The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views
Abstract
:1. Introduction
2. The Notch Signaling Pathway
3. Gut Microbiota and Autoinflammatory Diseases
4. Notch Pathway, Gut Microbiota, and Autoinflammation
4.1. Pyoderma Gangrenosum and Acne Spectrum Disorders
4.2. Behçet’s Disease
4.3. Inflammatory Bowel Diseases
4.4. Autosomal Dominant Autoinflammatory Disease
5. Notch-Targeted Drugs and Future Perspectives
Molecules | Mechanism of Action | References |
---|---|---|
DAPT | Inhibition of γ-secretase | [142] |
Dibenzazepine | Inhibition of γ-secretase | [142] |
MK-0752 | Inhibition of γ-secretase | [11] |
Semagacestat | Inhibition of γ-secretase | [143] |
INCB7839 | ADAM inhibitor | [146] |
CB-103 | Inhibitors of formation | [147] |
Brontictuzumab, Tarextumab | Monoclonal antibodies | [27,148] |
6. A New Way Forward: Modulating the GM with Precision Probiotics
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Mohr, O.L. Character Changes Caused by Mutation of an Entire Region of a Chromosome in Drosophila. Genetics 1919, 4, 275–282. [Google Scholar] [CrossRef]
- Lv, Y.; Pang, X.; Cao, Z.; Song, C.; Liu, B.; Wu, W.; Pang, Q. Evolution and Function of the Notch Signaling Pathway: An Invertebrate Perspective. Int. J. Mol. Sci. 2024, 25, 3322. [Google Scholar] [CrossRef] [PubMed]
- Radtke, F.; MacDonald, H.R.; Tacchini-Cottier, F. Regulation of Innate and Adaptive Immunity by Notch. Nat. Rev. Immunol. 2013, 13, 427–437. [Google Scholar] [CrossRef]
- Ben-Chetrit, E.; Gattorno, M.; Gul, A.; Kastner, D.L.; Lachmann, H.J.; Touitou, I.; Ruperto, N. Paediatric Rheumatology International Trials Organisation (PRINTO) and the AIDs Delphi study participants Consensus Proposal for Taxonomy and Definition of the Autoinflammatory Diseases (AIDs): A Delphi Study. Ann. Rheum. Dis. 2018, 77, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Marwaha, A.; Laxer, R.M. Autoinflammatory Diseases: A Review. J. Rheumatol. 2024, 51, 848–861. [Google Scholar] [CrossRef]
- de Jesus, A.A.; Canna, S.W.; Liu, Y.; Goldbach-Mansky, R. Molecular Mechanisms in Genetically Defined Autoinflammatory Diseases: Disorders of Amplified Danger Signaling. Annu. Rev. Immunol. 2015, 33, 823–874. [Google Scholar] [CrossRef]
- Wekell, P.; Berg, S.; Karlsson, A.; Fasth, A. Toward an Inclusive, Congruent, and Precise Definition of Autoinflammatory Diseases. Front. Immunol. 2017, 8, 497. [Google Scholar] [CrossRef]
- Delplanque, M.; Fayand, A.; Boursier, G.; Grateau, G.; Savey, L.; Georgin-Lavialle, S. Diagnostic and Therapeutic Algorithms for Monogenic Autoinflammatory Diseases Presenting with Recurrent Fevers among Adults. Rheumatology 2023, 62, 2665–2672. [Google Scholar] [CrossRef]
- Xu, J.; Chi, F.; Guo, T.; Punj, V.; Lee, W.N.P.; French, S.W.; Tsukamoto, H. NOTCH Reprograms Mitochondrial Metabolism for Proinflammatory Macrophage Activation. J. Clin. Investig. 2015, 125, 1579–1590. [Google Scholar] [CrossRef]
- Li, L.; Jin, J.; Liu, H.; Ma, X.; Wang, D.; Song, Y.; Wang, C.; Jiang, J.; Yan, G.; Qin, X.; et al. Notch1 Signaling Contributes to TLR4-Triggered NF-κB Activation in Macrophages. Pathol.—Res. Pract. 2022, 234, 153894. [Google Scholar] [CrossRef]
- Christopoulos, P.F.; Gjølberg, T.T.; Krüger, S.; Haraldsen, G.; Andersen, J.T.; Sundlisæter, E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front. Immunol. 2021, 12, 668207. [Google Scholar] [CrossRef]
- Krainer, J.; Siebenhandl, S.; Weinhäusel, A. Systemic Autoinflammatory Diseases. J. Autoimmun. 2020, 109, 102421. [Google Scholar] [CrossRef]
- El-Sayed, A.; Aleya, L.; Kamel, M. Microbiota’s Role in Health and Diseases. Environ. Sci. Pollut. Res. Int. 2021, 28, 36967–36983. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal. Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Nathan, N.N.; Philpott, D.J.; Girardin, S.E. The Intestinal Microbiota: From Health to Disease, and Back. Microbes. Infect. 2021, 23, 104849. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.S.; Chang, E.B. The Microbiome: Composition and Locations. Prog. Mol. Biol. Transl. Sci. 2020, 176, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell. Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Heidari, M.; Maleki Vareki, S.; Yaghobi, R.; Karimi, M.H. Microbiota Activation and Regulation of Adaptive Immunity. Front. Immunol. 2024, 15, 1429436. [Google Scholar] [CrossRef]
- Ma, N.; Chen, X.; Johnston, L.J.; Ma, X. Gut Microbiota-stem Cell Niche Crosstalk: A New Territory for Maintaining Intestinal Homeostasis. iMeta 2022, 1, e54. [Google Scholar] [CrossRef]
- Yoo, J.; Groer, M.; Dutra, S.; Sarkar, A.; McSkimming, D. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Bassey, A.; Huang, J.; Zou, Y.; Ye, K. Expansion of Intestinal Secretory Cell Population Induced by Listeria Monocytogenes Infection: Accompanied With the Inhibition of NOTCH Pathway. Front. Cell Infect. Microbiol. 2022, 12, 793335. [Google Scholar] [CrossRef]
- Singh, S.B.; Coffman, C.N.; Carroll-Portillo, A.; Varga, M.G.; Lin, H.C. Notch Signaling Pathway Is Activated by Sulfate Reducing Bacteria. Front. Cell. Infect. Microbiol. 2021, 11, 695299. [Google Scholar] [CrossRef]
- Aziz, M.; Ishihara, S.; Ansary, M.U.; Sonoyama, H.; Tada, Y.; Oka, A.; Kusunoki, R.; Tamagawa, Y.; Fukuba, N.; Mishima, Y.; et al. Crosstalk between TLR5 and Notch1 Signaling in Epithelial Cells during Intestinal Inflammation. Int. J. Mol. Med. 2013, 32, 1051–1062. [Google Scholar] [CrossRef]
- Xue, L.; Li, Z.; Xue, J.; Wang, H.; Wu, T.; Liu, R.; Sui, W.; Zhang, M. Lactobacillus Acidophilus LA85 Ameliorates Cyclophosphamide-Induced Immunosuppression by Modulating Notch and TLR4/NF-κB Signal Pathways and Remodeling the Gut Microbiota. Food Funct. 2022, 13, 8107–8118. [Google Scholar] [CrossRef]
- Wu, H.; Ye, L.; Lu, X.; Xie, S.; Yang, Q.; Yu, Q. Lactobacillus Acidophilus Alleviated Salmonella-Induced Goblet Cells Loss and Colitis by Notch Pathway. Mol. Nutr. Food Res. 2018, 62, e1800552. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Li, H.; Li, P.; Xu, C. Serum Exosomes Derived from Hp-Positive Gastritis Patients Inhibit MCP-1 and MIP-1α Expression via NLRP12-Notch Signaling Pathway in Intestinal Epithelial Cells and Improve DSS-Induced Colitis in Mice. Int. Immunopharmacol. 2020, 88, 107012. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Xue, C.; Zeng, Y.; Yuan, X.; Chu, Q.; Jiang, S.; Wang, J.; Zhang, Y.; Zhu, D.; Li, L. Notch Signaling Pathway in Cancer: From Mechanistic Insights to Targeted Therapies. Sig. Transduct. Target. Ther. 2024, 9, 1–37. [Google Scholar] [CrossRef]
