Dual-Emitting Molecularly Imprinted Nanopolymers for the Detection of CA19-9
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthesis of Blue-Emitting Carbon Dots (b-CDs)
2.4. Synthesis of Yellow-Emitting CdTe Quantum Dots (y-QDs)
2.5. Preparation of Dual-Emitting Nanodots (Dual@Nanodots)
2.6. Synthesis of dual@nanoMIPs
2.7. Statistical Analysis and Validation
2.8. Calibrations
2.8.1. Dual@nanodots
2.8.2. Dual@nanoMIPs
2.9. Selectivity Studies of the Dual@nanoMIPs
2.10. Reproducibility and Stability of the Dual@nanoMIPs
3. Results
3.1. Assembly Conditions of Dual@nanodots and of Dual@nanoMIPs
3.2. FTIR Analysis
3.3. SEM and EDS Analyses
3.4. Calibrations of Dual@nanoMIPs in PBS
3.5. Calibrations of Dual@nanoMIPs in Serum
3.6. Reproducibility and Stability Studies of Dual@nanoMIPs
Sample (U/mL) | Spiked (U/mL) | Mean Found (U/mL) | RSD (%) | Recovery (%) | p-Value |
---|---|---|---|---|---|
1 | 0.749 | 0.803 | 1.90 | 107.25 | 0.0253 |
2 | 4.31 | 4.310 | 0.84 | 100.00 | 1.0000 |
3 | 24.2 | 24.167 | 1.67 | 99.86 | 0.8995 |
4 | 141.0 | 141.967 | 0.87 | 100.69 | 0.3078 |
3.7. Selectivity Studies of Dual@nanoMIPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Parmar, A.; Singh, R.; Dhiman, S. Nanoscience: An overview about nanotheranostics for cancer treatment. Egypt. J. Basic Appl. Sci. 2024, 11, 55–68. [Google Scholar] [CrossRef]
- Gao, Q.; Li, S. Intelligent point of care testing for medicine diagnosis. Interdiscip. Med. 2024, 2, e20230031–e20230052. [Google Scholar] [CrossRef]
- Acharya, B.; Behera, A.; Behera, S. Optimizing drug discovery: Surface plasmon resonance techniques and their multifaceted applications. Chem. Phys. Impact 2023, 8, 100414–100432. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, V.; Kumar, N.; Arun, R.K. Microfluidics-Based Nanobiosensors for Healthcare Monitoring. Mol. Biotechnol. 2023, 66, 378–401. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.M.C.; Lima, D.; Marcolino-Junior, L.H.; Bergamini, M.F.; Kuss, S.; Vicentini, F.C. Cutting-edge biorecognition strategies to boost the detection performance of COVID-19 electrochemical biosensors: A review. Bioelectrochemistry 2023, 157, 108632–108649. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Kılıç, S.; Esen, C.; Denizli, A. Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Polymers 2023, 15, 629. [Google Scholar] [CrossRef]
- Yang, J.; Xu, R.; Wang, C.; Qiu, J.; Ren, B.; You, L. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review. Cancer Commun. 2021, 41, 1257–1274. [Google Scholar] [CrossRef]
- Munkley, J. The glycosylation landscape of pancreatic cancer (Review). Oncol. Lett. 2019, 17, 2569–2575. [Google Scholar] [CrossRef]
- Li, G.; Lu, T.; Lv, S. A Case of Pseudoelevation of Serum CA19-9 Level. Clin. Lab. 2024, 70, 199–202. [Google Scholar] [CrossRef]
- Lapitz, A.; Azkargorta, M.; Milkiewicz, P.; Olaizola, P.; Zhuravleva, E.; Grimsrud, M.M.; Schramm, C.; Arbelaiz, A.; O’Rourke, C.J.; La Casta, A.; et al. Liquid biopsy-based protein biomarkers for risk prediction, early diagnosis, and prognostication of cholangiocarcinoma. J. Hepatol. 2023, 79, 93–108. [Google Scholar] [CrossRef]
