Predictive Factors for Morphological and Functional Improvements in Long-Lasting Central Serous Chorioretinopathy Treated with Photodynamic Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Statistical Procedures
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daruich, A.; Matet, A.; Dirani, A.; Bousquet, E.; Zhao, M.; Farman, N.; Jaisser, F.; Behar-Cohen, F. Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog. Retin. Eye Res. 2015, 48, 82–118. [Google Scholar] [CrossRef] [PubMed]
- Ersoz, M.G.; Arf, S.; Hocaoglu, M.; Sayman Muslubas, I.; Karacorlu, M. Patient characteristics and risk factors for central serous chorioretinopathy: An analysis of 811 patients. Br. J. Ophthalmol. 2019, 103, 725–729. [Google Scholar] [CrossRef] [PubMed]
- van Rijssen, T.J.; van Dijk, E.H.C.; Yzer, S.; Ohno-Matsui, K.; Keunen, J.E.E.; Schlingemann, R.O.; Sivaprasad, S.; Querques, G.; Downes, S.M.; Fauser, S.; et al. Central serous chorioretinopathy: Towards an evidence-based treatment guideline. Prog. Retin. Eye Res. 2019, 73, 100770. [Google Scholar] [CrossRef] [PubMed]
- Daruich, A.; Matet, A.; Marchionno, L.; De Azevedo, J.D.; Ambresin, A.; Mantel, I.; Behar-Cohen, F. Acute central serous chorioretinopathy: Factors Influencing Episode Duration. Retina 2017, 37, 1905–1915. [Google Scholar] [CrossRef]
- Gawęcki, M.; Jaszczuk-Maciejewska, A.; Jurska-Jaśko, A.; Kneba, M.; Grzybowski, A. Impairment of visual acuity and retinal morphology following resolved chronic central serous chorioretinopathy. BMC Ophthalmol. 2019, 19, 160. [Google Scholar] [CrossRef]
- Zhou, F.; Yao, J.; Jiang, Q.; Yang, W. Efficacy of Navigated Laser Photocoagulation for Chronic Central Serous Chorioretinopathy: A Retrospective Observational Study. Dis. Markers 2022, 2022, 7792291. [Google Scholar] [CrossRef]
- Robertson, D.M.; Ilstrup, D. Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy. Am. J. Ophthalmol. 1983, 95, 457–466. [Google Scholar] [CrossRef]
- Gawecki, M.; Pytrus, W.; Swiech, A.; Mackiewicz, J.; Lytvynchuk, L. Laser Treatment of Central Serous Chorioretinopathy—An Update. Klin. Monbl. Augenheilkd. 2024, 241, 1207–1223. [Google Scholar] [CrossRef]
- Salehi, M.; Wenick, A.S.; Law, H.A.; Evans, J.R.; Gehlbach, P. Interventions for central serous chorioretinopathy: A network meta-analysis. Cochrane Database Syst. Rev. 2015, 2015, CD011841. [Google Scholar]
- Feenstra, H.M.A.; van Dijk, E.H.C.; van Rijssen, T.J.; Tsonaka, R.; Diederen, R.M.H.; Schlingemann, R.O.; Hoyng, C.B.; Boon, C.J.F. Crossover to Half-Dose Photodynamic Therapy or Eplerenone in Chronic Central Serous Chorioretinopathy Patients. Ophthalmol. Retin. 2022, 6, 930–938. [Google Scholar] [CrossRef]
- Wang, S.K.; Sun, P.; Tandias, R.M.; Seto, B.K.; Arroyo, J.G. Mineralocorticoid Receptor Antagonists in Central Serous Chorioretinopathy: A Meta-Analysis of Randomized Controlled Trials. Ophthalmol. Retin. 2019, 3, 154–160. [Google Scholar] [CrossRef] [PubMed]