- Kopan, R.; Ilagan, M.X.G. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 2009, 137, 216–233. [Google Scholar] [CrossRef]
- Kidd, S.; Lockett, T.J.; Young, M.W. The Notch Locus of Drosophila Melanogaster. Cell 1983, 34, 421–433. [Google Scholar] [CrossRef]
- Chillakuri, C.R.; Sheppard, D.; Lea, S.M.; Handford, P.A. Notch Receptor-Ligand Binding and Activation: Insights from Molecular Studies. Semin. Cell Dev. Biol. 2012, 23, 421–428. [Google Scholar] [CrossRef]
- Meng, Y.; Bo, Z.; Feng, X.; Yang, X.; Handford, P.A. The Notch Signaling Pathway: Mechanistic Insights in Health and Disease. Engineering 2024, 34, 212–232. [Google Scholar] [CrossRef]
- Sprinzak, D.; Blacklow, S.C. Biophysics of Notch Signaling. Annu. Rev. Biophys. 2021, 50, 157–189. [Google Scholar] [CrossRef]
- Krishna, B.M.; Jana, S.; Singhal, J.; Horne, D.; Awasthi, S.; Salgia, R.; Singhal, S.S. Notch Signaling in Breast Cancer: From Pathway Analysis to Therapy. Cancer Lett. 2019, 461, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sun, Q.; Liu, X.; Yang, Y.; Rong, R.; Yan, P.; Xie, Y. Targeting Notch Signaling Pathways with Natural Bioactive Compounds: A Promising Approach against Cancer. Front. Pharmacol. 2024, 15. [Google Scholar] [CrossRef]
- Matsumoto, K.; Luther, K.B.; Haltiwanger, R.S. Diseases Related to Notch Glycosylation. Mol. Asp. Med. 2021, 79, 100938. [Google Scholar] [CrossRef]
- Shin, H.M.; Minter, L.M.; Cho, O.H.; Gottipati, S.; Fauq, A.H.; Golde, T.E.; Sonenshein, G.E.; Osborne, B.A. Notch1 Augments NF-kappaB Activity by Facilitating Its Nuclear Retention. EMBO J. 2006, 25, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Lake, R.J.; Grimm, L.M.; Veraksa, A.; Banos, A.; Artavanis-Tsakonas, S. In Vivo Analysis of the Notch Receptor S1 Cleavage. PLoS ONE 2009, 4, e6728. [Google Scholar] [CrossRef]
- Zolkiewska, A. ADAM Proteases: Ligand Processing and Modulation of the Notch Pathway. Cell Mol. Life Sci. 2008, 65, 2056–2068. [Google Scholar] [CrossRef]
- Kim, G.S.; Park, H.-S.; Lee, Y.C. OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor. Mol. Cells 2018, 41, 842–852. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Zhao, S.; Zhao, X.-Y.; Min, P.-X.; Ma, Y.-D.; Wang, Y.-Y.; Chen, Y.; Tang, S.-J.; Zhang, Y.-J.; et al. Non-Canonical Notch Signaling Regulates Actin Remodeling in Cell Migration by Activating PI3K/AKT/Cdc42 Pathway. Front. Pharmacol. 2019, 10, 370. [Google Scholar] [CrossRef]
- Lin, S.; Negulescu, A.; Bulusu, S.; Gibert, B.; Delcros, J.-G.; Ducarouge, B.; Rama, N.; Gadot, N.; Treilleux, I.; Saintigny, P.; et al. Non-Canonical NOTCH3 Signalling Limits Tumour Angiogenesis. Nat. Commun. 2017, 8, 16074. [Google Scholar] [CrossRef] [PubMed]
- Jundt, F.; Pröbsting, K.S.; Anagnostopoulos, I.; Muehlinghaus, G.; Chatterjee, M.; Mathas, S.; Bargou, R.C.; Manz, R.; Stein, H.; Dörken, B. Jagged1-Induced Notch Signaling Drives Proliferation of Multiple Myeloma Cells. Blood 2004, 103, 3511–3515. [Google Scholar] [CrossRef]
- Colombo, M.; Galletti, S.; Bulfamante, G.; Falleni, M.; Tosi, D.; Todoerti, K.; Lazzari, E.; Crews, L.A.; Jamieson, C.H.M.; Ravaioli, S.; et al. Multiple Myeloma-Derived Jagged Ligands Increases Autocrine and Paracrine Interleukin-6 Expression in Bone Marrow Niche. Oncotarget 2016, 7, 56013–56029. [Google Scholar] [CrossRef]
- Maniati, E.; Bossard, M.; Cook, N.; Candido, J.B.; Emami-Shahri, N.; Nedospasov, S.A.; Balkwill, F.R.; Tuveson, D.A.; Hagemann, T. Crosstalk between the Canonical NF-κB and Notch Signaling Pathways Inhibits Pparγ Expression and Promotes Pancreatic Cancer Progression in Mice. J. Clin. Investig. 2011, 121, 4685–4699. [Google Scholar] [CrossRef] [PubMed]
- Demitrack, E.S.; Samuelson, L.C. Notch Regulation of Gastrointestinal Stem Cells. J. Physiol. 2016, 594, 4791–4803. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-A.; Koo, B.-K.; Cho, J.-H.; Kim, Y.-Y.; Seong, J.; Chang, H.J.; Oh, Y.M.; Stange, D.E.; Park, J.-G.; Hwang, D.; et al. Notch1 Counteracts WNT/β-Catenin Signaling through Chromatin Modification in Colorectal Cancer. J. Clin. Investig. 2012, 122, 3248–3259. [Google Scholar] [CrossRef]
- Piazzi, G.; D’Argenio, G.; Prossomariti, A.; Lembo, V.; Mazzone, G.; Candela, M.; Biagi, E.; Brigidi, P.; Vitaglione, P.; Fogliano, V.; et al. Eicosapentaenoic Acid Free Fatty Acid Prevents and Suppresses Colonic Neoplasia in Colitis-Associated Colorectal Cancer Acting on Notch Signaling and Gut Microbiota. Int. J. Cancer 2014, 135, 2004–2013. [Google Scholar] [CrossRef]
- Taniguchi, K.; Wu, L.-W.; Grivennikov, S.I.; de Jong, P.R.; Lian, I.; Yu, F.-X.; Wang, K.; Ho, S.B.; Boland, B.S.; Chang, J.T.; et al. A Gp130-Src-YAP Module Links Inflammation to Epithelial Regeneration. Nature 2015, 519, 57–62. [Google Scholar] [CrossRef]
- Radtke, F.; Fasnacht, N.; Macdonald, H.R. Notch Signaling in the Immune System. Immunity 2010, 32, 14–27. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the Full Spectrum of Macrophage Activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Alex, P.; Zachos, N.C.; Nguyen, T.; Gonzales, L.; Chen, T.-E.; Conklin, L.S.; Centola, M.; Li, X. Distinct Cytokine Patterns Identified from Multiplex Profiles of Murine DSS and TNBS-Induced Colitis. Inflamm. Bowel Dis. 2009, 15, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Outtz, H.H.; Wu, J.K.; Wang, X.; Kitajewski, J. Notch1 Deficiency Results in Decreased Inflammation during Wound Healing and Regulates Vascular Endothelial Growth Factor Receptor-1 and Inflammatory Cytokine Expression in Macrophages. J. Immunol. 2010, 185, 4363–4373. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Smith, S.; Foldi, J.; Zhao, B.; Chung, A.Y.; Outtz, H.; Kitajewski, J.; Shi, C.; Weber, S.; et al. Notch-RBP-J Signaling Regulates the Transcription Factor IRF8 to Promote Inflammatory Macrophage Polarization. Nat. Immunol. 2012, 13, 642–650. [Google Scholar] [CrossRef]