- Borgmästars, E.; Lundberg, E.; Öhlund, D.; Nyström, H.; Franklin, O.; Lundin, C.; Jonsson, P.; Sund, M. Circulating tissue Polypeptide-specific antigen in pre-diagnostic pancreatic cancer samples. Cancers 2021, 13, 5321. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.-J.; Choi, C.; Kim, H.; Lee, H.; Yoo, Y.; Choi, Y.; Hwang, J.-H.; Jung, K.; Lee, J.-C.; Kim, J.-H. Confined growth of Ag nanogap shells emitting stable Raman label signals for SERS liquid biopsy of pancreatic cancer. Biosens. Bioelectron. 2023, 248, 115948–115958. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, X.; Zhu, W.; Xiao, J.; Li, F.; Ren, Y.; Wang, K.; Jiao, Z.; Luo, C. Primary synovial sarcoma of the duodenal bulb: A case report and review of the literature. Transl. Cancer Res. 2020, 9, 5663–5673. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Chu, Z.; Hou, W.; Wang, X. Lanthanide-Doped Upconversion-Linked Immunosorbent Assay for the Sensitive Detection of Carbohydrate Antigen 19-9. Front. Chem. 2021, 8, 592445–592452. [Google Scholar] [CrossRef]
- Chen, W.; Chi, M.; Wang, M.; Liu, Y.; Kong, S.; Du, L.; Wang, J.; Wu, C. Label-Free Detection of CA19-9 Using a BSA/Graphene-Based Antifouling Electrochemical Immunosensor. Sensors 2023, 23, 9693. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, T.; Sangili, A.; Nanda, A.; Prakash, S.; Kaushik, A.; Jana, S.K. Bio-nanocomposite based highly sensitive and label-free electrochemical immunosensor for endometriosis diagnostics application. Bioelectrochemistry 2021, 139, 107740–107750. [Google Scholar] [CrossRef]
- Sok, C.P.; Polireddy, K.; Kooby, D.A. Molecular pathology and protein markers for pancreatic cancer: Relevance in staging, in adjuvant therapy, in determination of minimal residual disease, and follow-up. HepatoBiliary Surg. Nutr. 2024, 13, 56–70. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, B.; Chen, F. Diagnostic value of serum carbohydrate antigen 19-9 in pancreatic cancer: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 891–904. [Google Scholar] [CrossRef]
- Matsumoto, T.; Fukuzawa, M.; Itoi, T.; Sugimoto, M.; Aizawa, Y.; Sunamura, M.; Kawai, T.; Nemoto, D.; Shinohara, H.; Muramatsu, T.; et al. Targeted Metabolomic Profiling of Plasma Samples in Gastric Cancer by Liquid Chromatography-Mass Spectrometry. Digestion 2022, 104, 97–108. [Google Scholar] [CrossRef]
- Tsai, I.J.; Su, E.C.Y.; Tsai, I.L.; Lin, C.Y. Clinical assay for the early detection of colorectal cancer using mass spectrometric wheat germ agglutinin multiple reaction monitoring. Cancers 2021, 13, 2190. [Google Scholar] [CrossRef]
- An, R.; Avanaki, A.; Thota, P.; Nemade, S.; Mehta, A.; Gurkan, U.A. Point-of-Care Diagnostic Test for Beta-Thalassemia. Biosensors 2024, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Kobeissy, F.; Arja, R.D.; Munoz, J.C.; Shear, D.A.; Gilsdorf, J.; Zhu, J.; Yadikar, H.; Haskins, W.; Tyndall, J.A.; Wang, K.K. The game changer: UCH-L1 and GFAP-based blood test as the first marketed in vitro diagnostic test for mild traumatic brain injury. Expert Rev. Mol. Diagn. 