The Niemann–Pick C1 Protein of Patients with Hepatocellular Carcinoma Is Associated with Survival Time in Males and Tumor Size in Females
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Immunohistochemistry
2.3. Histological Scores
2.4. Statistics
3. Results
3.1. NPC1 Protein Expression in HCC Tissues of the Entire Cohort
3.2. NPC1 Protein Expression and Etiology of Underlying Liver Disease
3.3. Male and Female Patients
3.4. NPC1 Protein Expression in HCC Tissues of Male Patients
3.5. NPC1 Protein Expression in HCC Tissues of the Female Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Marengo, A.; Rosso, C.; Bugianesi, E. Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annu. Rev. Med. 2015, 67, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Adinolfi, L.E.; Loria, P.; Carulli, N.; Ruggiero, G.; Day, C.P. Steatosis and hepatitis C virus: Mechanisms and significance for hepatic and extrahepatic disease. Gastroenterology 2004, 126, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Hato, T.; Goyal, L.; Greten, T.F.; Duda, D.G.; Zhu, A.X. Immune checkpoint blockade in hepatocellular carcinoma: Current progress and future directions. Hepatology 2014, 60, 1776–1782. [Google Scholar] [CrossRef]
- Lin, S.; Hoffmann, K.; Schemmer, P. Treatment of Hepatocellular Carcinoma: A Systematic Review. Liver Cancer 2012, 1, 144–158. [Google Scholar] [CrossRef]
- Kinsey, E.; Lee, H.M. Management of Hepatocellular Carcinoma in 2024: The Multidisciplinary Paradigm in an Evolving Treatment Landscape. Cancers 2024, 16, 666. [Google Scholar] [CrossRef]
- Buechler, C.; Aslanidis, C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158658. [Google Scholar] [CrossRef]
- Li, S.; Yan, L.; Li, C.; Lou, L.; Cui, F.; Yang, X.; He, F.; Jiang, Y. NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression. Nat. Commun. 2025, 16, 439. [Google Scholar] [CrossRef]
- Yang, S.; Chen, J.; Xie, K.; Liu, F. NPC1 promotes the progression of hepatocellular carcinoma by mediating the accumulation of neutrophils into the tumor microenvironment. FEBS Open Bio 2024, 15, 661–673. [Google Scholar] [CrossRef]
- Lu, A. Endolysosomal cholesterol export: More than just NPC1. Bioessays 2022, 44, e2200111. [Google Scholar] [CrossRef]
- Millard, E.E.; Srivastava, K.; Traub, L.M.; Schaffer, J.E.; Ory, D.S. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis. J. Biol. Chem. 2000, 275, 38445–38451. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, F.; Zhu, W.; Zhang, W. NPC1 promotes autophagy with tumor promotion and acts as a prognostic model for hepatocellular carcinoma. Gene 2024, 897, 148050. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Chen, H.; He, M.; Han, N.; Tang, H. Inhibition of NPC1 suppresses cell proliferation and beta-catenin signaling activation of liver cancer. J. Cancer Res. Clin. Oncol. 2024, 150, 498. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.; Vaquero, J.; Fernandez-Barrena, M.G.; Lasarte, J.J.; Avila, M.A.; Sarobe, P.; Reig, M.; Calvo, M.; Fabregat, I. The TGF-beta Pathway: A Pharmacological Target in Hepatocellular Carcinoma? Cancers 2021, 13, 3248. [Google Scholar] [CrossRef]
- Robert Koch Institute, RKI—Cancer in Germany 2017/2018. 2017. Available online: https://www.krebsdaten.de/Krebs/DE/ (accessed on 7 July 2025).
