clinical Spectrum of SCN5A Mutations: Long QT Syndrome, Brugada Syndrome, and Cardiomyopathy. JACC Clin. Electrophysiol. 2018, 4, 569–579. [Google Scholar] [CrossRef]
- Baruteau, A.-E.; Kyndt, F.; Behr, E.R.; Vink, A.S.; Lachaud, M.; Joong, A.; Schott, J.-J.; Horie, M.; Denjoy, I.; Crotti, L.; et al. SCN5A Mutations in 442 Neonates and Children: Genotype-Phenotype Correlation and Identification of Higher-Risk Subgroups. Eur. Heart J. 2018, 39, 2879–2887. [Google Scholar] [CrossRef]
- Schwartz, P.J. The Congenital Long QT Syndromes from Genotype to Phenotype: Clinical Implications. J. Intern. Med. 2006, 259, 39–47. [Google Scholar] [CrossRef]
- Pérez-Riera, A.R.; Barbosa-Barros, R.; Daminello Raimundo, R.; da Costa de Rezende Barbosa, M.P.; Esposito Sorpreso, I.C.; de Abreu, L.C. The Congenital Long QT Syndrome Type 3: An Update. Indian Pacing Electrophysiol. J. 2018, 18, 25–35. [Google Scholar] [CrossRef]
- Wilders, R.; Verkerk, A.O. Long QT Syndrome and Sinus Bradycardia-A Mini Review. Front. Cardiovasc. Med. 2018, 5, 106. [Google Scholar] [CrossRef]
- Zareba, W.; Moss, A.J.; Schwartz, P.J.; Vincent, G.M.; Robinson, J.L.; Priori, S.G.; Benhorin, J.; Locati, E.H.; Towbin, J.A.; Keating, M.T.; et al. Influence of the Genotype on the Clinical Course of the Long-QT Syndrome. N. Engl. J. Med. 1998, 339, 960–965. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Crotti, L.; George, A.L., Jr. Modifier genes for sudden cardiac death. Eur. Heart J. 2018, 39, 3925–3931. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Sala, L. The Impact of Genetics on the Long QT Syndrome: Myth or Reality? Curr. Opin. Cardiol. 2023, 38, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Verkerk, A.O.; Wilders, R. Pacemaker Activity of the Human Sinoatrial Node: Effects of HCN4 Mutations on the Hyperpolarization-Activated Current. Europace 2014, 16, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Servatius, H.; Porro, A.; Pless, S.A.; Schaller, A.; Asatryan, B.; Tanner, H.; de Marchi, S.F.; Roten, L.; Seiler, J.; Haeberlin, A.; et al. Phenotypic Spectrum of HCN4 Mutations: A Clinical Case. Circ. Genom. Precis. Med. 2018, 11, e002033. [Google Scholar] [CrossRef] [PubMed]
- Marcoux, E.; Sosnowski, D.; Ninni, S.; Mackasey, M.; Cadrin-Tourigny, J.; Roberts, J.D.; Olesen, M.S.; Fatkin, D.; Nattel, S. Genetic Atrial Cardiomyopathies: Common Features, Specific Differences, and Broader Relevance to Understanding Atrial Cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2023, 16, 675–698. [Google Scholar] [CrossRef]
- Biel, S.; Aquila, M.; Hertel, B.; Berthold, A.; Neumann, T.; DiFrancesco, D.; Moroni, A.; Thiel, G.; Kauferstein, S. Mutation in S6 Domain of HCN4 Channel in Patient with Suspected Brugada Syndrome Modifies Channel Function. Pflug. Arch. 2016, 468, 1663–1671. [Google Scholar] [CrossRef]
- Bukaeva, A.; Ershova, A.; Kharlap, M.; Kiseleva, A.; Kutsenko, V.; Sotnikova, E.; Divashuk, M.; Pokrovskaya, M.; Garbuzova, E.; Blokhina, A.; et al. The Yield of Genetic Testing and Putative Genetic Factors of Disease Heterogeneity in Long QT Syndrome Patients. Int. J. Mol. Sci. 2024, 25, 11976. [Google Scholar] [CrossRef]