- Kueanjinda, P.; Roytrakul, S.; Palaga, T. A Novel Role of Numb as A Regulator of Pro-Inflammatory Cytokine Production in Macrophages in Response to Toll-like Receptor 4. Sci. Rep. 2015, 5, 12784. [Google Scholar] [CrossRef]
- Quillard, T.; Charreau, B. Impact of Notch Signaling on Inflammatory Responses in Cardiovascular Disorders. Int. J. Mol. Sci. 2013, 14, 6863–6888. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, D.; Aikawa, E.; Swirski, F.K.; Novobrantseva, T.I.; Kotelianski, V.; Gorgun, C.Z.; Chudnovskiy, A.; Yamazaki, H.; Croce, K.; Weissleder, R.; et al. Notch Ligand Delta-like 4 Blockade Attenuates Atherosclerosis and Metabolic Disorders. Proc. Natl. Acad. Sci. USA 2012, 109, E1868–E1877. [Google Scholar] [CrossRef]
- Sag, E.; Bilginer, Y.; Ozen, S. Autoinflammatory Diseases with Periodic Fevers. Curr. Rheumatol. Rep. 2017, 19, 41. [Google Scholar] [CrossRef]
- Georgin-Lavialle, S.; Rodrigues, F.; Hentgen, V.; Fayand, A.; Quartier, P.; Bader-Meunier, B.; Bachmeyer, C.; Savey, L.; Louvrier, C.; Sarrabay, G.; et al. Clinical overview of auto-inflammatory diseases. Rev. Med. Interne 2018, 39, 214–232. [Google Scholar] [CrossRef]
- Deuteraiou, K.; Kitas, G.; Garyfallos, A.; Dimitroulas, T. Novel Insights into the Role of Inflammasomes in Autoimmune and Metabolic Rheumatic Diseases. Rheumatol. Int. 2018, 38, 1345–1354. [Google Scholar] [CrossRef]
- Steiner, A.; Harapas, C.R.; Masters, S.L.; Davidson, S. An Update on Autoinflammatory Diseases: Relopathies. Curr. Rheumatol. Rep. 2018, 20, 39. [Google Scholar] [CrossRef]
- Brigant, B.; Metzinger-Le Meuth, V.; Rochette, J.; Metzinger, L. TRIMming down to TRIM37: Relevance to Inflammation, Cardiovascular Disorders, and Cancer in MULIBREY Nanism. Int. J. Mol. Sci. 2018, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yan, X.; Wang, Y.; Kaur, B.; Han, H.; Yu, J. The Notch Signaling Pathway: A Potential Target for Cancer Immunotherapy. J. Hematol. Oncol. 2023, 16, 45. [Google Scholar] [CrossRef]
- Zhou, B.; Lin, W.; Long, Y.; Yang, Y.; Zhang, H.; Wu, K.; Chu, Q. Notch Signaling Pathway: Architecture, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 95. [Google Scholar] [CrossRef]
- Engevik, M.A.; Luk, B.; Chang-Graham, A.L.; Hall, A.; Herrmann, B.; Ruan, W.; Endres, B.T.; Shi, Z.; Garey, K.W.; Hyser, J.M.; et al. Bifidobacterium Dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 2019, 10, 10–1128. [Google Scholar] [CrossRef]
- Henao-Mejia, J.; Elinav, E.; Jin, C.; Hao, L.; Mehal, W.Z.; Strowig, T.; Thaiss, C.A.; Kau, A.L.; Eisenbarth, S.C.; Jurczak, M.J.; et al. Inflammasome-Mediated Dysbiosis Regulates Progression of NAFLD and Obesity. Nature 2012, 482, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Iebba, V.; Nicoletti, M.; Schippa, S. Gut Microbiota and the Immune System: An Intimate Partnership in Health and Disease. Int. J. Immunopathol. Pharmacol. 2012, 25, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chu, J.; Feng, S.; Guo, C.; Xue, B.; He, K.; Li, L. Immunological Mechanisms of Inflammatory Diseases Caused by Gut Microbiota Dysbiosis: A Review. Biomed. Pharmacother. 2023, 164, 114985. [Google Scholar] [CrossRef]
- Jordan, C.K.I.; Clarke, T.B. How Does the Microbiota Control Systemic Innate Immunity? Trends Immunol. 2024, 45, 94–102. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The Microbiome and Innate Immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef]
- Erny, D.; de Angelis, A.L.H.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; et al. Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef]
- Wang, R.; Cui, W.; Yang, H. The Interplay between Innate Lymphoid Cells and Microbiota. mBio 2023, 14, e0039923. [Google Scholar] [CrossRef]
- Cianci, R.; Franza, L.; Schinzari, G.; Rossi, E.; Ianiro, G.; Tortora, G.; Gasbarrini, A.; Gambassi, G.; Cammarota, G. The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. Int. J. Mol. Sci. 2019, 20, 501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Frenette, P.S. Cross Talk between Neutrophils and the Microbiota. Blood 2019, 133, 2168–2177. [Google Scholar] [CrossRef] [PubMed]
- Troll, J.V.; Hamilton, M.K.; Abel, M.L.; Ganz, J.; Bates, J.M.; Stephens, W.Z.; Melancon, E.; van der Vaart, M.; Meijer, A.H.; Distel, M.; et al. Microbiota Promote Secretory Cell Determination in the Intestinal Epithelium by Modulating Host Notch Signaling. Development 2018, 145, dev155317. [Google Scholar] [CrossRef]
- Zeng, L.; Deng, Y.; Yang, K.; Chen, J.; He, Q.; Chen, H. Safety and Efficacy of Fecal Microbiota Transplantation for Autoimmune Diseases and Autoinflammatory Diseases: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Manukyan, G.P.; Ghazaryan, K.A.; Ktsoyan, Z.A.; Khachatryan, Z.A.; Arakelova, K.A.; Kelly, D.; Grant, G.; Aminov, R.I. Elevated Systemic Antibodies towards Commensal Gut Microbiota in Autoinflammatory Condition. PLoS ONE 2008, 3, e3172. [Google Scholar] [CrossRef]
- Delplanque, M.; Benech, N.; Rolhion, N.; Oeuvray, C.; Straube, M.; Galbert, C.; Brot, L.; Henry, T.; Jamilloux, Y.; Savey, L.; et al. Gut Microbiota Alterations Are Associated with Phenotype and Genotype in Familial Mediterranean Fever. Rheumatology 2024, 63, 1039–1048. [Google Scholar] [CrossRef]
- Tartey, S.; Kanneganti, T.-D. Inflammasomes in the Pathophysiology of Autoinflammatory Syndromes. J. Leukoc. Biol. 2020, 107, 379–391. [Google Scholar] [CrossRef]
- Fleming, C.; Cai, Y.; Sun, X.; Jala, V.R.; Xue, F.; Morrissey, S.; Wei, Y.-L.; Chien, Y.-H.; Zhang, H.-G.; Haribabu, B.; et al. Microbiota-Activated CD103+ DCs Stemming from Microbiota Adaptation Specifically Drive γδT17 Proliferation and Activation. Microbiome 2017, 5, 1–15. [Google Scholar] [CrossRef]
- Vanderbeck, A.; Maillard, I. Notch Signaling at the Crossroads of Innate and Adaptive Immunity. J. Leukoc. Biol. 2021, 109, 535–548. [Google Scholar] [CrossRef]
