Applications of CRISPR-Cas-Based Genome Editing Approaches Against Human Cytomegalovirus Infection
Abstract
1. Cytomegalovirus
2. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-Associated Protein (Cas) Gene-Editing System
3. Developing CRISPR/Cas-Based Technologies for the Studies of HCMV Infection
Delivery Vector | Infection Model | Target Genes | Outcome | Reference |
---|---|---|---|---|
Lentivirus | In Vitro (MRC5 cells) | Essential genes: UL54, UL44, UL57, UL70, UL105, UL86, UL84 | Impaired viral replication | [29] |
Non-essential genes: US6, US7, and US11 | No interference with HCMV replication | |||
Lentivirus | In Vitro (MRC5 cells) | UL122/123 | Decreased IE genes and viral replication | [30] |
Lentivirus | In Vitro (MRC5 cells) | Non-essential genes: US7 and US34 | No interference with HCMV replication | [26] |
Lentivirus | In Vitro (HFF and THP-1 cells) | UL122/123 | Significant decreased HCMV replication and reactivation | [31] |
Lentivirus | In Vitro (HFF cells) | UL23 | Conversion of wild-type viruses into gene drive viruses with attenuation | [32] |
Lentivirus | In Vitro (HFF cells) | Essential genes: UL79, UL99 | Gene drive viruses had very little spread when mixed with wild-type virus | [33] |
Not essential, but needed for efficient replication: UL26, UL35 | UL26: resulted in very poor viral replication | |||
UL35: resulted in moderately poor viral replication |
4. Developing CRISPR/Cas-Based Technologies for the Treatment of HCMV Infection
4.1. Targeting HCMV Genes Using CRISPR-Cas Approach with Single sgRNAs
4.2. Targeting HCMV UL122/123 Using Multiplex CRISPR-Cas Strategy
4.3. Inhibition of HCMV Lytic Replication and Reactivation by the CRISPR-Cas System
4.4. CRISPR-Cas-Mediated Viral Gene Drive
5. Limitations and Challenges in Using CRISPR-Cas Approaches for Studying and Treating HCMV Infections
5.1. Off Target Effects
5.2. The Need for a PAM Sequence
5.3. Toxicity
5.4. Emergence of Escape Mutants Resistant to the CRISPR-Cas Approaches
5.5. Potential Challenges and Considerations in Treating HCMV Infections with the CRISPR-Cas Approaches in Clinical Settings
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krug, L.T.; Pellett, P.E. The Family Herpesviridae: A Brief Introduction. In Fields Virology: DNA Viruses, 7th ed.; Knipe, D.M., Howley, P., Eds.; Wolters Kluwer Health, Lippincott and Williams & Wilkins: Philadelphia, PA, USA, 2021; Volume 1, pp. 212–234. [Google Scholar]
- Chen, S.J.; Wang, S.C.; Chen, Y.C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses 2019, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Goodrum, F.; Britt, W.; Mocarski, E.S. Cytomegalovirus. In Fields Virology: DNA Viruses, 7th ed.; Knipe, D.M., Howley, P., Eds.; Wolters Kluwer Health, Lippincott and Williams & Wilkins: Philadelphia, PA, USA, 2021; Volume 1, pp. 389–444. [Google Scholar]
- Ssentongo, P.; Hehnly, C.; Birungi, P.; Roach, M.A.; Spady, J.; Fronterre, C.; Wang, M.; Murray-Kolb, L.E.; Al-Shaar, L.; Chinchilli, V.M.; et al. Congenital Cytomegalovirus Infection Burden and Epidemiologic Risk Factors in Countries with Universal Screening: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e2120736. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Hashida, N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses 2024, 16, 1110. [Google Scholar] [CrossRef] [PubMed]
- Pass, R.F.; Anderson, B. Mother-to-Child Transmission of Cytomegalovirus and Prevention of Congenital Infection. J. Pediatric Infect. Dis. Soc. 2014, 3 (Suppl. 1), S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Cannon, M.J.; Hyde, T.B.; Schmid, D.S. Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev. Med. Virol. 2011, 21, 240–255. [Google Scholar] [CrossRef]