- Priori, S.G.; Blomström-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.; Fitzsimons, D.; Hatala, R.; Hindricks, G.; et al. 2015 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2015, 36, 2793–2867. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2020; ISBN 9781491975169. [Google Scholar]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Lahrouchi, N.; Tadros, R.; Kyndt, F.; Glinge, C.; Postema, P.G.; Amin, A.S.; Nannenberg, E.A.; Ware, J.S.; Whiffin, N.; et al. Enhancing Rare Variant Interpretation in Inherited Arrhythmias Through Quantitative Analysis of Consortium Disease Cohorts and Population Controls. Genet. Med. 2021, 23, 47–58. [Google Scholar] [CrossRef]
- Feng, B.-J. PERCH: A Unified Framework for Disease Gene Prioritization. Hum. Mutat. 2017, 38, 243–251. [Google Scholar] [CrossRef]
- Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.A.; Edwards, K.J.; Day, I.N.M.; Gaunt, T.R. Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions Using Hidden Markov Models. Hum. Mutat. 2013, 34, 57–65. [Google Scholar] [CrossRef]
- Tordai, H.; Torres, O.; Csepi, M.; Padányi, R.; Lukács, G.L.; Hegedűs, T. Analysis of AlphaMissense Data in Different Protein Groups and Structural Context. Sci. Data 2024, 11, 495. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation Prediction for the Deep-Sequencing Age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Liu, X.; Wu, C.; Li, C.; Boerwinkle, E. DbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum. Mutat. 2016, 37, 235–241. [Google Scholar] [CrossRef]
- Choi, Y.; Chan, A.P. PROVEAN Web Server: A Tool to Predict the Functional Effect of Amino Acid Substitutions and Indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A Lightweight Database of Human Nonsynonymous SNPs and Their Functional Predictions. Hum. Mutat. 2011, 32, 894–899. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Mou, C.; Dong, Y.; Tu, Y. dbNSFP v4: A Comprehensive Database of Transcript-Specific Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Genome Med. 2020, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J.; et al. Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences. Proc. Natl. Acad. Sci. USA 2021, 118, e2016239118. [Google Scholar] [CrossRef] [PubMed]
- Brandes, N.; Goldman, G.; Wang, C.H.; Ye, C.J.; Ntranos, V. Genome-Wide Prediction of Disease Variant Effects with a Deep Protein Language Model. Nat. Genet. 2023, 55, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.-J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; et al. Inferring the Molecular and Phenotypic Impact of Amino Acid Variants with MutPred2. Nat. Commun. 2020, 11, 5918. [Google Scholar] [CrossRef]
- Davydov, E.V.; Goode, D.L.; Sirota, M.; Cooper, G.M.; Sidow, A.; Batzoglou, S. Identifying a High Fraction of the Human Genome to Be under Selective Constraint Using GERP++. PLoS Comput. Biol. 2010, 6, e1001025. [Google Scholar] [CrossRef]
- Pollard, K.S.; Hubisz, M.J.; Rosenbloom, K.R.; Siepel, A. Detection of Nonneutral Substitution Rates on Mammalian Phylogenies. Genome Res. 2010, 20, 110–121. [Google Scholar] [CrossRef]
- Garber, M.; Guttman, M.; Clamp, M.; Zody, M.C.; Friedman, N.; Xie, X. Identifying Novel Constrained Elements by Exploiting Biased Substitution Patterns. Bioinformatics 2009, 25, i54–i62. [Google Scholar] [CrossRef] [PubMed]