- Lin, N.; Chi, H.; Guo, Q.; Liu, Z.; Ni, L. Notch Signaling Inhibition Alleviates Allergies Caused by Antarctic Krill Tropomyosin through Improving Th1/Th2 Imbalance and Modulating Gut Microbiota. Foods 2024, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Smith, S.; Hu, X. Role of Notch Signaling in Regulating Innate Immunity and Inflammation in Health and Disease. Protein Cell 2016, 7, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Hoyne, G.F.; Le Roux, I.; Corsin-Jimenez, M.; Tan, K.; Dunne, J.; Forsyth, L.M.; Dallman, M.J.; Owen, M.J.; Ish-Horowicz, D.; Lamb, J.R. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int. Immunol. 2000, 12, 177–185. [Google Scholar] [CrossRef]
- Bailis, W.; Yashiro-Ohtani, Y.; Fang, T.C.; Hatton, R.D.; Weaver, C.T.; Artis, D.; Pear, W.S. Notch Simultaneously Orchestrates Multiple Helper T Cell Programs Independently of Cytokine Signals. Immunity 2013, 39, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.A.; Helbig, C.; Gentek, R.; Kent, A.; Laidlaw, B.J.; Dominguez, C.X.; de Souza, Y.S.; van Trierum, S.E.; van Beek, R.; Rimmelzwaan, G.F.; et al. A Central Role for Notch in Effector CD8(+) T Cell Differentiation. Nat. Immunol. 2014, 15, 1143–1151. [Google Scholar] [CrossRef]
- Fung, E.; Tang, S.-M.T.; Canner, J.P.; Morishige, K.; Arboleda-Velasquez, J.F.; Cardoso, A.A.; Carlesso, N.; Aster, J.C.; Aikawa, M. Delta-like 4 Induces Notch Signaling in Macrophages: Implications for Inflammation. Circulation 2007, 115, 2948–2956. [Google Scholar] [CrossRef]
- Kanazawa, N.; Furukawa, F. Autoinflammatory Syndromes with a Dermatological Perspective. J. Dermatol. 2007, 34, 601–618. [Google Scholar] [CrossRef]
- Duchatelet, S.; Miskinyte, S.; Delage, M.; Ungeheuer, M.-N.; Lam, T.; Benhadou, F.; Del Marmol, V.; Vossen, A.R.J.V.; Prens, E.P.; Cogrel, O.; et al. Low Prevalence of GSC Gene Mutations in a Large Cohort of Predominantly Caucasian Patients with Hidradenitis Suppurativa. J. Investig. Dermatol. 2020, 140, 2085–2088.e14. [Google Scholar] [CrossRef]
- Hur, J.-Y. γ-Secretase in Alzheimer’s Disease. Exp. Mol. Med. 2022, 54, 433–446. [Google Scholar] [CrossRef]
- Kar, F.; Hacioglu, C.; Kar, E.; Donmez, D.B.; Kanbak, G. Probiotics Ameliorates LPS Induced Neuroinflammation Injury on Aβ 1-42, APP, γ-β Secretase and BDNF Levels in Maternal Gut Microbiota and Fetal Neurodevelopment Processes. Metab. Brain Dis. 2022, 37, 1387–1399. [Google Scholar] [CrossRef]
- Wang, H.; Tian, Y.; Wang, J.; Phillips, K.L.E.; Binch, A.L.A.; Dunn, S.; Cross, A.; Chiverton, N.; Zheng, Z.; Shapiro, I.M.; et al. Inflammatory Cytokines Induce NOTCH Signaling in Nucleus Pulposus Cells. J. Biol. Chem. 2013, 288, 16761–16774. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Kanazawa, S.; Tetsuka, T.; Ohta, S.; Jiang, X.; Tada, T.; Kobayashi, M.; Matsui, N.; Okamoto, T. Induction of Notch Signaling by Tumor Necrosis Factor in Rheumatoid Synovial Fibroblasts. Oncogene 2003, 22, 7796–7803. [Google Scholar] [CrossRef]
- Crawford, H.C.; Dempsey, P.J.; Brown, G.; Adam, L.; Moss, M.L. ADAM10 as a Therapeutic Target for Cancer and Inflammation. Curr. Pharm. Des. 2009, 15, 2288–2299. [Google Scholar] [CrossRef] [PubMed]
- Ciccia, F.; Dussias, N.K.; Gandolfo, S.; Rizzello, F.; Gionchetti, P. The Effect of Anti-TNF Drugs on the Intestinal Microbiota in Patients with Spondyloarthritis, Rheumatoid Arthritis, and Inflammatory Bowel Diseases. Rheumatol. Immunol. Res. 2024, 5, 27–33. [Google Scholar] [CrossRef]
- Ottaviani, S.; Tahiri, K.; Frazier, A.; Hassaine, Z.N.; Dumontier, M.F.; Baschong, W.; Rannou, F.; Corvol, M.T.; Savouret, J.F.; Richette, P. Hes1, a new target for interleukin 1beta in chondrocytes. Ann. Rheum. Dis. 2010, 69, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-J.H.; Kim, M.; Chang, L.-C.; Assie, A.; Saldana-Morales, F.B.; Zegarra-Ruiz, D.F.; Norwood, K.; Samuel, B.S.; Diehl, G.E. Interleukin-1β Secretion Induced by Mucosa-Associated Gut Commensal Bacteria Promotes Intestinal Barrier Repair. Gut Microbes 2022, 14, 2014772. [Google Scholar] [CrossRef] [PubMed]
- Ostroukhova, M.; Qi, Z.; Oriss, T.B.; Dixon-McCarthy, B.; Ray, P.; Ray, A. Treg-Mediated Immunosuppression Involves Activation of the Notch-HES1 Axis by Membrane-Bound TGF-Beta. J. Clin. Investig. 2006, 116, 996–1004. [Google Scholar] [CrossRef]
- Bauché, D.; Marie, J.C. Transforming Growth Factor β: A Master Regulator of the Gut Microbiota and Immune Cell Interactions. Clin. Transl. Immunol. 2017, 6, e136. [Google Scholar] [CrossRef]
- Cheng, Y.-L.; Park, J.-S.; Manzanero, S.; Choi, Y.; Baik, S.-H.; Okun, E.; Gelderblom, M.; Fann, D.Y.-W.; Magnus, T.; Launikonis, B.S.; et al. Evidence That Collaboration between HIF-1α and Notch-1 Promotes Neuronal Cell Death in Ischemic Stroke. Neurobiol. Dis. 2014, 62, 286–295. [Google Scholar] [CrossRef]
- Pral, L.P.; Fachi, J.L.; Corrêa, R.O.; Colonna, M.; Vinolo, M.A.R. Hypoxia and HIF-1 as Key Regulators of Gut Microbiota and Host Interactions. Trends Immunol. 2021, 42, 604–621. [Google Scholar] [CrossRef]
- Feitelson, M.A.; Arzumanyan, A.; Medhat, A.; Spector, I. Short-Chain Fatty Acids in Cancer Pathogenesis. Cancer Metastasis Rev. 2023, 42, 677–698. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, X.; Sun, J.; Liu, C.; Li, G.; Zhu, J.; Huang, J. Neuritin Promotes Angiogenesis through Inhibition of DLL4/Notch Signaling Pathway. Acta Biochim. Biophys. Sin. 2021, 53, 663–672. [Google Scholar] [CrossRef]
- Gu, F.; Huang, X.; Huang, W.; Zhao, M.; Zheng, H.; Wang, Y.; Chen, R. The Role of miRNAs in Behçet’s Disease. Front. Immunol. 2023, 14, 1249826. [Google Scholar] [CrossRef]
- Fardi, F.; Khasraghi, L.B.; Shahbakhti, N.; Salami Naseriyan, A.; Najafi, S.; Sanaaee, S.; Alipourfard, I.; Zamany, M.; Karamipour, S.; Jahani, M.; et al. An Interplay between Non-Coding RNAs and Gut Microbiota in Human Health. Diabetes Res. Clin. Practice 2023, 201, 110739. [Google Scholar] [CrossRef]
- Hildebrand, D.; Uhle, F.; Sahin, D.; Krauser, U.; Weigand, M.A.; Heeg, K. The Interplay of Notch Signaling and STAT3 in TLR-Activated Human Primary Monocytes. Front. Cell. Infect. Microbiol. 2018, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Yiu, J.H.C.; Dorweiler, B.; Woo, C.W. Interaction between Gut Microbiota and Toll-like Receptor: From Immunity to Metabolism. J. Mol. Med. 2017, 95, 13–20. [Google Scholar] [CrossRef]
- Satoh, T.K. Genetic Mutations in Pyoderma Gangrenosum, Hidradenitis Suppurativa, and Associated Autoinflammatory Syndromes: Insights into Pathogenic Mechanisms and Shared Pathways. J. Dermatol. 2024, 51, 160–171. [Google Scholar] [CrossRef]