- van Rijssen, T.; van Dijk, E.; Scholz, P.; Breukink, M.; Dijkman, G.; Peters, P.; Tsonaka, R.; MacLaren, R.; Downes, S.; Fauser, S.; et al. Crossover to Photodynamic Therapy or Micropulse Laser After Failure of Primary Treatment of Chronic Central Serous Chorioretinopathy: The REPLACE Trial. Am. J. Ophthalmol. 2020, 216, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.A.; Maguire, M.G.; Weng, C.Y.; Smith, J.R.; Jain, N.; Flaxel, C.J.; Patel, S.; Kim, S.J.; Yeh, S. Therapies for Central Serous Chorioretinopathy: A Report by the American Academy of Ophthalmology. Ophthalmology 2025, 132, 343–353. [Google Scholar] [CrossRef]
- Parodi, M.B.; Da Pozzo, S.; Ravalico, G. Photodynamic therapy in chronic central serous chorioretinopathy. Retina 2003, 23, 235–237. [Google Scholar] [CrossRef]
- Yannuzzi, L.A.; Slakter, J.S.; Gross, N.E.; Spaide, R.F.; Costa, D.; Huang, S.J.; Klancnik, J.M., Jr.; Aizman, A. Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: A pilot study. Retina 2003, 23, 288–298. [Google Scholar] [CrossRef]
- Iacono, P.; Da Pozzo, S.; Varano, M.; Parravano, M. Photodynamic therapy with verteporfin for chronic central serous chorioretinopathy: A review of data and efficacy. Pharmaceuticals 2020, 13, 349. [Google Scholar] [CrossRef]
- Nassisi, M.; Lavia, C.; Alovisi, C.; Musso, L.; Eandi, C.M. Short-term choriocapillaris changes in patients with central serous chorioretinopathy after half-dose photodynamic therapy. Int. J. Mol. Sci. 2017, 18, 2468. [Google Scholar] [CrossRef]
- Reifeltshammer, E.; Bechstein, L.; Feucht, N.; Lohmann, C.; Maier, M. Effect of low-dose photodynamic therapy at the choriocapillaris level on optical coherence tomography angiography in patients with chronic central serous chorioretinopathy. Invest. Ophthalmol. Vis. Sci. 2019, 60, 4542. [Google Scholar]
- Fernández-Vigo, J.; Moreno-Morillo, F.; Burgos-Blasco, B.; López-Guajardo, L.; Donate-López, J. Early vessel occlusion and recanalization after photodynamic therapy in central serous chorioretinopathy by OCT angiography. Eur. J. Ophthalmol. 2021, 23, 11206721211027060. [Google Scholar] [CrossRef]
- Zhang, X.; Lim, C.Z.F.; Chhablani, J.; Wong, Y.M. Central serous chorioretinopathy: Updates in the pathogenesis, diagnosis and therapeutic strategies. Eye Vis. 2023, 10, 33. [Google Scholar] [CrossRef]
- Kaye, R.; Chandra, S.; Sheth, J.; Boon, C.J.F.; Sivaprasad, S.; Lotery, A. Central serous chorioretinopathy: An update on risk factors, pathophysiology and imaging modalities. Prog. Retin. Eye Res. 2020, 79, 100865. [Google Scholar] [CrossRef]
- Silva, R.M.; Ruiz-Moreno, J.M.; Gomez-Ulla, F.; Montero, J.A.; Gregório, T.; Cachulo, M.L.; Pires, I.A.; Cunha-Vaz, J.G.; Murta, J.N. Photodynamic therapy for chronic central serous chorioretinopathy: A 4-year follow-up study. Retina 2013, 33, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Copete, S.; Ruiz-Moreno, J.M.; Cava, C.; Montero, J.A. Retinal thickness changes following photodynamic therapy in chronic central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.H.; Ng, D.S.; Bakthavatsalam, M.; Chan, V.C.; Young, A.L.; Luk, F.O.; Tsang, C.W.; Brelén, M.E. A multicenter study on the long-term outcomes of half-dose photodynamic therapy in chronic central serous chorioretinopathy. Am. J. Ophthalmol. 2016, 170, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Chhablani, J.; Cohen, F.B. Central Serous Chorioretinopathy International Group. Multimodal imaging-based central serous chorioretinopathy classification. Ophthalmol. Retin. 2020, 4, 1043–1046. [Google Scholar] [CrossRef]
