Microbial Crosstalk with Therapy: Pharmacomicrobiomics in AML—One Step Closer to Personalized Medicine
Abstract
1. Introduction
2. AML Therapy Triggers Dysbiosis
2.1. Antileukemic Treatment
2.1.1. Standard Therapy
2.1.2. Novel Therapies
2.2. Allo-HSCT and Microbiome
2.2.1. Conditioning
2.2.2. T-Cell Depletion
2.3. Antibiotics
3. Impact of the Microbiome on the Anticancer Treatment in AML
4. Impacts of the Microbiome on Treatment Complications in AML
5. The Therapeutic Potential of the Microbiome
5.1. Antibiotic Stewardship
5.2. Diet
5.3. Microbiota-Targeted Nutritional Approaches
5.3.1. Probiotics and Prebiotics
5.3.2. Paraprobiotics
5.3.3. Postbiotics
5.3.4. Modulating Chemotherapy Toxicity with Pro-, Pre-, Para-, and Postbiotics
5.4. The Role of the Microbiota in GVHD: From Mechanisms to Therapies
5.5. FMT as Full Microbiome Restoration: A Targeted Strategy Against Clostridioides Difficile Infection
6. Challenges, Research Directions, and Clinical Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aGVHD | acute graft-versus-host disease |
alloHSCT | allogeneic hematopoietic stem cell transplantation |
AML | acute myeloid leukemia |
AMR | antimicrobial resistance |
ASH | The American Society of Hematology |
BCL2 | B-cell lymphoma 2 |
BSIs | bloodstream infections |
CAR T | chimeric antigen receptor T-cell |
CCL2 | C-C motif chemokine ligand 2 |
CCL5 | C-C motif chemokine ligand 5 |
CDI | Clostridioides difficile infection |
CR | complete remission |
ECIL | European Conference on Infections in Leukemia |
FDA | Food and Drug Administration |
FLT3 | fms-related tyrosine kinase 3 |
FMT | fecal microbiota transplantation |
GM | gut microbiota |
GVHD | graft-versus-host disease |
HSCT | hematopoietic stem cell transplantation |
IDH | isocitrate dehydrogenase-1 |
IL-10 | interleukin–10 |
IL-22 | interleukin–22 |
IS | indoxyl sulfate |
MAPK | mitogen-activated protein kinase |
MCL-1 | myeloid cell leukemia 1 |
n/a | not applicable |
NF | neutropenic fever |
OS | overall survival |
PD-1/PD-L | programmed death 1/programmed death ligand 1 |
SCFAs | short-chain fatty acids |
TBI | total body irradiation |
TNF | tumor necrosis factor |
TRAIL | tumor necrosis factor-related apoptosis-inducing ligand |
WGS | whole-genome shotgun |
References
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Manzo, V.E.; Bhatt, A.S. The Human Microbiome in Hematopoiesis and Hematologic Disorders. Blood 2015, 126, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Marjanovic, N.D.; Hofree, M.; Chan, J.E.; Canner, D.; Wu, K.; Trakala, M.; Hartmann, G.G.; Smith, O.C.; Kim, J.Y.; Evans, K.V.; et al. Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell 2020, 38, 229–246.e13. [Google Scholar] [CrossRef]
- Pleguezuelos-Manzano, C.; Puschhof, J.; Rosendahl Huber, A.; van Hoeck, A.; Wood, H.M.; Nomburg, J.; Gurjao, C.; Manders, F.; Dalmasso, G.; Stege, P.B.; et al. Mutational Signature in Colorectal Cancer Caused by Genotoxic Pks+ E. coli. Nature 2020, 580, 269–273. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Helmink, B.A.; Spencer, C.N.; Reuben, A.; Wargo, J.A. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell 2018, 33, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Panebianco, C.; Andriulli, A.; Pazienza, V. Pharmacomicrobiomics: Exploiting the Drug-Microbiota Interactions in Anticancer Therapies. Microbiome 2018, 6, 92. [Google Scholar] [CrossRef]
- Torres-Carrillo, N.; Martínez-López, E.; Torres-Carrillo, N.M.; López-Quintero, A.; Moreno-Ortiz, J.M.; González-Mercado, A.; Gutiérrez-Hurtado, I.A. Pharmacomicrobiomics and Drug–Infection Interactions: The Impact of Commensal, Symbiotic and Pathogenic Microorganisms on a Host Response to Drug Therapy. Int. J. Mol. Sci. 2023, 24, 17100. [Google Scholar] [CrossRef]
- Acute Myeloid Leukemia—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/amyl.html (accessed on 20 October 2024).