- Ho, J.K.; Thurairajah, P.H.; Leo, J.; Huang, D.Q.; Fan, K.H. Sex differences in hepatocellular carcinoma. Hepatoma Res. 2024, 10, 53. [Google Scholar] [CrossRef]
- Radu, I.P.; Scheiner, B.; Schropp, J.; Delgado, M.G.; Schwacha-Eipper, B.; Jin, C.; Dufour, J.F.; Pinter, M. The Influence of Sex and Age on Survival in Patients with Hepatocellular Carcinoma. Cancers 2024, 16, 4023. [Google Scholar] [CrossRef]
- Rich, N.E.; Murphy, C.C.; Yopp, A.C.; Tiro, J.; Marrero, J.A.; Singal, A.G. Sex disparities in presentation and prognosis of 1110 patients with hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2020, 52, 701–709. [Google Scholar] [CrossRef]
- Antipova, V.; Steinhoff, L.M.; Holzmann, C.; Rolfs, A.; Hempel, C.J.; Witt, M.; Wree, A. Organ Weights in NPC1 Mutant Mice Partly Normalized by Various Pharmacological Treatment Approaches. Int. J. Mol. Sci. 2022, 24, 573. [Google Scholar] [CrossRef]
- Jelinek, D.A.; Maghsoodi, B.; Borbon, I.A.; Hardwick, R.N.; Cherrington, N.J.; Erickson, R.P. Genetic variation in the mouse model of Niemann Pick C1 affects female, as well as male, adiposity, and hepatic bile transporters but has indeterminate effects on caveolae. Gene 2012, 491, 128–134. [Google Scholar] [CrossRef]
- Holven, K.B.; Roeters van Lennep, J. Sex differences in lipids: A life course approach. Atherosclerosis 2023, 384, 117270. [Google Scholar] [CrossRef]
- Cokan, K.B.; Urlep, Z.; Lorbek, G.; Matz-Soja, M.; Skubic, C.; Perse, M.; Jeruc, J.; Juvan, P.; Rezen, T.; Rozman, D. Chronic Disruption of the Late Cholesterol Synthesis Leads to Female-Prevalent Liver Cancer. Cancers 2020, 12, 3302. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Wang, X.; Zhao, A.; Yan, J.; Chen, W.; Jiang, R.; Ji, J.; Huang, F.; Zhang, Y.; Lei, S.; et al. Sex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes. Sci. Rep. 2017, 7, 45232. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Sun, X. Cholesterol Metabolism: A Double-Edged Sword in Hepatocellular Carcinoma. Front. Cell Dev. Biol. 2021, 9, 762828. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Hu, R.; Wu, L.; Li, C. Statin therapy: A potential adjuvant to immunotherapies in hepatocellular carcinoma. Front. Pharmacol. 2024, 15, 1324140. [Google Scholar] [CrossRef]
- Balcar, L.; Scheiner, B.; Fulgenzi, C.A.M.; D’Alessio, A.; Pomej, K.; Roig, M.B.; Meyer, E.L.; Che, J.; Nishida, N.; Lee, P.C.; et al. A meta-analysis and real-world cohort study on the sex-related differences in efficacy and safety of immunotherapy for hepatocellular carcinoma. JHEP Rep. 2024, 6, 100982. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, A.; Halquist, M.S.; Yuan, X.; Henderson, S.C.; Dewey, W.L.; Li, P.L.; Li, N.; Zhang, F. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRalpha signalling pathway in oxLDL-loaded macrophages. J. Cell Mol. Med. 2017, 21, 364–374. [Google Scholar] [CrossRef]
- Muck, M.A.; Fischer, M.; Hamerle, M.; Strack, C.; Holzhaeuer, M.; Pfeffer, D.; Hubauer, U.; Maier, L.S.; Baessler, A. Sex specific analysis of patients with and without reported statin intolerance referred to a specialized outpatient lipid clinic. Biol. Sex. Differ. 2024, 15, 67. [Google Scholar] [CrossRef]