- Huber, C.D.; Kim, B.Y.; Lohmueller, K.E. Population Genetic Models of GERP Scores Suggest Pervasive Turnover of Constrained Sites across Mammalian Evolution. PLoS Genet. 2020, 16, e1008827. [Google Scholar] [CrossRef] [PubMed]
- Venselaar, H.; Te Beek, T.A.H.; Kuipers, R.K.P.; Hekkelman, M.L.; Vriend, G. Protein Structure Analysis of Mutations Causing Inheritable Diseases. An E-Science Approach with Life Scientist Friendly Interfaces. BMC Bioinform. 2010, 11, 548. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of Protein Stability Changes for Single-Site Mutations Using Support Vector Machines. Proteins 2006, 62, 1125–1132. [Google Scholar] [CrossRef]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting Stability Changes upon Mutation from the Protein Sequence or Structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef]
- Zhou, Y.; Pan, Q.; Pires, D.E.V.; Rodrigues, C.H.M.; Ascher, D.B. DDMut: Predicting Effects of Mutations on Protein Stability Using Deep Learning. Nucleic Acids Res. 2023, 51, W122–W128. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Ameri, A. Electrophysiological Actions of the Plant Alkaloid 6-Benzoylheteratisine in Rat Hippocampal Slices. Naunyn. Schmiedebergs. Arch. Pharmacol. 1997, 355, 538–544. [Google Scholar] [CrossRef]
- Veltmann, C.; Barajas-Martinez, H.; Wolpert, C.; Borggrefe, M.; Schimpf, R.; Pfeiffer, R.; Cáceres, G.; Burashnikov, E.; Antzelevitch, C.; Hu, D. Further Insights in the Most Common SCN5A Mutation Causing Overlapping Phenotype of Long QT Syndrome, Brugada Syndrome, and Conduction Defect. J. Am. Heart Assoc. 2016, 5, e003379. [Google Scholar] [CrossRef]
- Makita, N.; Behr, E.; Shimizu, W.; Horie, M.; Sunami, A.; Crotti, L.; Schulze-Bahr, E.; Fukuhara, S.; Mochizuki, N.; Makiyama, T.; et al. The E1784K Mutation in SCN5A Is Associated with Mixed Clinical Phenotype of Type 3 Long QT Syndrome. J. Clin. Investig. 2008, 118, 2219–2229. [Google Scholar] [CrossRef]
- Deschênes, I.; Baroudi, G.; Berthet, M.; Barde, I.; Chalvidan, T.; Denjoy, I.; Guicheney, P.; Chahine, M. Electrophysiological Characterization of SCN5A Mutations Causing Long QT (E1784K) and Brugada (R1512W and R1432G) Syndromes. Cardiovasc. Res. 2000, 46, 55–65. [Google Scholar] [CrossRef]
- Farrokhi, S.; Eslahi, A.; Alizadeh, F.; Farshchian, Z.; Yousefi, Y.; Mojarrad, M. An Extensive in Silico Analysis of Missense Mutations of the Human AIMP2 Gene. Heliyon 2024, 10, e36560. [Google Scholar] [CrossRef]
- Schubach, M.; Maass, T.; Nazaretyan, L.; Röner, S.; Kircher, M. CADD v1.7: Using Protein Language Models, Regulatory CNNs and Other Nucleotide-Level Scores to Improve Genome-Wide Variant Predictions. Nucleic Acids Res. 2024, 52, D1143–D1154. [Google Scholar] [CrossRef]
- Ma, J.G.; O’Neill, M.J.; Richardson, E.; Thomson, K.L.; Ingles, J.; Muhammad, A.; Solus, J.F.; Davogustto, G.; Anderson, K.C.; Shoemaker, M.B.; et al. Multisite Validation of a Functional Assay to Adjudicate SCN5A Brugada Syndrome-Associated Variants. Circ. Genom. Precis. Med. 2024, 17, e004569. [Google Scholar] [CrossRef]
- DiFrancesco, D. HCN4, Sinus Bradycardia and Atrial Fibrillation. Arrhythm. Electrophysiol. Rev. 2015, 4, 9–13. [Google Scholar] [CrossRef]
- Mullally, J.; Goldenberg, I.; Moss, A.J.; Lopes, C.M.; Ackerman, M.J.; Zareba, W.; McNitt, S.; Robinson, J.L.; Benhorin, J.; Kaufman, E.S.; et al. Risk of Life-Threatening Cardiac Events among Patients with Long QT Syndrome and Multiple Mutations. Heart Rhythm 2013, 10, 378–382. [Google Scholar] [CrossRef]