- Cai, S.F.; Levine, R.L. Genetic and Epigenetic Determinants of AML Pathogenesis. Semin. Hematol. 2019, 56, 84–89. [Google Scholar] [CrossRef]
- Wang, R.; Yang, X.; Liu, J.; Zhong, F.; Zhang, C.; Chen, Y.; Sun, T.; Ji, C.; Ma, D. Gut Microbiota Regulates Acute Myeloid Leukaemia via Alteration of Intestinal Barrier Function Mediated by Butyrate. Nat. Commun. 2022, 13, 2522. [Google Scholar] [CrossRef]
- Yu, D.; Yu, X.; Ye, A.; Xu, C.; Li, X.; Geng, W.; Zhu, L. Profiling of Gut Microbial Dysbiosis in Adults with Myeloid Leukemia. FEBS Open Bio 2021, 11, 2050–2059. [Google Scholar] [CrossRef]
- Chen, G.; Kuang, Z.; Li, F.; Li, J. The Causal Relationship between Gut Microbiota and Leukemia: A Two-Sample Mendelian Randomization Study. Front. Microbiol. 2023, 14, 1293333. [Google Scholar] [CrossRef] [PubMed]
- Acute Myeloid Leukemia (AML): Practice Essentials, Pathophysiology, Etiology. Available online: https://emedicine.medscape.com/article/197802-overview (accessed on 20 October 2024).
- Franklin, S.; Aitken, S.L.; Shi, Y.; Sahasrabhojane, P.V.; Robinson, S.; Peterson, C.B.; Daver, N.; Ajami, N.A.; Kontoyiannis, D.P.; Shelburne, S.A.; et al. Oral and Stool Microbiome Coalescence and Its Association With Antibiotic Exposure in Acute Leukemia Patients. Front. Cell. Infect. Microbiol. 2022, 12, 848580. [Google Scholar] [CrossRef]
- Rashidi, A.; Ebadi, M.; Rehman, T.U.; Elhusseini, H.; Halaweish, H.F.; Kaiser, T.; Holtan, S.G.; Khoruts, A.; Weisdorf, D.J.; Staley, C. Lasting Shift in the Gut Microbiota in Patients with Acute Myeloid Leukemia. Blood Adv. 2022, 6, 3451–3457. [Google Scholar] [CrossRef]
- Salvestrini, V.; Conti, G.; D’Amico, F.; Cristiano, G.; Candela, M.; Cavo, M.; Turroni, S.; Curti, A. Gut Microbiome as a Potential Marker of Hematologic Recovery Following Induction Therapy in Acute Myeloid Leukemia Patients. Cancer Med. 2025, 14, e70501. [Google Scholar] [CrossRef] [PubMed]
- Goswami, M.; Bose, P.D. Gut Microbial Dysbiosis in the Pathogenesis of Leukemia: An Immune-Based Perspective. Exp. Hematol. 2024, 133, 104211. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Peña, J.R.; Smith, D.P.; Sahasrabhojane, P.; Ajami, N.J.; Wadsworth, W.D.; Daver, N.G.; Chemaly, R.F.; Marsh, L.; Ghantoji, S.S.; Pemmaraju, N.; et al. The Role of the Gastrointestinal Microbiome in Infectious Complications during Induction Chemotherapy for Acute Myeloid Leukemia. Cancer 2016, 122, 2186–2196. [Google Scholar] [CrossRef]
- McMahon, S.; Sahasrabhojane, P.; Kim, J.; Franklin, S.; Chang, C.-C.; Jenq, R.R.; Hillhouse, A.E.; Shelburne, S.A.; Galloway-Peña, J. Contribution of the Oral and Gastrointestinal Microbiomes to Bloodstream Infections in Leukemia Patients. Microbiol. Spectr. 2023, 11, e00415-23. [Google Scholar] [CrossRef] [PubMed]
- Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; et al. The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science (1979) 2013, 342, 971–976. [Google Scholar] [CrossRef]
- Taur, Y.; Jenq, R.R.; Perales, M.-A.; Littmann, E.R.; Morjaria, S.; Ling, L.; No, D.; Gobourne, A.; Viale, A.; Dahi, P.B.; et al. The Effects of Intestinal Tract Bacterial Diversity on Mortality Following Allogeneic Hematopoietic Stem Cell Transplantation. Blood 2014, 124, 1174–1182. [Google Scholar] [CrossRef]
- Ciernikova, S.; Sevcikova, A.; Mladosievicova, B.; Mego, M. Microbiome in Cancer Development and Treatment. Microorganisms 2023, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Acute Myeloid Leukemia—Guidelines Detail. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1411 (accessed on 28 May 2025).