- Gawęcki, M.; Grzybowski, A.; Święch, A. Biometric risk factors for central serous chorioretinopathy. Ophthalmol. Ther. 2023, 12, 1327–1338. [Google Scholar] [CrossRef]
- Gawęcki, M.; Grzybowski, A. Ganglion cell loss in the course of central serous chorioretinopathy. Ophthalmol. Ther. 2023, 12, 517–533. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, C.; Xu, G. Correlations between changes in photoreceptor layer and other clinical characteristics in central serous chorioretinopathy. Retina 2019, 39, 1110–1116. [Google Scholar] [CrossRef]
- Torres-Costa, S.; Penas, S.; Cerqueira, A.R.; Brandão, E.; Carneiro, Â.; Rocha-Sousa, A.; Falcão-Reis, F. Long term outer retinal changes in central serous chorioretinopathy submitted to half-dose photodynamic therapy. Photodiagn. Photodyn. Ther. 2021, 34, 102235. [Google Scholar] [CrossRef]
- Matsumoto, H.; Sato, T.; Kishi, S. Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am. J. Ophthalmol. 2009, 148, 105–110.e1. [Google Scholar] [CrossRef]
- Kamimura, A.; Miki, A.; Kishi, M.; Okuda, M.; Hayashida-Hirano, M.; Sakamoto, M.; Matsumiya, W.; Imai, H.; Kusuhara, S.; Nakamura, M. Two-year outcome of half-time photodynamic therapy for chronic central serous chorioretinopathy with and without choroidal neovascularization. PLoS ONE 2023, 18, e0284979. [Google Scholar] [CrossRef] [PubMed]
- Maruyama-Inoue, M.; Yanagi, Y.; Inoue, T.; Kitajima, Y.; Kadonosono, K. Importance of fluorescein angiography as a predictor of treatment response in patients with pachychoroid neovasculopathy. Sci. Rep. 2024, 14, 29157. [Google Scholar] [CrossRef] [PubMed]
- Pauleikhoff, L.; Diederen, R.; Feenstra, H.; Schlingemann, R.; van Dijk, E.; Boon, C. Single-session bilateral reduced-settings photodynamic therapy for bilateral chronic central serous chorioretinopathy. Retina 2023, 43, 1356–1363. [Google Scholar] [CrossRef]
- Khandhadia, S.; Thulasidharan, S.; Hoang, N.; Ibrahim, S.; Ouyang, Y.; Lotery, A. Real world outcomes of photodynamic therapy for chronic central serous chorioretinopathy. Eye 2023, 37, 2548–2553. [Google Scholar] [CrossRef] [PubMed]
- Aisu, N.; Miyake, M.; Hosoda, Y.; Mori, Y.; Takahashi, A.; Muraoka, Y.; Ueda-Arakawa, N.; Miyata, M.; Oishi, A.; Tamura, H.; et al. Effectiveness of reduced-fluence photodynamic therapy for chronic central serous chorioretinopathy: A propensity score analysis. Ophthalmol. Sci. 2022, 2, 100152. [Google Scholar] [CrossRef]
- Feenstra, H.; Diederen, R.; Lamme, M.; Tsonaka, R.; Fauser, S.; Yzer, S.; van Rijssen, T.; Gkika, T.; Downes, S.; Schlingemann, R.; et al. Increasing evidence for the safety of fovea-involving half-dose photodynamic therapy for chronic central serous chorioretinopathy. Retina 2023, 43, 379–388. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, Y.K.; Park, K.H.; Woo, S.J. Long-term efficacy and safety of photodynamic therapy in patients with chronic central serous chorioretinopathy. Ophthalmic Surg. Lasers Imaging Retin. 2019, 50, 760–770. [Google Scholar] [CrossRef]