- Cunningham, C.; Gatherer, D.; Hilfrich, B.; Baluchova, K.; Dargan, D.J.; Thomson, M.; Griffiths, P.D.; Wilkinson, G.W.; Schulz, T.F.; Davison, A.J. Sequences of complete human cytomegalovirus genomes from infected cell cultures and clinical specimens. J. Gen. Virol. 2010, 91, 605–615. [Google Scholar] [CrossRef]
- Forte, E.; Zhang, Z.; Thorp, E.B.; Hummel, M. Cytomegalovirus Latency and Reactivation: An Intricate Interplay with the Host Immune Response. Front. Cell. Infect. Microbiol. 2020, 10, 130. [Google Scholar] [CrossRef]
- Sinclair, J.; Sissons, P. Latency and reactivation of human cytomegalovirus. J. Gen. Virol. 2006, 87, 1763–1779. [Google Scholar] [CrossRef]
- Grgic, I.; Gorenec, L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Trop. Med. Infect. Dis. 2024, 9, 49. [Google Scholar] [CrossRef]
- Lynch, K.; Martson, A.G. The importance of drug exposure in the development of cytomegalovirus resistance. Int. J. Antimicrob. Agents 2025, 66, 107537. [Google Scholar] [CrossRef]
- Walti, C.S.; Khanna, N.; Avery, R.K.; Helantera, I. New Treatment Options for Refractory/Resistant CMV Infection. Transpl. Int. 2023, 36, 11785. [Google Scholar] [CrossRef] [PubMed]
- Boxer, L.; Dale, D.C. Neutropenia: Causes and consequences. Semin. Hematol. 2002, 39, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, E.; Domanski, L.; Dziedziejko, V.; Kajdy, A.; Stefanska, K.; Kwiatkowski, S. The Mechanism of Drug Nephrotoxicity and the Methods for Preventing Kidney Damage. Int. J. Mol. Sci. 2021, 22, 6109. [Google Scholar] [CrossRef] [PubMed]
- Hille, F.; Richter, H.; Wong, S.P.; Bratovic, M.; Ressel, S.; Charpentier, E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018, 172, 1239–1259. [Google Scholar] [CrossRef]
- Madigan, V.; Zhang, F.; Dahlman, J.E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 2023, 22, 875–894. [Google Scholar] [CrossRef]
- Wang, J.Y.; Doudna, J.A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef]
- Charpentier, E.; Doudna, J.A. Biotechnology: Rewriting a genome. Nature 2013, 495, 50–51. [Google Scholar] [CrossRef]
- Yair, Y.; Gophna, U. Repeat modularity as a beneficial property of multiple CRISPR-Cas systems. RNA Biol. 2019, 16, 585–587. [Google Scholar] [CrossRef]
- Liao, C.; Beisel, C.L. The tracrRNA in CRISPR Biology and Technologies. Annu. Rev. Genet. 2021, 55, 161–181. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Borst, E.M.; Hahn, G.; Koszinowski, U.H.; Messerle, M. Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: A new approach for construction of HCMV mutants. J. Virol. 1999, 73, 8320–8329. [Google Scholar] [CrossRef] [PubMed]
- Messerle, M.; Crnkovic, I.; Hammerschmidt, W.; Ziegler, H.; Koszinowski, U.H. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. USA 1997, 94, 14759–14763. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.; Chou, C.; Li, H.; Hai, R.; Patterson, D.; Stolc, V.; Zhu, H.; Liu, F. Functional profiling of human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 2003, 100, 14223–14228. [Google Scholar] [CrossRef] [PubMed]
- King, M.W.; Munger, J. Editing the human cytomegalovirus genome with the CRISPR/Cas9 system. Virology 2019, 529, 186–194. [Google Scholar] [CrossRef]
- E, X.; Meraner, P.; Lu, P.; Perreira, J.M.; Aker, A.M.; McDougall, W.M.; Zhuge, R.; Chan, G.C.; Gerstein, R.M.; Caposio, P.; et al. OR14I1 is a receptor for the human cytomegalovirus pentameric complex and defines viral epithelial cell tropism. Proc. Natl. Acad. Sci. USA 2019, 116, 7043–7052. [Google Scholar] [CrossRef]