- Kobori, A.; Sarai, N.; Shimizu, W.; Nakamura, Y.; Murakami, Y.; Makiyama, T.; Ohno, S.; Takenaka, K.; Ninomiya, T.; Fujiwara, Y.; et al. Additional Gene Variants Reduce Effectiveness of Beta-Blockers in the LQT1 Form of Long QT Syndrome. J. Cardiovasc. Electrophysiol. 2004, 15, 190–199. [Google Scholar] [CrossRef]
- Yu, Y.; Deschenes, I.; Zhao, M.-T. Precision Medicine for Long QT Syndrome: Patient-Specific iPSCs Take the Lead. Expert Rev. Mol. Med. 2023, 25, e5. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Sala, L.; Mura, M.; Rocchetti, M.; Pedrazzini, M.; Ran, X.; Mak, T.S.H.; Crotti, L.; Sham, P.C.; Torre, E.; et al. MTMR4 SNVs Modulate Ion Channel Degradation and Clinical Severity in Congenital Long QT Syndrome: Insights in the Mechanism of Action of Protective Modifier Genes. Cardiovasc. Res. 2021, 117, 767–779. [Google Scholar] [CrossRef]
- Garcia, F.A.d.O.; de Andrade, E.S.; Palmero, E.I. Insights on Variant Analysis in Silico Tools for Pathogenicity Prediction. Front. Genet. 2022, 13, 1010327. [Google Scholar] [CrossRef]
- Peters, C.H.; Liu, P.W.; Morotti, S.; Gantz, S.C.; Grandi, E.; Bean, B.P.; Proenza, C. Bidirectional Flow of the Funny Current (If) During the Pacemaking Cycle in Murine Sinoatrial Node Myocytes. Proc. Natl. Acad. Sci. USA 2021, 118, e2104668118. [Google Scholar] [CrossRef]
- Chapotte-Baldacci, C.-A.; Pierre, M.; Djemai, M.; Pouliot, V.; Chahine, M. Biophysical Properties of NaV1.5 Channels from Atrial-like and Ventricular-like Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Sci. Rep. 2023, 13, 20685. [Google Scholar] [CrossRef]
- Butters, A.; Arnott, C.; Sweeting, J.; Winkel, B.G.; Semsarian, C.; Ingles, J. Sex Disparities in Sudden Cardiac Death. Circ. Arrhythm. Electrophysiol. 2021, 14, e009834. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Torre, E.; Marrot, M.; Peters, C.H.; Feather, A.; Nichols, W.G.; Logantha, S.J.R.J.; Arshad, A.; Martis, S.A.; Ozturk, N.T.; et al. Identifying Sex Similarities and Differences in Structure and Function of the Sinoatrial Node in the Mouse Heart. Front. Med. 2024, 11, 1488478. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Ohno, S.; Murakami, T.; Yoshida, K.; Mishima, H.; Fukuoka, T.; Kimoto, H.; Sakamoto, R.; Ohkusa, T.; Aiba, T.; et al. Sick Sinus Syndrome with HCN4 Mutations Shows Early Onset and Frequent Association with Atrial Fibrillation and Left Ventricular Noncompaction. Heart Rhythm 2017, 14, 717–724. [Google Scholar] [CrossRef]
Software Tool | SCN5A p.E1784K | HCN4 p.V642M |
---|---|---|
Pathogenicity Predictions | ||
PolyPhen-2, prediction (score) [36] | Benign (0.43) | Probably damaging (0.99) |
BayesDel addAF, prediction (score) [27] | Damaging (0.49) | Damaging (0.31) |
ESM1b, prediction (score) [37] | Damaging (−12.96) | Damaging (−13.81) |
FATHMM, prediction (score) [28] | Damaging (−3.87) | Damaging (−3.49) |
AlphaMissense, prediction (score) [29] | Likely pathogenic (0.87) | Likely pathogenic (0.94) |
CADD, prediction (score) [54] | Top 1% deleterious (26.0) | Top 0.1% most deleterious (31.0) |
MutationTaster2, prediction (score) [30] | Disease causing (0.99) | Disease causing (0.99) |