- Wakatsuki, Y.; Tanaka, K.; Mori, R.; Furuya, K.; Kawamura, A.; Nakashizuka, H. Morphological changes and prognostic factors before and after photodynamic therapy for central serous chorioretinopathy. Pharmaceuticals 2021, 14, 53. [Google Scholar] [CrossRef]
- Li, M.; Qu, J.; Liang, Z.; Tang, J.; Hu, J.; Yao, Y.; Jin, E.; Li, X.; Zhao, M. Risk factors of persistent subretinal fluid after half-dose photodynamic therapy for treatment-naïve central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 2175–2182. [Google Scholar] [CrossRef]
- van Rijssen, T.J.; van Dijk, E.H.C.; Dijkman, G.; Boon, C.J.F. Clinical characteristics of chronic central serous chorioretinopathy patients with insufficient response to reduced-settings photodynamic therapy. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1395–1402. [Google Scholar] [CrossRef]
- Arrigo, A.; Calamuneri, A.; Aragona, E.; Bordato, A.; Grazioli Moretti, A.; Amato, A.; Bandello, F.; Battaglia Parodi, M. Structural OCT parameters associated with treatment response and macular neovascularization onset in central serous chorioretinopathy. Ophthalmol. Ther. 2021, 10, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Takeuchi, J.; Kataoka, K.; Ota, H.; Asai, K.; Nakano, Y.; Horiguchi, E.; Taki, Y.; Ito, Y.; Terasaki, H.; et al. Effects of half-dose photodynamic therapy on chronic central serous chorioretinopathy with or without macular neovascularization assessed using optical coherence tomography angiography. Retina 2022, 42, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Mirshahi, R.; Naseripour, M.; Ghomashi, A.; Falavarjani, K.G. Clinical predictive factors and imaging biomarkers of treatment response to half dose PDT in patients with chronic central serous chorioretinopathy. Photodiagn. Photodyn. Ther. 2024, 48, 104224. [Google Scholar] [CrossRef]
- Sousa, K.; Viana, A.R.; Pires, J.; Ferreira, C.; Queirós, L.; Falcão, M. Outer nuclear layer as the main predictor to anatomic response to half dose photodynamic therapy in chronic central serous retinopathy. J. Ophthalmol. 2019, 2019, 5859063. [Google Scholar] [CrossRef]
- Son, K.Y.; Lim, S.G.; Hwang, S.; Choi, J.; Kim, S.J.; Kang, S.W. Foveal atrophy in patients with active central serous chorioretinopathy at first presentation: Characteristics and treatment outcomes. Br. J. Ophthalmol. 2024, 109, 89–97. [Google Scholar] [CrossRef]
- Yu, J.; Ye, X.; Li, L.; Jiang, C.; Chang, Q.; Xu, G. Threshold thickness of foveal outer nuclear layer associated with outcomes of photodynamic therapy in central serous chorioretinopathy. Eye 2022, 36, 1884–1889. [Google Scholar] [CrossRef]
- Jeong, S.; Kang, W.; Sagong, M. Influence of vortex vein engorgement for photodynamic therapy in central serous chorioretinopathy. Sci. Rep. 2024, 14, 24424. [Google Scholar] [CrossRef]