- Fazio, C.; Ricciardiello, L. Inflammation and Notch Signaling: A Crosstalk with Opposite Effects on Tumorigenesis. Cell Death Dis. 2016, 7, e2515. [Google Scholar] [CrossRef] [PubMed]
- Kokturk, A. Clinical and Pathological Manifestations with Differential Diagnosis in Behçet’s Disease. Pathol. Res. Int. 2012, 2012, 690390. [Google Scholar] [CrossRef]
- Demir, S.; Sag, E.; Dedeoglu, F.; Ozen, S. Vasculitis in Systemic Autoinflammatory Diseases. Front. Pediatr. 2018, 6, 377. [Google Scholar] [CrossRef]
- Singh, R.P.; Hasan, S.; Sharma, S.; Nagra, S.; Yamaguchi, D.T.; Wong, D.T.W.; Hahn, B.H.; Hossain, A. Th17 Cells in Inflammation and Autoimmunity. Autoimmun. Rev. 2014, 13, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Tulunay, A.; Dozmorov, M.G.; Ture-Ozdemir, F.; Yilmaz, V.; Eksioglu-Demiralp, E.; Alibaz-Oner, F.; Ozen, G.; Wren, J.D.; Saruhan-Direskeneli, G.; Sawalha, A.H.; et al. Activation of the JAK/STAT Pathway in Behcet’s Disease. Genes. Immun. 2015, 16, 170–175. [Google Scholar] [CrossRef]
- Ciccarelli, F.; De Martinis, M.; Ginaldi, L. An Update on Autoinflammatory Diseases. Curr. Med. Chem. 2014, 21, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Gül, A. Pathogenesis of Behçet’s Disease: Autoinflammatory Features and Beyond. Semin. Immunopathol. 2015, 37, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Yang, Y.; Hou, S.; Qiao, Y.; Wang, Q.; Yu, H.; Zhang, Q.; Cai, T.; Kijlstra, A.; Yang, P. Increased Notch Pathway Activation in Behçet’s Disease. Rheumatology 2014, 53, 810–820. [Google Scholar] [CrossRef]
- Ma, X.; Wang, X.; Zheng, G.; Tan, G.; Zhou, F.; Wei, W.; Tian, D.; Yu, H. Critical Role of Gut Microbiota and Epigenetic Factors in the Pathogenesis of Behçet’s Disease. Front. Cell Dev. Biol. 2021, 9, 719235. [Google Scholar] [CrossRef]
- Tecer, D.; Gogus, F.; Kalkanci, A.; Erdogan, M.; Hasanreisoglu, M.; Ergin, Ç.; Karakan, T.; Kozan, R.; Coban, S.; Diker, K.S. Succinivibrionaceae Is Dominant Family in Fecal Microbiota of Behçet’s Syndrome Patients with Uveitis. PLoS ONE 2020, 15, e0241691. [Google Scholar] [CrossRef]
- Baumgart, D.C.; Sandborn, W.J. Inflammatory Bowel Disease: Clinical Aspects and Established and Evolving Therapies. Lancet 2007, 369, 1641–1657. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, M.-F.; Liang, Y.-J.; Xu, J.; Xu, H.-M.; Nie, Y.-Q.; Wang, L.-S.; Yao, J.; Li, D.-F. Immunology of Inflammatory Bowel Disease: Molecular Mechanisms and Therapeutics. J. Inflamm. Res. 2022, 15, 1825–1844. [Google Scholar] [CrossRef]
- Diez-Martin, E.; Hernandez-Suarez, L.; Muñoz-Villafranca, C.; Martin-Souto, L.; Astigarraga, E.; Ramirez-Garcia, A.; Barreda-Gómez, G. Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. Int. J. Mol. Sci. 2024, 25, 7062. [Google Scholar] [CrossRef]
- Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. J. Vasc. Interv. Radiol. 2018, 29, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Ghorbaninejad, M.; Heydari, R.; Mohammadi, P.; Shahrokh, S.; Haghazali, M.; Khanabadi, B.; Meyfour, A. Contribution of NOTCH Signaling Pathway along with TNF-α in the Intestinal Inflammation of Ulcerative Colitis. Gastroenterol. Hepatol. Bed Bench 2019, 12, S80–S86. [Google Scholar] [PubMed]
- Kuno, R.; Ito, G.; Kawamoto, A.; Hiraguri, Y.; Sugihara, H.Y.; Takeoka, S.; Nagata, S.; Takahashi, J.; Tsuchiya, M.; Anzai, S.; et al. Notch and TNF-α Signaling Promote Cytoplasmic Accumulation of OLFM4 in Intestinal Epithelium Cells and Exhibit a Cell Protective Role in the Inflamed Mucosa of IBD Patients. Biochem. Biophys. Rep. 2021, 25, 100906. [Google Scholar] [CrossRef]
- Ahmed, I.; Roy, B.C.; Raach, R.-M.T.; Owens, S.M.; Xia, L.; Anant, S.; Sampath, V.; Umar, S. Enteric Infection Coupled with Chronic Notch Pathway Inhibition Alters Colonic Mucus Composition Leading to Dysbiosis, Barrier Disruption and Colitis. PLoS ONE 2018, 13, e0206701. [Google Scholar] [CrossRef]
- Marti-Chafer, S.; Jimenez-Mallen, E.; Mendoza, T.; Macias-Ceja, D.C.; Bauset, C.; Seco-Cervera, M.; Calatayud, S.; Cosin-Roger, J.; Barrachina, M.D.; Ortiz-Masiá, D. P038 Notch Pathway in Fibrosis: A New Anti-Fibrotic Therapy in Crohn’s Disease? J. Crohn’s Colitis 2023, 17, i205. [Google Scholar] [CrossRef]
- Ortiz-Masiá, D.; Cosín-Roger, J.; Calatayud, S.; Hernández, C.; Alós, R.; Hinojosa, J.; Esplugues, J.V.; Barrachina, M.D. M1 Macrophages Activate Notch Signalling in Epithelial Cells: Relevance in Crohn’s Disease. J. Crohn’s Colitis 2016, 10, 582. [Google Scholar] [CrossRef]
- Shan, Y.; Lee, M.; Chang, E.B. The Gut Microbiome and Inflammatory Bowel Diseases. Annu. Rev. Med. 2022, 73, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Ishimoto, T.; Fu, L.; Zhang, J.; Zhang, Z.; Liu, Y. The Gut Microbiota in Inflammatory Bowel Disease. Front. Cell. Infect. Microbiol. 2022, 12, 733992. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H. Probiotics Alleviate Inflammatory Bowel Disease in Mice by Regulating Intestinal Microorganisms-Bile Acid-NLRP3 Inflammasome Pathway. Acta Biochim. Pol. 2021, 68, 687–693. [Google Scholar] [CrossRef]
- Aguilera-Lizarraga, J.; Hussein, H.; Boeckxstaens, G.E. Immune Activation in Irritable Bowel Syndrome: What Is the Evidence? Nat. Rev. Immunol. 2022, 22, 674–686. [Google Scholar] [CrossRef]
- Pu, Z.; Yang, F.; Wang, L.; Diao, Y.; Chen, D. Advancements of Compounds Targeting Wnt and Notch Signalling Pathways in the Treatment of Inflammatory Bowel Disease and Colon Cancer. J. Drug Target. 2021, 29, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, P.; Al Mahtab, M.; Akbar, S.M.F. Unrevealing of Dysregulated Hub Genes Linked with Immune System and Inflammatory Signaling Pathways in the Pathogenesis of Irritable Bowel Syndrome by System Biology Approaches. Inform. Med. Unlocked 2023, 39, 101241. [Google Scholar] [CrossRef]