2024, 24, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, E.; Jones, H.E.; James, R.; Cooper, C.; Stokes, C.; Begum, S.; Watson, J.; Hay, A.D.; Ward, M.; Thom, H.; et al. Clinical effectiveness of point of care tests for diagnosing urinary tract infection: A systematic review. Clin. Microbiol. Infect. 2024, 30, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Papp, J.R.; Park, I.U.; Fakile, Y.; Pereira, L.; Pillay, A.; Bolan, G.A. CDC Laboratory Recommendations for Syphilis Testing, United States, 2024. MMWR. Recomm. Rep. 2024, 73, 1–32. [Google Scholar] [CrossRef]
- Park, R.; Jeon, S.; Jeong, J.; Park, S.Y.; Han, D.W.; Hong, S.W. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. Biosensors 2022, 12, 136. [Google Scholar] [CrossRef]
- Ravina, X.; Kumar, D.; Prasad, M. Mohan, Biological recognition elements. In Electrochemical Sensors: From Working Electrodes to Functionalization and Miniaturized Devices; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Piletsky, S.S.; Piletska, E.; Poblocka, M.; Macip, S.; Jones, D.J.; Braga, M.; Cao, T.H.; Singh, R.; Spivey, A.C.; Aboagye, E.O. Snapshot imprinting: Rapid identification of cancer cell surface proteins and epitopes using molecularly imprinted polymers. Nano Today 2021, 41, 101304–101312. [Google Scholar] [CrossRef]
- Ratautaite, V.; Boguzaite, R.; Brazys, E.; Ramanaviciene, A.; Ciplys, E.; Juozapaitis, M.; Slibinskas, R.; Bechelany, M.; Ramanavicius, A. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim. Acta 2021, 403, 139581. [Google Scholar] [CrossRef]
- Mamipour, Z.; Nematollahzadeh, A.; Kompany-Zareh, M. Molecularly imprinted polymer grafted on paper and flat sheet for selective sensing and diagnosis: A review. Microchim. Acta 2021, 188, 279–300. [Google Scholar] [CrossRef]
- Bui, B.T.S.; Mier, A.; Haupt, K. Molecularly Imprinted Polymers as Synthetic Antibodies for Protein Recognition: The Next Generation. Small 2023, 19, e2206453–e2206470. [Google Scholar] [CrossRef]
- Alafeef, M.; Srivastava, I.; Aditya, T.; Pan, D. Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. Small 2023, 20, e2303937–e2303950. [Google Scholar] [CrossRef]
- Molaei, M.J. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal. Methods 2020, 12, 1266–1287. [Google Scholar] [CrossRef]
- Daulay, A.; Nasution, L.H.; Huda, M.; Amin, M.; Nikmatullah, M.; Supiyani; Yusmiati. Green sources for carbon dots synthesis in sensing for food application—A review. Biosens. Bioelectron. X 2024, 17, 100460–100470. [Google Scholar] [CrossRef]
- Nazri, N.A.A.; Azeman, N.H.; Luo, Y.; A Bakar, A.A. Carbon quantum dots for optical sensor applications: A review. Opt. Laser Technol. 2021, 139, 106928–106942. [Google Scholar] [CrossRef]
- Park, S.H.; Kwon, N.; Lee, J.H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2019, 49, 143–179. [Google Scholar] [CrossRef]
- Qi, Y.L.; Li, Y.Z.; Tan, M.J.; Yuan, F.F.; Murthy, N.; Duan, Y.T.; Zhu, H.L.; Yang, S.Y. Recent advances in organic near-infrared ratiometric small-molecule fluorescent probes. Co-ord. Chem. Rev. 2023, 486, 215130–215168. [Google Scholar] [CrossRef]