- Ozkaya, A.; Garip, R.; Alkin, Z.; Taskapili, M. The comparison of multimodal imaging findings of central serous chorioretinopathy patients in regard to the early anatomically treatment response to half-fluence photodynamic therapy: A retrospective case-control study. Int. J. Retin. Vitr. 2017, 3, 20. [Google Scholar] [CrossRef]
- Forte, P.; Cattaneo, J.; Cardillo Piccolino, F.; Arrigo, A.; Corazza, P.; Musetti, D.; Rosa, R.; Traverso, C.E.; Fontana, V.; Lupidi, M.; et al. Influence of scleral thickness on photodynamic therapy outcomes in central serous chorioretinopathy. Acta Ophthalmol. 2024, 103, e165–e175. [Google Scholar] [CrossRef]
- Lim, J.I.; Glassman, A.R.; Aiello, L.P.; Chakravarthy, U.; Flaxel, C.J.; Spaide, R.F. Macula Society CSC Collaborative Study Group, Research and Education Committee and Website Committee. Collaborative retrospective macula society study of photodynamic therapy for chronic central serous chorioretinopathy. Ophthalmology 2014, 121, 1073–1078. [Google Scholar] [CrossRef]
Analyzed Trait | Follow-Up | Statistical Parameter * | p Value ** | |||
---|---|---|---|---|---|---|
M | SD | Me | Q1–Q3 | |||
BCVA [logMAR] | Before treatment | 0.46 | 0.37 | 0.40 | 0.20–0.60 | <0.0001 |
At 1 month | 0.35 | 0.34 | 0.30 | 0.10–0.50 | 0.6547 | |
At 6 months | 0.34 | 0.38 | 0.20 | 0.10–0.50 | <0.0001 | |
CST [µm] | Before treatment | 327.26 | 82.06 | 307.00 | 269.00–396.00 | <0.0001 |
At 1 month | 249.41 | 80.63 | 226.00 | 194.00–275.00 | <0.0001 | |
At 6 months | 244.10 | 76.34 | 227.00 | 195.00–264.00 | <0.0001 | |
MST [µm] | Before treatment | 302.82 | 29.46 | 298.00 | 283.00–312.00 | <0.0001 |
At 1 month | 281.79 | 26.89 | 277.00 | 267.00–294.00 | 0.1589 | |
At 6 months | 284.49 | 29.69 | 280.00 | 268.00–297.00 | <0.0001 | |
MV [mm3] | Before treatment | 8.54 | 0.81 | 8.43 | 8.01–8.79 | <0.0001 |
At 1 month | 7.97 | 0.77 | 7.82 | 7.54–8.27 | 0.0779 | |
At 6 months | 8.08 | 0.90 | 7.99 | 7.56–8.47 | <0.0001 | |
SFCT [µm] | Before treatment | 587.32 | 110.45 | 598.00 | 520.00–660.00 | <0.0001 |
At 1 month | 539.83 | 102.67 | 550.00 | 474.00–603.00 | 0.8605 | |
At 6 months | 539.09 | 93.35 | 548.00 | 489.00–594.00 | <0.0001 | |
SRF, height [µm] | Before treatment | 128.26 | 91.09 | 120.00 | 66.00–180.00 | <0.0001 |
At 1 month | 36.95 | 84.12 | 0.00 | 0.00–0.00 | 0.0184 | |
At 6 months | 30.80 | 77.76 | 0.00 | 0.00–0.00 | <0.0001 |
Analyzed Trait | Morphological Improvement | Functional Improvement | p Value * | |||
---|---|---|---|---|---|---|
Yes | No | Yes | No | Univariate | Multivariate | |
No. of eyes, n (%) | 74 (76.29) | 23 (23.71) | 69 (77.53) | 20 (22.47) | >0.9999 | n/a |
Gender, n (%): | ||||||
| 9 (12.16) | 8 (34.78) | 10 (14.49) | 5 (25.00) | 0.0127 0.2691 | 0.0097 OR = 0.14 (95% CI: 0.03–0.62) p = 0.1549 |
| 65 (87.84) | 15 (65.22) | 59 (85.51) | 15 (75.00) | ||
MNV, n (%): | ||||||
| 7 (9.46) | 6 (26.09) | 7 (10.14) | 4 (20.00) | 0.0409 0.2792 | 0.8063 0.9306 |
| 67 (90.54) | 17 (73.91) | 62 (89.86) | 16 (80.00) | ||
PED, n (%): | ||||||
| 14 (18.92) | 5 (21.74) | 17 (24.64) | 2 (10.00) | 0.7660 0.2212 | 0.3554 0.2122 |