- Hoffman, H.M.; Mueller, J.L.; Broide, D.H.; Wanderer, A.A.; Kolodner, R.D. Mutation of a New Gene Encoding a Putative Pyrin-like Protein Causes Familial Cold Autoinflammatory Syndrome and Muckle-Wells Syndrome. Nat. Genet. 2001, 29, 301–305. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, C.; Xing, Y.; Xue, G.; Zhang, Q.; Pan, F.; Wu, G.; Hu, Y.; Guo, Q.; Lu, A.; et al. Remodelling of the Gut Microbiota by Hyperactive NLRP3 Induces Regulatory T Cells to Maintain Homeostasis. Nat. Commun. 2017, 8, 1896. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Liu, J.; Tan, J.; Yi, M.; Lin, X. The Role of the Notch Signalling Pathway in the Pathogenesis of Ulcerative Colitis: From the Perspective of Intestinal Mucosal Barrier. Front. Med. 2024, 10, 1333531. [Google Scholar] [CrossRef]
- Mostefaoui, Y.; Bart, C.; Frenette, M.; Rouabhia, M. Candida Albicans and Streptococcus Salivarius Modulate IL-6, IL-8, and TNF-Alpha Expression and Secretion by Engineered Human Oral Mucosa Cells. Cell Microbiol. 2004, 6, 1085–1096. [Google Scholar] [CrossRef]
- Guruharsha, K.G.; Kankel, M.W.; Artavanis-Tsakonas, S. The Notch Signalling System: Recent Insights into the Complexity of a Conserved Pathway. Nat. Rev. Genet. 2012, 13, 654–666. [Google Scholar] [CrossRef]
- Mazzone, M.; Selfors, L.M.; Albeck, J.; Overholtzer, M.; Sale, S.; Carroll, D.L.; Pandya, D.; Lu, Y.; Mills, G.B.; Aster, J.C.; et al. Dose-Dependent Induction of Distinct Phenotypic Responses to Notch Pathway Activation in Mammary Epithelial Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 5012–5017. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, P.; Osipo, C.; Foreman, K.; Golde, T.; Osborne, B.; Miele, L. Rational Targeting of Notch Signaling in Cancer. Oncogene 2008, 27, 5124–5131. [Google Scholar] [CrossRef]
- Purow, B. Reichrath, J., Reichrath, S., Eds.; Notch Inhibition as a Promising New Approach to Cancer Therapy. In Notch Signaling in Embryology and Cancer; Advances in Experimental Medicine and Biology; Springer US: New York, NY, USA, 2012; Volume 727, pp. 305–319. ISBN 978-1-4614-0898-7. [Google Scholar]
- Collins, M.; Michot, J.-M.; Bellanger, C.; Mussini, C.; Benhadji, K.; Massard, C.; Carbonnel, F. Notch Inhibitors Induce Diarrhea, Hypercrinia and Secretory Cell Metaplasia in the Human Colon. EXCLI J. 2021, 20, 819. [Google Scholar] [CrossRef]
- Yuan, X.; Wu, H.; Xu, H.; Xiong, H.; Chu, Q.; Yu, S.; Wu, G.S.; Wu, K. Notch Signaling: An Emerging Therapeutic Target for Cancer Treatment. Cancer Lett. 2015, 369, 20–27. [Google Scholar] [CrossRef]
- Doody, R.S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R.G.; et al. A Phase 3 Trial of Semagacestat for Treatment of Alzheimer’s Disease. N. Engl. J. Med. 2013, 369, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Coric, V.; Van Dyck, C.H.; Salloway, S.; Andreasen, N.; Brody, M.; Richter, R.W.; Soininen, H.; Thein, S.; Shiovitz, T.; Pilcher, G.; et al. Safety and Tolerability of the γ-Secretase Inhibitor Avagacestat in a Phase 2 Study of Mild to Moderate Alzheimer Disease. Arch. Neurol. 2012, 69, 1430. [Google Scholar] [CrossRef]
- Golde, T.E.; Koo, E.H.; Felsenstein, K.M.; Osborne, B.A.; Miele, L. γ-Secretase Inhibitors and Modulators. Biochim. Biophys. Acta (BBA)—Biomembr. 2013, 1828, 2898–2907. [Google Scholar] [CrossRef]
- Montagner, A.; Arleo, A.; Suzzi, F.; D’Assoro, A.B.; Piscaglia, F.; Gramantieri, L.; Giovannini, C. Notch Signaling and PD-1/PD-L1 Interaction in Hepatocellular Carcinoma: Potentialities of Combined Therapies. Biomolecules 2024, 14, 1581. [Google Scholar] [CrossRef]
- Lehal, R.; Zaric, J.; Vigolo, M.; Urech, C.; Frismantas, V.; Zangger, N.; Cao, L.; Berger, A.; Chicote, I.; Loubéry, S.; et al. Pharmacological Disruption of the Notch Transcription Factor Complex. Proc. Natl. Acad. Sci. USA 2020, 117, 16292–16301. [Google Scholar] [CrossRef]
- Wagner, V.P.; Ferrarotto, R.; Vargas, P.A.; Martins, M.D.; Bingle, C.D.; Bingle, L. Drug-Based Therapy for Advanced Adenoid Cystic Carcinoma: Current Landscape and Challenges Based on an Overview of Registered Clinical Trials. Crit. Rev. Oncol. /Hematol. 2023, 181, 103886. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.J.; Lazar, G.A. Next Generation Antibody Drugs: Pursuit of the “High-Hanging Fruit. ” Nat. Rev. Drug Discov. 2018, 17, 197–223. [Google Scholar] [CrossRef] [PubMed]
- Ferrarotto, R.; Eckhardt, G.; Patnaik, A.; LoRusso, P.; Faoro, L.; Heymach, J.V.; Kapoun, A.M.; Xu, L.; Munster, P. A Phase I Dose-Escalation and Dose-Expansion Study of Brontictuzumab in Subjects with Selected Solid Tumors. Ann. Oncol. 2018, 29, 1561–1568. [Google Scholar] [CrossRef]
- Smith, D.C.; Chugh, R.; Patnaik, A.; Papadopoulos, K.P.; Wang, M.; Kapoun, A.M.; Xu, L.; Dupont, J.; Stagg, R.J.; Tolcher, A. A Phase 1 Dose Escalation and Expansion Study of Tarextumab (OMP-59R5) in Patients with Solid Tumors. Investig. New Drugs 2019, 37, 722–730. [Google Scholar] [CrossRef]
- Tay, M.Z.; Wiehe, K.; Pollara, J. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Front. Immunol. 2019, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Real, P.J.; Tosello, V.; Palomero, T.; Castillo, M.; Hernando, E.; de Stanchina, E.; Sulis, M.L.; Barnes, K.; Sawai, C.; Homminga, I.; et al. Gamma-Secretase Inhibitors Reverse Glucocorticoid Resistance in T Cell Acute Lymphoblastic Leukemia. Nat. Med. 2009, 15, 50–58. [Google Scholar] [CrossRef]
- Agnusdei, V.; Minuzzo, S.; Frasson, C.; Grassi, A.; Axelrod, F.; Satyal, S.; Gurney, A.; Hoey, T.; Seganfreddo, E.; Basso, G.; et al. Therapeutic Antibody Targeting of Notch1 in T-Acute Lymphoblastic Leukemia Xenografts. Leukemia 2014, 28, 278–288. [Google Scholar] [CrossRef]
- Huang, J.; Hu, W.; Hu, L.; Previs, R.A.; Dalton, H.J.; Yang, X.-Y.; Sun, Y.; McGuire, M.; Rupaimoole, R.; Nagaraja, A.S.; et al. Dll4 Inhibition plus Aflibercept Markedly Reduces Ovarian Tumor Growth. Mol. Cancer Ther. 2016, 15, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Miles, K.M.; Seshadri, M.; Ciamporcero, E.; Adelaiye, R.; Gillard, B.; Sotomayor, P.; Attwood, K.; Shen, L.; Conroy, D.; Kuhnert, F.; et al. Dll4 Blockade Potentiates the Anti-Tumor Effects of VEGF Inhibition in Renal Cell Carcinoma Patient-Derived Xenografts. PLoS ONE 2014, 9, e112371. [Google Scholar] [CrossRef]
- You, W.-K.; Schuetz, T.J.; Lee, S.H. Targeting the DLL/Notch Signaling Pathway in Cancer: Challenges and Advances in Clinical Development. Mol. Cancer Ther. 2023, 22, 3–11. [Google Scholar] [CrossRef]