- Goshisht, M.K.; Tripathi, N.; Patra, G.K.; Chaskar, M. Organelle-targeting ratiometric fluorescent probes: Design principles, detection mechanisms, bio-applications, and challenges. Chem. Sci. 2023, 14, 5842–5871. [Google Scholar] [CrossRef]
- Piloto, A.M.L.; Ribeiro, D.S.M.; Santos, J.L.M.; Sales, G. Development of a Sensitive Ratiometric Imprinted Hydrogel for the Detection of Matrix Metalloproteinase 7 (MMP7) Biomarker. ACS Appl. Opt. Mater. 2024, 2, 57–67. [Google Scholar] [CrossRef]
- Castro, R.C.; Soares, J.X.; Ribeiro, D.S.; Santos, J.L. Dual-emission ratiometric probe combining carbon dots and CdTe quantum dots for fluorometric and visual determination of H2O2. Sens. Actuators B Chem. 2019, 296, 126665. [Google Scholar] [CrossRef]
- Castro, R.C.; Páscoa, R.N.M.J.; Saraiva, M.L.M.F.S.; Santos, J.L.M.; Ribeiro, D.S.M. Photoluminescent and visual determination of ibandronic acid using a carbon dots/AgInS2 quantum dots ratiometric sensing platform. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120592–120604. [Google Scholar] [CrossRef]
- Zou, L.; Gu, Z.; Zhang, N.; Zhang, Y.; Fang, Z.; Zhu, W.; Zhong, X. Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase. J. Mater. Chem. 2008, 18, 2807–2815. [Google Scholar] [CrossRef]
- Liu, H.; Ni, T.; Mu, L.; Zhang, D.; Wang, J.; Wang, S.; Sun, B. Sensitive detection of pyrraline with a molecularly imprinted sensor based on metal-organic frameworks and quantum dots. Sens. Actuators B Chem. 2018, 256, 1038–1044. [Google Scholar] [CrossRef]
- Feng, J.; Tao, Y.; Shen, X.; Jin, H.; Zhou, T.; Zhou, Y.; Hu, L.; Luo, D.; Mei, S.; Lee, Y.I. Highly sensitive and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste samples using molecularly imprinted polymer coated quantum dots. Microchem. J. 2019, 144, 93–101. [Google Scholar] [CrossRef]
- Piloto, A.M.L.; Ribeiro, D.S.M.; Rodrigues, S.S.M.; Santos, J.L.M.; Sampaio, P.; Sales, G. Imprinted Fluorescent Cellulose Membranes for the On-Site Detection of Myoglobin in Biological Media. ACS Appl. Bio Mater. 2021, 4, 4224–4235. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.S.M.; Ribeiro, D.S.; Molina-Garcia, L.; Medina, A.R.; Prior, J.A.; Santos, J.L. Fluorescence enhancement of CdTe MPA-capped quantum dots by glutathione for hydrogen peroxide determination. Talanta 2014, 122, 157–165. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, P.; Zhou, X.; Zhang, X.; Fang, T.; Liu, P.; Min, X.; Li, X. Thermodynamic and conformational investigation of the influence of CdTe QDs size on the toxic interaction with BSA. J. Photochem. Photobiol. A Chem. 2012, 230, 23–30. [Google Scholar] [CrossRef]
- Caine, S.; Heraud, P.; Tobin, M.J.; McNaughton, D.; Bernard, C.C. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. NeuroImage 2012, 59, 3624–3640. [Google Scholar] [CrossRef]