| 60 (81.08) | 18 (78.26) | 52 (75.36) | 18 (90.00) | ||
NRA, n (%): | ||||||
| 8 (10.81) | 9 (39.13) | 8 (11.59) | 8 (40.00) | 0.0018 0.0036 | 0.1547 0.0139 OR = 0.16 (95% CI: 0.04–0.069) |
| 66 (89.19) | 14 (60.87) | 61 (88.41) | 12 (60.00) | ||
Baseline BCVA, n (%): | ||||||
| 24 (32.43) | 1 (4.35) | 24 (34.78) | 1 (5.00) | 0.0092 ** 0.0303 | 0.2747 0.1671 |
| 43 (58.11) | 16 (69.56) | 36 (52.18) | 16 (80.00) | ||
| 7 (9.46) | 6 (26.09) | 9 (13.04) | 3 (15.00) |
Analyzed Trait | Morphological Improvement | Functional Improvement | p Value * | |||
---|---|---|---|---|---|---|
Yes | No | Yes | No | Univariate | Multivariate | |
Age [year], M (SD); Me (Q1–Q3) | 46.63 (8.56); 46 (42–52) | 55.52 (12.41); 54 (47–66) | 48.49 (8.89); 46 (43–54) | 53.15 (12.73); 51 (44–62) | 0.0012 0.0824 | 0.0147 OR = 1.08 (95% CI: 1.02–1.15) 0.3319 |
Disease duration [month], M (SD); Me (Q1–Q3) | 58.57 (72.30); 30 (20–70) | 99.65 (74.87); 96 (48–100) | 68.61 (76.79); 48 (20–100) | 75.50 (74.84); 60 (27–100) | 0.0006 0.3193 | 0.7329 0.4597 |
CST [µm], M (SD); Me (Q1–Q3) | 325.06 (79.12); 306.00 (267–401) | 334.30 (92.45); 321 (270–396) | 323.03 (84.15); 300 (267–377) | 334.15 (76.94); 319 (262–403) | 0.6397 0.5975 | 0.8161 0.9125 |
MST [µm], M (SD); Me (Q1–Q3) | 302.58 (27.27); 299 (285–312) | 303.61 (36.32); 297 (273–314) | 301.81 (29.19); 297 (285–309) | 301.35 (31.06); 303 (273–324) | 0.8847 0.9512 | 0.9153 0.6127 |
Baseline BCVA [logMAR], M (SD); Me (Q1–Q3) | 0.39 (0.31); 0.35 (0.20–0.50) | 0.67 (0,46); 0.60 (0.40–0.80) | 0.43 (0.36); 0.40 (0.20–0.60) | 0.58 (0.40); 0.50 (0.40–0.60) | 0.0008 0.0323 | 0.0899 0.9566 |
Morphological Feature | Follow-Up | Statistical Parameter * | p Value ** | |
---|---|---|---|---|
n | % | |||
PED | Before treatment | 19 | 19.59 | 0.0004 |
At 1 month | 5 | 5.15 | ||
At 6 months | 4 | 4.12 | ||
NRA | Before treatment | 17 | 17.53 | 0.6973 |
At 1 month | 11 | 11.34 | ||
At 6 months | 9 | 9.28 |
No. | Analyzed Factor | Studies | Finding |
---|---|---|---|
1 | Disease duration | Wakatsuki et al. 2021 [38], Li et al. 2022 [39], present study | Longer duration associated with poorer morphological outcomes |
2 | BCVA before PDT | Wakatsuki et al. 2021 [38], van Rijssen et al. 2018 [40], present study | Poorer morphological response at 3 months (Wakatsuki et al.), 2 months (van Rijssen et al.), or 1 month (present study) associated with lower baseline BCVA |
3 | Age | van Rijssen et al. 2018 [40], Park et al. [37], Arrigo et al. 2021 [41], Nakamura et al. 2022 [42], present study | Older age associated with worse morphological outcomes and non-response |
4 | Gender | van Rijssen et al. 2018 [40], present study | Anatomical non-response rate greater in male cohort (van Rijssen et al.) or worse anatomical response in female patients (present study) |
5 | Choroidal abnormalities | Arrigo et al. 2021 [41], Nakamura et al. [42] | Poorer morphological response with hyperreflective foci in the choroid (Arrigo et al.), thicker pretreatment choroidal thickness associated with better morphological response (Nakamura et al.) |