- Yeom, D.-H.; Lee, Y.-S.; Ryu, I.; Lee, S.; Sung, B.; Lee, H.-B.; Kim, D.; Ahn, J.-H.; Ha, E.; Choi, Y.-S.; et al. ABL001, a Bispecific Antibody Targeting VEGF and DLL4, with Chemotherapy, Synergistically Inhibits Tumor Progression in Xenograft Models. IJMS 2020, 22, 241. [Google Scholar] [CrossRef] [PubMed]
- Nanke, Y.; Kotake, S.; Goto, M.; Ujihara, H.; Matsubara, M.; Kamatani, N. Decreased Percentages of Regulatory T Cells in Peripheral Blood of Patients with Behcet’s Disease before Ocular Attack: A Possible Predictive Marker of Ocular Attack. Mod. Rheumatol. 2008, 18, 354–358. [Google Scholar] [CrossRef]
- O’Sullivan Coyne, G.; Woodring, T.S.; Lee, C.-C.R.; Chen, A.P.; Kong, H.H. Hidradenitis Suppurativa-Like Lesions Associated with Pharmacologic Inhibition of Gamma-Secretase. J. Investig. Dermatol. 2018, 138, 979–981. [Google Scholar] [CrossRef]
- de Oliveira, A.S.L.E.; Bloise, G.; Moltrasio, C.; Coelho, A.; Agrelli, A.; Moura, R.; Tricarico, P.M.; Jamain, S.; Marzano, A.V.; Crovella, S.; et al. Transcriptome Meta-Analysis Confirms the Hidradenitis Suppurativa Pathogenic Triad: Upregulated Inflammation, Altered Epithelial Organization, and Dysregulated Metabolic Signaling. Biomolecules 2022, 12, 1371. [Google Scholar] [CrossRef]
- van Es, J.H.; van Gijn, M.E.; Riccio, O.; van den Born, M.; Vooijs, M.; Begthel, H.; Cozijnsen, M.; Robine, S.; Winton, D.J.; Radtke, F.; et al. Notch/Gamma-Secretase Inhibition Turns Proliferative Cells in Intestinal Crypts and Adenomas into Goblet Cells. Nature 2005, 435, 959–963. [Google Scholar] [CrossRef]
- Wu, Y.; Cain-Hom, C.; Choy, L.; Hagenbeek, T.J.; de Leon, G.P.; Chen, Y.; Finkle, D.; Venook, R.; Wu, X.; Ridgway, J.; et al. Therapeutic Antibody Targeting of Individual Notch Receptors. Nature 2010, 464, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Mathern, D.R.; Laitman, L.E.; Hovhannisyan, Z.; Dunkin, D.; Farsio, S.; Malik, T.J.; Roda, G.; Chitre, A.; Iuga, A.C.; Yeretssian, G.; et al. Mouse and Human Notch-1 Regulate Mucosal Immune Responses. Mucosal Immunol. 2014, 7, 995–1005. [Google Scholar] [CrossRef]
- Dhimolea, E. Interleukin-1β Inhibitors for the Treatment of Cryopyrin-Associated Periodic Syndrome. Appl. Clin. Genet. 2011, 4, 21–27. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.-X.; Alippe, Y.; Qu, C.; Xiao, J.; Schipani, E.; Civitelli, R.; Abu-Amer, Y.; Mbalaviele, G. Chronic Inflammation Triggered by the NLRP3 Inflammasome in Myeloid Cells Promotes Growth Plate Dysplasia by Mesenchymal Cells. Sci. Rep. 2017, 7, 4880. [Google Scholar] [CrossRef]
- Piggott, K.; Deng, J.; Warrington, K.; Younge, B.; Kubo, J.T.; Desai, M.; Goronzy, J.J.; Weyand, C.M. Blocking the NOTCH Pathway Inhibits Vascular Inflammation in Large-Vessel Vasculitis. Circulation 2011, 123, 309–318. [Google Scholar] [CrossRef]
- Wen, Z.; Shen, Y.; Berry, G.; Shahram, F.; Li, Y.; Watanabe, R.; Liao, Y.J.; Goronzy, J.J.; Weyand, C.M. The Microvascular Niche Instructs T Cells in Large Vessel Vasculitis via the VEGF-Jagged1-Notch Pathway. Sci. Transl. Med. 2017, 9, 3322. [Google Scholar] [CrossRef]
- Jin, K.; Wen, Z.; Wu, B.; Zhang, H.; Qiu, J.; Wang, Y.; Warrington, K.J.; Berry, G.J.; Goronzy, J.J.; Weyand, C.M. NOTCH-Induced Rerouting of Endosomal Trafficking Disables Regulatory T Cells in Vasculitis. J. Clin. Investig. 2021, 131, e136042. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.; Maillard, I. Therapeutic Targeting of Notch Signaling: From Cancer to Inflammatory Disorders. Front. Cell Dev. Biol. 2021, 9, 649205. [Google Scholar] [CrossRef]
- Choi, M.; Lee, Y.; Lee, N.-K.; Bae, C.H.; Park, D.C.; Paik, H.-D.; Park, E. Immunomodulatory Effects by Bifidobacterium Longum KACC 91563 in Mouse Splenocytes and Macrophages. J Microbiol Biotechnol 2019, 29, 1739–1744. [Google Scholar] [CrossRef]
- Sichetti, M.; De Marco, S.; Pagiotti, R.; Traina, G.; Pietrella, D. Anti-Inflammatory Effect of Multistrain Probiotic Formulation (L. rhamnosus, B. lactis, and B. longum). . Nutrition 2018, 53, 95–102. [Google Scholar] [CrossRef]
- Singh, S.; Bhatia, R.; Khare, P.; Sharma, S.; Rajarammohan, S.; Bishnoi, M.; Bhadada, S.K.; Sharma, S.S.; Kaur, J.; Kondepudi, K.K. Anti-Inflammatory Bifidobacterium Strains Prevent Dextran Sodium Sulfate Induced Colitis and Associated Gut Microbial Dysbiosis in Mice. Sci. Rep. 2020, 10, 18597. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg Induction by a Rationally Selected Mixture of Clostridia Strains from the Human Microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, A.; Sato, T.; Kamada, N.; Mikami, Y.; Matsuoka, K.; Hisamatsu, T.; Hibi, T.; Roers, A.; Yagita, H.; Ohteki, T.; et al. A Single Strain of Clostridium Butyricum Induces Intestinal IL-10-Producing Macrophages to Suppress Acute Experimental Colitis in Mice. Cell Host Microbe 2013, 13, 711–722. [Google Scholar] [CrossRef]
- Wang, J.; Qi, L.; Mei, L.; Wu, Z.; Wang, H.C. Butyricum Lipoteichoic Acid Inhibits the Inflammatory Response and Apoptosis in HT-29 Cells Induced by S. aureus Lipoteichoic Acid. Int. J. Biol. Macromol. 2016, 88, 81–87. [Google Scholar] [CrossRef]
- Gao, Q.; Qi, L.; Wu, T.; Wang, J. Clostridium Butyricum Activates TLR2-Mediated MyD88-Independent Signaling Pathway in HT-29 Cells. Mol. Cell Biochem. 2012, 361, 31–37. [Google Scholar] [CrossRef]
- Hakalehto, E.; Vilpponen-Salmela, T.; Kinnunen, K.; von Wright, A. Lactic Acid Bacteria Enriched from Human Gastric Biopsies. ISRN Gastroenterol. 2011, 2011, 109183. [Google Scholar] [CrossRef] [PubMed]
- Kaci, G.; Goudercourt, D.; Dennin, V.; Pot, B.; Doré, J.; Ehrlich, S.D.; Renault, P.; Blottière, H.M.; Daniel, C.; Delorme, C. Anti-Inflammatory Properties of Streptococcus Salivarius, a Commensal Bacterium of the Oral Cavity and Digestive Tract. Appl. Env. Microbiol. 2014, 80, 928–934. [Google Scholar] [CrossRef]
- MacDonald, K.W.; Chanyi, R.M.; Macklaim, J.M.; Cadieux, P.A.; Reid, G.; Burton, J.P. Streptococcus Salivarius Inhibits Immune Activation by Periodontal Disease Pathogens. BMC Oral Health 2021, 21, 245. [Google Scholar] [CrossRef]