- E, X.; Kowalik, T.F. A Generally Applicable CRISPR/Cas9 Screening Technique to Identify Host Genes Required for Virus Infection as Applied to Human Cytomegalovirus (HCMV) Infection of Epithelial Cells. Methods Mol. Biol. 2021, 2244, 247–264. [Google Scholar] [CrossRef]
- van Diemen, F.R.; Kruse, E.M.; Hooykaas, M.J.; Bruggeling, C.E.; Schurch, A.C.; van Ham, P.M.; Imhof, S.M.; Nijhuis, M.; Wiertz, E.J.; Lebbink, R.J. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. PLoS Pathog. 2016, 12, e1005701. [Google Scholar] [CrossRef]
- Gergen, J.; Coulon, F.; Creneguy, A.; Elain-Duret, N.; Gutierrez, A.; Pinkenburg, O.; Verhoeyen, E.; Anegon, I.; Nguyen, T.H.; Halary, F.A.; et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS ONE 2018, 13, e0192602. [Google Scholar] [CrossRef]
- Xiao, J.; Deng, J.; Zhang, Q.; Ma, P.; Lv, L.; Zhang, Y.; Li, C.; Zhang, Y. Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation. Arch. Virol. 2020, 165, 1827–1835. [Google Scholar] [CrossRef]
- Walter, M.; Verdin, E. Viral gene drive in herpesviruses. Nat. Commun. 2020, 11, 4884. [Google Scholar] [CrossRef]
- Walter, M.; Perrone, R.; Verdin, E. Targeting Conserved Sequences Circumvents the Evolution of Resistance in a Viral Gene Drive against Human Cytomegalovirus. J. Virol. 2021, 95, e0080221. [Google Scholar] [CrossRef] [PubMed]
- Gawn, J.M.; Greaves, R.F. Absence of IE1 p72 protein function during low-multiplicity infection by human cytomegalovirus results in a broad block to viral delayed-early gene expression. J. Virol. 2002, 76, 4441–4455. [Google Scholar] [CrossRef] [PubMed]
- Paulus, C.; Nevels, M. The human cytomegalovirus major immediate-early proteins as antagonists of intrinsic and innate antiviral host responses. Viruses 2009, 1, 760–779. [Google Scholar] [CrossRef] [PubMed]
- Adamson, C.S.; Nevels, M.M. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020, 12, 110. [Google Scholar] [CrossRef]
- Browne, E.P.; Shenk, T. Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc. Natl. Acad. Sci. USA 2003, 100, 11439–11444. [Google Scholar] [CrossRef]
- Feng, L.; Sheng, J.; Vu, G.P.; Liu, Y.; Foo, C.; Wu, S.; Trang, P.; Paliza-Carre, M.; Ran, Y.; Yang, X.; et al. Human cytomegalovirus UL23 inhibits transcription of interferon-gamma stimulated genes and blocks antiviral interferon-gamma responses by interacting with human N-myc interactor protein. PLoS Pathog. 2018, 14, e1006867. [Google Scholar] [CrossRef]
- Tsuchida, C.A.; Wasko, K.M.; Hamilton, J.R.; Doudna, J.A. Targeted nonviral delivery of genome editors in vivo. Proc. Natl. Acad. Sci. USA 2024, 121, e2307796121. [Google Scholar] [CrossRef]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.F.; Yu, T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release 2017, 266, 17–26. [Google Scholar] [CrossRef]
- Sari-Ak, D.; Alomari, O.; Shomali, R.A.; Lim, J.; Thimiri Govinda Raj, D.B. Advances in CRISPR-Cas9 for the Baculovirus Vector System: A Systematic Review. Viruses 2022, 15, 54. [Google Scholar] [CrossRef]
- Modell, A.E.; Lim, D.; Nguyen, T.M.; Sreekanth, V.; Choudhary, A. CRISPR-based therapeutics: Current challenges and future applications. Trends Pharmacol. Sci. 2022, 43, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Uddin, F.; Rudin, C.M.; Sen, T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front. Oncol. 2020, 10, 1387. [Google Scholar] [CrossRef] [PubMed]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Tee, L.Y.; Wang, X.G.; Huang, Q.S.; Yang, S.H. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol. Ther. Nucleic Acids 2015, 4, e264. [Google Scholar] [CrossRef]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef]