6 | Presence of MNV | Nakamura et al. 2022 [42], Kamimura et al. 2023 [31], present study | Poorer morphological response and/or recurrence in patients with MNV |
7 | Retinal thickness, condition of retinal layers, intraretinal abnormalities | Wakatsuki et al. 2021 [38], Mirshahi et al. 2024 [43], Li et al. 2022 [39], Sousa et al. 2019 [44], Son et al. 2024 [45], Yu et al. 2022 [46], present study | Higher CST associated with poorer morphological results at 3 months (Wakatsuki et al.), hyperreflective foci in the retina associated with smaller anatomical improvement (Mirshahi et al.), larger SRF and PED at baseline associated with residual SRF post PDT (Li et al.), thicker ONL associated with better morphological (Sousa et al.) and functional (Yu et al.) responses, intact outer retina correlated with better anatomical response (Sousa et al., Son et al.), foveal atrophy associated with poorer morphological and functional outcomes (Son et al.), smaller morphological improvement in patients with intraretinal abnormalities (present study) |
8 | Leakage in FA | van Rijssen et al. 2018 [40] | Diffuse leakage over area larger than disc diameter associated with poorer morphological outcomes |
9 | ICGA findings | Jeong et al. 2024 [47], van Rijssen et al. 2018 [40], Ozkaya et al. 2017 [48] | Larger number of macular vortex veins and vortex vein engorgement associated with poorer morphological outcomes and smaller BCVA improvements (Jeong et al.), lack of intense hyperfluorescence on ICGA associated with poorer morphological outcomes (van Rijssen et al.), better anatomical response in patients with midphase focal hyperfluorescence (Ozkaya et al.) |
10 | Scleral thickness | Forte et al. 2024 [49] | Increased scleral thickness associated with higher risk of anatomical non-responsiveness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawęcki, M.; Kiciński, K.; Kucharczuk, J.; Gołębiowska-Bogaj, M.; Grzybowski, A. Predictive Factors for Morphological and Functional Improvements in Long-Lasting Central Serous Chorioretinopathy Treated with Photodynamic Therapy. Biomedicines 2025, 13, 944. https://doi.org/10.3390/biomedicines13040944
Gawęcki M, Kiciński K, Kucharczuk J, Gołębiowska-Bogaj M, Grzybowski A. Predictive Factors for Morphological and Functional Improvements in Long-Lasting Central Serous Chorioretinopathy Treated with Photodynamic Therapy. Biomedicines. 2025; 13(4):944. https://doi.org/10.3390/biomedicines13040944
Chicago/Turabian StyleGawęcki, Maciej, Krzysztof Kiciński, Jan Kucharczuk, Monika Gołębiowska-Bogaj, and Andrzej Grzybowski. 2025. "Predictive Factors for Morphological and Functional Improvements in Long-Lasting Central Serous Chorioretinopathy Treated with Photodynamic Therapy" Biomedicines 13, no. 4: 944. https://doi.org/10.3390/biomedicines13040944
APA StyleGawęcki, M., Kiciński, K., Kucharczuk, J., Gołębiowska-Bogaj, M., & Grzybowski, A. (2025). Predictive Factors for Morphological and Functional Improvements in Long-Lasting Central Serous Chorioretinopathy Treated with Photodynamic Therapy. Biomedicines, 13(4), 944. https://doi.org/10.3390/biomedicines13040944