MetaSVM, prediction (score) [31] | Damaging (1.05) | Damaging (0.94) |
MetaLR, prediction (score) [31] | Damaging (0.92) | Damaging (0.89) |
PROVEAN, prediction (score) [32] | Damaging (−3.57) | Damaging (−2.79) |
MutPred2, prediction (score) [39] | Pathogenic (0.85) | Pathogenic (0.60) |
REVEL, prediction (score) [33] | Pathogenic (0.91) | Pathogenic (0.85) |
Conservation | ||
GERP++, score [40] | 4.82 | 3.68 |
PhyloP vertebrate, score [41] | 6.14 | 4.04 |
SiPhy, score [42] | 18.09 | 9.45 |
Structural and functional properties | ||
MutPred2 | Gain of relative solvent accessibility (Pr = 0.36|p = 9.4 × 10−4); Gain of Ubiquitylation at E1784 (Pr = 0.30|p = 5.3 × 10−4); Altered ordered interface (Pr = 0.28|p = 0.04); Altered transmembrane protein (Pr = 0.18|p = 8.0 × 10−3); Altered metal binding (Pr = 0.16|p = 0.03) | Loss of relative solvent accessibility (Pr = 0.27|p = 0.02); altered transmembrane protein (Pr = 0.19|p = 6.0 × 10−3) |
HOPE [44] | Wild-type residue is charged negatively, while mutant residue is charged positively Mutant residue is bigger than wild-type residue Residue is located on the surface; thus, the mutation might disturb interactions | Mutant residue is bigger than wild-type residue Residue is located on the surface; thus, the mutation might disturb interactions |
Effects on protein stability | ||
MUPro, Effect on stability (∆∆G, kcal/mol) [45] | Decrease (−1.33) | Decrease (−0.98) |
I-Mutant 2.0, Effect on stability (∆∆G, kcal/mol) [44] | Decrease (−1.13) | Decrease (−1.65) |
DDMut, Effect on stability (∆∆G, kcal/mol) [47] | Decrease (−0.01) | Decrease (−0.38) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukaeva, A.A.; Blokhina, A.V.; Kharlap, M.S.; Zaicenoka, M.; Zotova, E.D.; Petukhova, A.V.; Garbuzova, E.V.; Zharikova, A.A.; Divashuk, M.G.; Kiseleva, A.V.; et al. A Novel Bradycardia-Associated Variant in HCN4 as a Candidate Modifier in Type 3 Long QT Syndrome: Case Report and Deep In Silico Analysis. Biomedicines 2025, 13, 1008. https://doi.org/10.3390/biomedicines13041008
Bukaeva AA, Blokhina AV, Kharlap MS, Zaicenoka M, Zotova ED, Petukhova AV, Garbuzova EV, Zharikova AA, Divashuk MG, Kiseleva AV, et al. A Novel Bradycardia-Associated Variant in HCN4 as a Candidate Modifier in Type 3 Long QT Syndrome: Case Report and Deep In Silico Analysis. Biomedicines. 2025; 13(4):1008. https://doi.org/10.3390/biomedicines13041008
Chicago/Turabian StyleBukaeva, Anna A., Anastasia V. Blokhina, Maria S. Kharlap, Marija Zaicenoka, Evgenia D. Zotova, Anna V. Petukhova, Elizaveta V. Garbuzova, Anastasia A. Zharikova, Mikhail G. Divashuk, Anna V. Kiseleva, and et al. 2025. "A Novel Bradycardia-Associated Variant in HCN4 as a Candidate Modifier in Type 3 Long QT Syndrome: Case Report and Deep In Silico Analysis" Biomedicines 13, no. 4: 1008. https://doi.org/10.3390/biomedicines13041008
APA StyleBukaeva, A. A., Blokhina, A. V., Kharlap, M. S., Zaicenoka, M., Zotova, E. D., Petukhova, A. V., Garbuzova, E. V., Zharikova, A. A., Divashuk, M. G., Kiseleva, A. V., Ershova, A. I., Meshkov, A. N., & Drapkina, O. M. (2025). A Novel Bradycardia-Associated Variant in HCN4 as a Candidate Modifier in Type 3 Long QT Syndrome: Case Report and Deep In Silico Analysis. Biomedicines, 13(4), 1008. https://doi.org/10.3390/biomedicines13041008