- Mirlacher, M.; Simon, R. Recipient block TMA technique. Methods Mol. Biol. 2010, 664, 37–44. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Sugiura, T.; Okamura, Y.; Ito, T.; Ashida, R.; Ohgi, K.; Nakanuma, Y.; Uesaka, K. The Evaluation of the Eighth Edition of the AJCC/UICC Staging System for Intrahepatic Cholangiocarcinoma: A Proposal of a Modified New Staging System. J. Gastrointest. Surg. 2020, 24, 786–795. [Google Scholar] [CrossRef]
- Brierley, J.; Gospodarowicz, M.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell: Chichester, UK, 2017. [Google Scholar]
- Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; De Groote, J.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.; et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef]
- Sivanathan, V.; Kittner, J.M.; Sprinzl, M.F.; Weinmann, A.; Koch, S.; Wiltink, J.; Nguyen-Tat, M.; Marquardt, J.U.; Worns, M.A.; Zimmermann, T.; et al. Etiology and complications of liver cirrhosis: Data from a German centre. Dtsch. Med. Wochenschr. 2014, 139, 1758–1762. [Google Scholar] [CrossRef] [PubMed]
- Andronescu, C.I.; Purcarea, M.R.; Babes, P.A. Nonalcoholic fatty liver disease: Epidemiology, pathogenesis and therapeutic implications. J. Med. Life 2018, 11, 20–23. [Google Scholar] [PubMed]
- Roeb, E. Non-alcoholic fatty liver diseases: Current challenges and future directions. Ann. Transl. Med. 2021, 9, 726. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.J.; Liu, Y.Y.; Zhang, Z.H. Changes in the etiology of liver cirrhosis and the corresponding management strategies. World J. Hepatol. 2024, 16, 146–151. [Google Scholar] [CrossRef]
- Cooper, K.M.; Delk, M.; Devuni, D.; Sarkar, M. Sex differences in chronic liver disease and benign liver lesions. JHEP Rep. 2023, 5, 100870. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, M.; Hu, Z.; Hultstrom, M.; Lai, E. Sex-specific prevalence of fatty liver disease and associated metabolic factors in Wuhan, south central China. Eur. J. Gastroenterol. Hepatol. 2014, 26, 1015–1021. [Google Scholar] [CrossRef]
- Lampimukhi, M.; Qassim, T.; Venu, R.; Pakhala, N.; Mylavarapu, S.; Perera, T.; Sathar, B.S.; Nair, A. A Review of Incidence and Related Risk Factors in the Development of Hepatocellular Carcinoma. Cureus 2023, 15, e49429. [Google Scholar] [CrossRef]
- Li, H.; Rong, Z.; Wang, H.; Zhang, N.; Pu, C.; Zhao, Y.; Zheng, X.; Lei, C.; Liu, Y.; Luo, X.; et al. Proteomic analysis revealed common, unique and systemic signatures in gender-dependent hepatocarcinogenesis. Biol. Sex. Differ. 2020, 11, 46. [Google Scholar] [CrossRef]
- Smiriglia, A.; Lorito, N.; Serra, M.; Perra, A.; Morandi, A.; Kowalik, M.A. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023, 26, 108363. [Google Scholar] [CrossRef]
- Martins-Filho, S.N.; Paiva, C.; Azevedo, R.S.; Alves, V.A.F. Histological Grading of Hepatocellular Carcinoma—A Systematic Review of Literature. Front. Med. 2017, 4, 193. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Jiang, R.; Hou, J.; Mu, X.; Li, G.; Sun, B. Effect of Tumor Size on Cancer-Specific Survival in Small Hepatocellular Carcinoma. Mayo Clin. Proc. 2015, 90, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jin, K.; Wang, F.; Zhangyuan, G.; Yu, W.; Liu, Y.; Zhang, H.; Zhang, P.; Sun, B. Differences in the prognostic value of tumor size on hepatocellular cancer-specific survival stratified by gender in a SEER population-based study. United Eur. Gastroenterol. J. 2019, 7, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Yeo, Y.H.; Lee, Y.T.; Tseng, H.R.; Zhu, Y.; You, S.; Agopian, V.G.; Yang, J.D. Alpha-fetoprotein: Past, present, and future. Hepatol. Commun. 2024, 8, e0422. [Google Scholar] [CrossRef]