- Kim, S.-M.; Park, S.; Hwang, S.-H.; Lee, E.-Y.; Kim, J.-H.; Lee, G.S.; Lee, G.; Chang, D.-H.; Lee, J.-G.; Hwang, J.; et al. Secreted Akkermansia Muciniphila Threonyl-tRNA Synthetase Functions to Monitor and Modulate Immune Homeostasis. Cell Host Microbe 2023, 31, 1021–1037.e10. [Google Scholar] [CrossRef]
- Wang, L.; Tang, L.; Feng, Y.; Zhao, S.; Han, M.; Zhang, C.; Yuan, G.; Zhu, J.; Cao, S.; Wu, Q.; et al. A Purified Membrane Protein from Akkermansia Muciniphila or the Pasteurised Bacterium Blunts Colitis Associated Tumourigenesis by Modulation of CD8+ T Cells in Mice. Gut 2020, 69, 1988–1997. [Google Scholar] [CrossRef]
- Bian, X.; Wu, W.; Yang, L.; Lv, L.; Wang, Q.; Li, Y.; Ye, J.; Fang, D.; Wu, J.; Jiang, X.; et al. Administration of Akkermansia Muciniphila Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Front. Microbiol. 2019, 10, 2259. [Google Scholar] [CrossRef]
- van der Lugt, B.; van Beek, A.A.; Aalvink, S.; Meijer, B.; Sovran, B.; Vermeij, W.P.; Brandt, R.M.C.; de Vos, W.M.; Savelkoul, H.F.J.; Steegenga, W.T.; et al. Akkermansia Muciniphila Ameliorates the Age-Related Decline in Colonic Mucus Thickness and Attenuates Immune Activation in Accelerated Aging Ercc1 -/Δ7 Mice. Immun. Ageing 2019, 16, 1–17. [Google Scholar] [CrossRef]
- Molaaghaee-Rouzbahani, S.; Asri, N.; Sapone, A.; Baghaei, K.; Yadegar, A.; Amani, D.; Rostami-Nejad, M. Akkermansia Muciniphila Exerts Immunomodulatory and Anti-Inflammatory Effects on Gliadin-Stimulated THP-1 Derived Macrophages. Sci. Rep. 2023, 13, 3237. [Google Scholar] [CrossRef]
- KC Pasteurized Akkermansia Muciniphila as a Postbiotic: EFSA Approval and beyond—International Scientific Association for Probiotics and Prebiotics (ISAPP). Available online: https://isappscience.org/pasteurized-akkermansia-muciniphila-as-a-postbiotic-efsa-approval-and-beyond/ (accessed on 28 February 2025).
- Virk, M.S.; Virk, M.A.; He, Y.; Tufail, T.; Gul, M.; Qayum, A.; Rehman, A.; Rashid, A.; Ekumah, J.-N.; Han, X.; et al. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024, 16, 546. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, R.F.; Berthon, B.S.; Jensen, M.E.; Baines, K.J.; Wood, L.G. Short-Chain Fatty Acids, Prebiotics, Synbiotics, and Systemic Inflammation: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2017, 106, 930–945. [Google Scholar] [CrossRef]
- Aliasgharzadeh, A.; Dehghan, P.; Gargari, B.P.; Asghari-Jafarabadi, M. Resistant Dextrin, as a Prebiotic, Improves Insulin Resistance and Inflammation in Women with Type 2 Diabetes: A Randomised Controlled Clinical Trial. Br. J. Nutr. 2015, 113, 321–330. [Google Scholar] [CrossRef]
- Ma, Y.; Hébert, J.R.; Li, W.; Bertone-Johnson, E.R.; Olendzki, B.; Pagoto, S.L.; Tinker, L.; Rosal, M.C.; Ockene, I.S.; Ockene, J.K.; et al. Association between Dietary Fiber and Markers of Systemic Inflammation in the Women’s Heath Initiative Observational Study. Nutrition 2008, 24, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Merenstein, D.J.; Tancredi, D.J.; Karl, J.P.; Krist, A.H.; Lenoir-Wijnkoop, I.; Reid, G.; Roos, S.; Szajewska, H.; Sanders, M.E. Is There Evidence to Support Probiotic Use for Healthy People? Adv. Nutr. 2024, 15, 100265. [Google Scholar] [CrossRef]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N.; et al. Emerging Issues in Probiotic Safety: 2023 Perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef]
- Yelin, I.; Flett, K.B.; Merakou, C.; Mehrotra, P.; Stam, J.; Snesrud, E.; Hinkle, M.; Lesho, E.; McGann, P.; McAdam, A.J.; et al. Genomic and Epidemiological Evidence of Bacterial Transmission from Probiotic Capsule to Blood in ICU Patients. Nat. Med. 2019, 25, 1728–1732. [Google Scholar] [CrossRef]
- Rocha-Ramírez, L.M.; Pérez-Solano, R.A.; Castañón-Alonso, S.L.; Moreno Guerrero, S.S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages. J. Immunol. Res. 2017, 2017, 4607491. [Google Scholar] [CrossRef] [PubMed]
- Sestito, S.; D’Auria, E.; Baldassarre, M.E.; Salvatore, S.; Tallarico, V.; Stefanelli, E.; Tarsitano, F.; Concolino, D.; Pensabene, L. The Role of Prebiotics and Probiotics in Prevention of Allergic Diseases in Infants. Front. Pediatr. 2020, 8, 583946. [Google Scholar] [CrossRef]
- Mohammed, C.; Fuego, J.P.; Garcia, K.V.; Jamil, H.; Rajesh, R.Y.; Escobar, A.S.; Hassan, M.J.; Rai, M. A Mini Literature Review of Probiotics: Transforming Gastrointestinal Health Through Evidence-Based Insights. Cureus 2024, 16, e57055. [Google Scholar] [CrossRef] [PubMed]
- Power, S.E.; O’Toole, P.W.; Stanton, C.; Ross, R.P.; Fitzgerald, G.F. Intestinal Microbiota, Diet and Health. Br. J. Nutr. 2014, 111, 387–402. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Zhang, X. Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity. Molecules 2021, 26, 6076. [Google Scholar] [CrossRef]
Probiotic | Immunomodulatory Effect | References |
---|---|---|
Bifidobacterium Longum ES1 |
| [171,172,173] |
Clostridium butyricum CBM 588 |
| [174,176,177] |
Streptococcus salivarius |
| [179] |
Akkermansia muciniphila (currently available on the market only as a postbiotic) |
| [181,183,184,185] |
Lactobacillus rhamnosus GG |
| [187] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giambra, V.; Caldarelli, M.; Franza, L.; Rio, P.; Bruno, G.; di Iasio, S.; Mastrogiovanni, A.; Gasbarrini, A.; Gambassi, G.; Cianci, R. The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views. Biomedicines 2025, 13, 768. https://doi.org/10.3390/biomedicines13040768
Giambra V, Caldarelli M, Franza L, Rio P, Bruno G, di Iasio S, Mastrogiovanni A, Gasbarrini A, Gambassi G, Cianci R. The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views. Biomedicines. 2025; 13(4):768. https://doi.org/10.3390/biomedicines13040768
Chicago/Turabian StyleGiambra, Vincenzo, Mario Caldarelli, Laura Franza, Pierluigi Rio, Gaja Bruno, Serena di Iasio, Andrea Mastrogiovanni, Antonio Gasbarrini, Giovanni Gambassi, and Rossella Cianci. 2025. "The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views" Biomedicines 13, no. 4: 768. https://doi.org/10.3390/biomedicines13040768
APA StyleGiambra, V., Caldarelli, M., Franza, L., Rio, P., Bruno, G., di Iasio, S., Mastrogiovanni, A., Gasbarrini, A., Gambassi, G., & Cianci, R. (2025). The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views. Biomedicines, 13(4), 768. https://doi.org/10.3390/biomedicines13040768