- Borenstein-Katz, A.; Warszawski, S.; Amon, R.; Eilon, M.; Cohen-Dvashi, H.; Ben-Arye, S.L.; Tasnima, N.; Yu, H.; Chen, X.; Padler-Karavani, V.; et al. Biomolecular Recognition of the Glycan Neoantigen CA19-9 by Distinct Antibodies. J. Mol. Biol. 2021, 433, 167099. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, H.; Li, X.; Chen, Y.; Gu, C.; Wei, G.; Zhou, J.; Jiang, T. Nonmetallic SERS-based immunosensor byintegrating MoS2 nanoflower and nanosheet towards the direct serum detection of carbohydrate antigen 19-9. Biosens. Bioelectron. 2021, 193, 113481–113490. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, X.; Yan, F.; Mou, Y. Electrostatic Nanocage-Confined Probe for Electrochemical Detection of CA19-9 in Human Serum. ACS Omega 2023, 8, 48491–48498. [Google Scholar] [CrossRef]
- Luo, K.; Zhao, C.; Luo, Y.; Pan, C.; Li, J. Electrochemical sensor for the simultaneous detection of CA72-4 and CA19-9 tumor markers using dual recognition via glycosyl imprinting and lectin-specific binding for accurate diagnosis of gastric cancer. Biosens. Bioelectron. 2022, 216, 114672–114679. [Google Scholar] [CrossRef]
- Du, D.; Xu, X.; Wang, S.; Zhang, A. Reagentless amperometric carbohydrate antigen 19-9 immunosensor based on direct electrochemistry of immobilized horseradish peroxidase. Talanta 2007, 71, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Li, N.S.; Lin, W.L.; Hsu, Y.P.; Chen, Y.T.; Shiue, Y.L.; Yang, H.W. Combined Detection of CA19–9 and MUC1 Using a Colorimetric Immunosensor Based on Magnetic Gold Nanorods for Ultrasensitive Risk Assessment of Pancreatic Cancer. ACS Appl. Bio Mater. 2019, 2, 4847–4855. [Google Scholar] [CrossRef] [PubMed]
Method | Sensor type | Application | LR (U mL−1) | LOD (U mL−1) | Refs. |
---|---|---|---|---|---|
SERS | Immunosensor | PBS buffer | 1 × 10−5−5 × 101 | 3 × 100 | [49] |
SPR | Graphene oxide immunosensor | Human saliva | 0–2 × 10−6 | 1 × 10−7 | [48] |
CV/DPV | Electrochemical sensor | Diluted HS | 1 × 10−11–1 × 10−6 | 6 × 10−12 | [50,51] |
SWV | Amperometric biosensor | HS | 1 × 10−13–1 × 10−7 | 1.7 × 10−14 | [52] |
Au/Ag@SiO2FRET | Colorimetric | Cell and tissue human lines | 1 × 10−2–1 × 10−7 | 2.2 × 10−13 | [53] |
Fluorescence | ULISA immunosensor | 5 × 100–2 × 103 | … | [14] | |
Fluorescence | dual@nanodots dual@nanoMIPs | 1% HN serum in PBS | 4.98 × 10−3–8.39 × 102 4.98 × 10−3–8.39 × 102 | 3.97 × 10−3 2.40 × 10−3 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, E.; Xu, A.; Castro, R.C.; Ribeiro, D.S.M.; Santos, J.L.M.; Piloto, A.M.L. Dual-Emitting Molecularly Imprinted Nanopolymers for the Detection of CA19-9. Biomedicines 2025, 13, 1629. https://doi.org/10.3390/biomedicines13071629
Rodrigues E, Xu A, Castro RC, Ribeiro DSM, Santos JLM, Piloto AML. Dual-Emitting Molecularly Imprinted Nanopolymers for the Detection of CA19-9. Biomedicines. 2025; 13(7):1629. https://doi.org/10.3390/biomedicines13071629
Chicago/Turabian StyleRodrigues, Eduarda, Ana Xu, Rafael C. Castro, David S. M. Ribeiro, João L. M. Santos, and Ana Margarida L. Piloto. 2025. "Dual-Emitting Molecularly Imprinted Nanopolymers for the Detection of CA19-9" Biomedicines 13, no. 7: 1629. https://doi.org/10.3390/biomedicines13071629
APA StyleRodrigues, E., Xu, A., Castro, R. C., Ribeiro, D. S. M., Santos, J. L. M., & Piloto, A. M. L. (2025). Dual-Emitting Molecularly Imprinted Nanopolymers for the Detection of CA19-9. Biomedicines, 13(7), 1629. https://doi.org/10.3390/biomedicines13071629