- Giannini, E.G.; Sammito, G.; Farinati, F.; Ciccarese, F.; Pecorelli, A.; Rapaccini, G.L.; Di Marco, M.; Caturelli, E.; Zoli, M.; Borzio, F.; et al. Determinants of alpha-fetoprotein levels in patients with hepatocellular carcinoma: Implications for its clinical use. Cancer 2014, 120, 2150–2157. [Google Scholar] [CrossRef]
- Lai, M.W.; Chu, Y.D.; Lin, C.L.; Chien, R.N.; Yeh, T.S.; Pan, T.L.; Ke, P.Y.; Lin, K.H.; Yeh, C.T. Is there a sex difference in postoperative prognosis of hepatocellular carcinoma? BMC Cancer 2019, 19, 250. [Google Scholar] [CrossRef]
- Naugler, W.E.; Sakurai, T.; Kim, S.; Maeda, S.; Kim, K.; Elsharkawy, A.M.; Karin, M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007, 317, 121–124. [Google Scholar] [CrossRef]
- Musiol, A.; Gran, S.; Ehrhardt, C.; Ludwig, S.; Grewal, T.; Gerke, V.; Rescher, U. Annexin A6-balanced late endosomal cholesterol controls influenza A replication and propagation. mBio 2013, 4, e00608–e00613. [Google Scholar] [CrossRef]
- Wang, W.; Dong, X.; Liu, Y.; Ni, B.; Sai, N.; You, L.; Sun, M.; Yao, Y.; Qu, C.; Yin, X.; et al. Itraconazole exerts anti-liver cancer potential through the Wnt, PI3K/AKT/mTOR, and ROS pathways. Biomed. Pharmacother. 2020, 131, 110661. [Google Scholar] [CrossRef]
- Mohammed, O.A.; Doghish, A.S.; Saleh, L.A.; Alghamdi, M.; Alamri, M.M.S.; Alfaifi, J.; Adam, M.I.E.; Alharthi, M.H.; Alshahrani, A.M.; Alhalafi, A.H.; et al. Itraconazole halts hepatocellular carcinoma progression by modulating sonic hedgehog signaling in rats: A novel therapeutic approach. Pathol. Res. Pract. 2024, 253, 155086. [Google Scholar] [CrossRef]
- Hasan, A.M.; Cavalu, S.; Saber, S.; Doghish, A.S.; Hamad, R.S.; Abdel-Reheim, M.A.; Alghamdi, M.; Alamri, M.M.S.; Alfaifi, J.; Adam, M.I.E.; et al. Hedgehog signaling mastery: R51211’s promise in augmenting the therapeutic efficacy of sorafenib. Life Sci. 2024, 351, 122791. [Google Scholar] [CrossRef]
- Miljkovic, M.N.; Rancic, N.; Kovacevic, A.; Cikota-Aleksic, B.; Skadric, I.; Jacevic, V.; Mikov, M.; Dragojevic-Simic, V. Influence of Gender, Body Mass Index, and Age on the Pharmacokinetics of Itraconazole in Healthy Subjects: Non-Compartmental Versus Compartmental Analysis. Front. Pharmacol. 2022, 13, 796336. [Google Scholar] [CrossRef] [PubMed]
- Kitai, S.; Kudo, M.; Izumi, N.; Kaneko, S.; Ku, Y.; Kokudo, N.; Sakamoto, M.; Takayama, T.; Nakashima, O.; Kadoya, M.; et al. Validation of three staging systems for hepatocellular carcinoma (JIS score, biomarker-combined JIS score and BCLC system) in 4,649 cases from a Japanese nationwide survey. Dig. Dis. 2014, 32, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Giannini, E.G.; Farinati, F.; Ciccarese, F.; Pecorelli, A.; Rapaccini, G.L.; Di Marco, M.; Benvegnu, L.; Caturelli, E.; Zoli, M.; Borzio, F.; et al. Prognosis of untreated hepatocellular carcinoma. Hepatology 2015, 61, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, A.I.; Hashim, M.S.; Waked, I. Comparing staging systems for predicting prognosis and survival in patients with hepatocellular carcinoma in Egypt. PLoS ONE 2014, 9, e90929. [Google Scholar] [CrossRef]