- Rasul, M.F.; Hussen, B.M.; Salihi, A.; Ismael, B.S.; Jalal, P.J.; Zanichelli, A.; Jamali, E.; Baniahmad, A.; Ghafouri-Fard, S.; Basiri, A.; et al. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol. Cancer 2022, 21, 64. [Google Scholar] [CrossRef]
- Soussi, T. The p53 tumor suppressor gene: From molecular biology to clinical investigation. Ann. N. Y. Acad. Sci. 2000, 910, 121–137, discussion 137–129. [Google Scholar] [CrossRef]
- Trevino, A.E.; Zhang, F. Genome editing using Cas9 nickases. Methods Enzymol. 2014, 546, 161–174. [Google Scholar] [CrossRef]
- Westall, G.P.; Gottlieb, D.; Hughes, P.; Marinelli, T.; Rawlinson, W.D.; Ritchie, D.; Sasadeusz, J.; Yong, M.K. Emerging concepts of CMV in transplantation. Intern. Med. J. 2025, 55, 12–19. [Google Scholar] [CrossRef]
- Kotton, C.N.; Kumar, D.; Manuel, O.; Chou, S.; Hayden, R.T.; Danziger-Isakov, L.; Asberg, A.; Tedesco-Silva, H.; Humar, A.; on behalf of The Transplantation Society International CMV Consensus Group. The Fourth International Consensus Guidelines on the Management of Cytomegalovirus in Solid Organ Transplantation. Transplantation 2025, 109, 1066–1100. [Google Scholar] [CrossRef]
Strengths | Weaknesses | |
---|---|---|
Singleplex CRISPR-Cas | Simple and easy design and expression | Higher probability of escape mutations |
Multiplex CRISPR-Cas | Can target multiple genes or make large deletions Lower probability of escape mutations | Complicated and difficult design and expression |
Gene drive cassettes | Edits self-propagate to wild-type viruses | Positively selects for outcompeting resistant viruses |
Delivery System | Advantages | Limitations | |
---|---|---|---|
Viral delivery tools | Adeno-associated virus (AAV) | Safe and high delivery efficiency, broad serotype specificity | Limited packaging size |
Lentivirus | Large loading capacity, high delivery efficiency, low immunogenicity | High cost, difficult to construct | |
Baculovirus | Large loading capacity | Difficult for direct genome manipulation | |
Non-viral delivery tools | Electroporation | Suitable for any type of CRISPR-Cas9 system | Induces high cell death, limited integration of plasmid DNA into target cells |
Lipid-based nanoparticle | Commercially available, safe | Low delivery efficiency | |
Polymer-based nanoparticles | Low immunogenicity, easy to modify | Limited application | |
Gold nanoparticle | Stable and biocompatible, can be easily customized | High concentration could be toxic in vivo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, A.; Zhang, I.; Liu, F. Applications of CRISPR-Cas-Based Genome Editing Approaches Against Human Cytomegalovirus Infection. Biomedicines 2025, 13, 1590. https://doi.org/10.3390/biomedicines13071590
Zhang A, Zhang I, Liu F. Applications of CRISPR-Cas-Based Genome Editing Approaches Against Human Cytomegalovirus Infection. Biomedicines. 2025; 13(7):1590. https://doi.org/10.3390/biomedicines13071590
Chicago/Turabian StyleZhang, Andra, Isadora Zhang, and Fenyong Liu. 2025. "Applications of CRISPR-Cas-Based Genome Editing Approaches Against Human Cytomegalovirus Infection" Biomedicines 13, no. 7: 1590. https://doi.org/10.3390/biomedicines13071590
APA StyleZhang, A., Zhang, I., & Liu, F. (2025). Applications of CRISPR-Cas-Based Genome Editing Approaches Against Human Cytomegalovirus Infection. Biomedicines, 13(7), 1590. https://doi.org/10.3390/biomedicines13071590