- Grieco, A.; Pompili, M.; Caminiti, G.; Miele, L.; Covino, M.; Alfei, B.; Rapaccini, G.L.; Gasbarrini, G. Prognostic factors for survival in patients with early-intermediate hepatocellular carcinoma undergoing non-surgical therapy: Comparison of Okuda, CLIP, and BCLC staging systems in a single Italian centre. Gut 2005, 54, 411–418. [Google Scholar] [CrossRef]
- Rimkunas, V.M.; Graham, M.J.; Crooke, R.M.; Liscum, L. In vivo antisense oligonucleotide reduction of NPC1 expression as a novel mouse model for Niemann Pick type C- associated liver disease. Hepatology 2008, 47, 1504–1512. [Google Scholar] [CrossRef]
- Guan, D.; Huang, P.; Liu, X.; Li, Q.; Zhang, X.; Liu, N.; Wang, Y.; Wan, Y.; Chai, J.; Cai, S.; et al. Deficiency of myeloid NPC1 exacerbates liver injury and fibrosis by impairing macrophage efferocytosis. J. Adv. Res. 2024, 72, 213–227. [Google Scholar] [CrossRef]
Males NT | Females NT | Males TT | Females TT | |
---|---|---|---|---|
Patients | 41 | 7 | 264 | 59 |
T stage | 3 (1–4) | 3 (1–4) | 3 (1–4) | 3 (1–4) |
Lymph node invasion | 0 (0–0) | 0 (0–0) | 0 (0–1) | 0 (0–1) |
Grading | 2 (1–3) | 2 (1–3) | 2 (1–3) | 2 (1–3) |
Tumor size (cm) | 3.4 (0.8–18.0) | 5.1 (1.5–13.7) | 4.9 (0.5–25.0) ** | 6.9 (0.7–24.0) ** |
UICC score | 2 (1–4) | 2 (1–4) | 2 (1–4) | 2 (1–4) |
Overall survival years | 3 (0–21) | 2 (1–18) | 4 (0–28) | 4 (1–22) |
Metastasis-free years | 2 (0–21) | 2 (1–18) | 3 (0–28) | 3 (1–20) |
Recurrence-free years | 2 (0–21) | 2 (1–18) | 2 (0–20) | 3 (1–22) |
Intratumoral inflammation | 1 (0–2) | 1 (0–1) | 1 (0–3) | 1 (0–3) |
Fibrosis grade | 6 (0–6) | 3 (0–6) | 5 (0–6) | 4 (0–6) |
Age (years) | 63 (38–84) | 52 (35–85) | 66 (10–85) | 65 (25–83) |
Alpha-fetoprotein (ng/mL) | n.l. | n.l. | 14 (1–17 × 104)137 | 73 (1–1 × 104)38 |
NPC1 Protein | 40 (10–180) | 60 (10–80) | 120 (5–300) | 140 (5–300) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, F.; Evert, K.; Scheiter, A.; von Sachsen-Coburg, S.; Utpatel, K.; Buechler, C. The Niemann–Pick C1 Protein of Patients with Hepatocellular Carcinoma Is Associated with Survival Time in Males and Tumor Size in Females. Biomedicines 2025, 13, 1707. https://doi.org/10.3390/biomedicines13071707
Weber F, Evert K, Scheiter A, von Sachsen-Coburg S, Utpatel K, Buechler C. The Niemann–Pick C1 Protein of Patients with Hepatocellular Carcinoma Is Associated with Survival Time in Males and Tumor Size in Females. Biomedicines. 2025; 13(7):1707. https://doi.org/10.3390/biomedicines13071707
Chicago/Turabian StyleWeber, Florian, Katja Evert, Alexander Scheiter, Sophie von Sachsen-Coburg, Kirsten Utpatel, and Christa Buechler. 2025. "The Niemann–Pick C1 Protein of Patients with Hepatocellular Carcinoma Is Associated with Survival Time in Males and Tumor Size in Females" Biomedicines 13, no. 7: 1707. https://doi.org/10.3390/biomedicines13071707
APA StyleWeber, F., Evert, K., Scheiter, A., von Sachsen-Coburg, S., Utpatel, K., & Buechler, C. (2025). The Niemann–Pick C1 Protein of Patients with Hepatocellular Carcinoma Is Associated with Survival Time in Males and Tumor Size in Females. Biomedicines, 13(7), 1707. https://doi.org/10.3390/biomedicines13071707