- Galloway-Peña, J.R.; Smith, D.P.; Sahasrabhojane, P.; Wadsworth, W.D.; Fellman, B.M.; Ajami, N.J.; Shpall, E.J.; Daver, N.; Guindani, M.; Petrosino, J.F.; et al. Characterization of Oral and Gut Microbiome Temporal Variability in Hospitalized Cancer Patients. Genome Med. 2017, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, A.; Kaiser, T.; Shields-Cutler, R.; Graiziger, C.; Holtan, S.G.; Rehman, T.U.; Wasko, J.; Weisdorf, D.J.; Dunny, G.; Khoruts, A.; et al. Dysbiosis Patterns during Re-Induction/Salvage versus Induction Chemotherapy for Acute Leukemia. Sci. Rep. 2019, 9, 6083. [Google Scholar] [CrossRef] [PubMed]
- Rattanathammethee, T.; Tuitemwong, P.; Thiennimitr, P.; Sarichai, P.; Na Pombejra, S.; Piriyakhuntorn, P.; Hantrakool, S.; Chai-Adisaksopha, C.; Rattarittamrong, E.; Tantiworawit, A.; et al. Gut Microbiota Profiles of Treatment-Naïve Adult Acute Myeloid Leukemia Patients with Neutropenic Fever during Intensive Chemotherapy. PLoS ONE 2020, 15, e0236460. [Google Scholar] [CrossRef]
- Xu, J.; Kang, Y.; Zhong, Y.; Ye, W.; Sheng, T.; Wang, Q.; Zheng, J.; Yang, Q.; Yi, P.; Li, Z. Alteration of Gut Microbiome and Correlated Amino Acid Metabolism Are Associated with Acute Myelocytic Leukemia Carcinogenesis. Cancer Med. 2023, 12, 16431–16443. [Google Scholar] [CrossRef]
- Hueso, T.; Ekpe, K.; Mayeur, C.; Gatse, A.; Joncquel-Chevallier Curt, M.; Gricourt, G.; Rodriguez, C.; Burdet, C.; Ulmann, G.; Neut, C.; et al. Impact and Consequences of Intensive Chemotherapy on Intestinal Barrier and Microbiota in Acute Myeloid Leukemia: The Role of Mucosal Strengthening. Gut Microbes 2020, 12, 1800897. [Google Scholar] [CrossRef]
- Pötgens, S.A.; Lecop, S.; Havelange, V.; Li, F.; Neyrinck, A.M.; Neveux, N.; Maertens, J.; Walter, J.; Schoemans, H.; Delzenne, N.M.; et al. Gut Microbiota Alterations Induced by Intensive Chemotherapy in Acute Myeloid Leukaemia Patients Are Associated with Gut Barrier Dysfunction and Body Weight Loss. Clin. Nutr. 2023, 42, 2214–2228. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Zhao, S.; Chen, J. Arsenic-Containing Medicine Treatment Disturbed the Human Intestinal Microbial Flora. Toxics 2023, 11, 458. [Google Scholar] [CrossRef]
- Renga, G.; Nunzi, E.; Stincardini, C.; Pariano, M.; Puccetti, M.; Pieraccini, G.; Di Serio, C.; Fraziano, M.; Poerio, N.; Oikonomou, V.; et al. CPX-351 Exploits the Gut Microbiota to Promote Mucosal Barrier Function, Colonization Resistance and Immune Homeostasis. Blood J. 2024, 143, 1628–1645. [Google Scholar] [CrossRef]
- Liu, W.; Yang, J.; Chen, Y.; Chen, S.; Lu, L.; Li, J.; Li, J.; Liu, W.; Yang, T.; Zhang, G.; et al. Combining 16s rRNA and LC-QTOF-MS/MS to Explore the Temporal Changes of the Gut Microbiota and Metabolome with Clinical Characteristics of AML Patients. Available online: https://ssrn.com/abstract=5048723 (accessed on 15 July 2025).
- Kulecka, M.; Czarnowski, P.; Bałabas, A.; Turkot, M.; Kruczkowska-Tarantowicz, K.; Żeber-Lubecka, N.; Dąbrowska, M.; Paszkiewicz-Kozik, E.; Walewski, J.; Ługowska, I.; et al. Microbial and Metabolic Gut Profiling across Seven Malignancies Identifies Fecal Faecalibacillus Intestinalis and Formic Acid as Commonly Altered in Cancer Patients. Int. J. Mol. Sci. 2024, 25, 8026. [Google Scholar] [CrossRef]
- Campagna, A.; Clasen, F.; Portlock, T.; Zampini, M.; Ficara, F.; Crisafulli, L.; Brindisi, M.; Martano, G.; Saba, E.; Ubezio, M.; et al. Clinical Relevance of the Integrative Analysis of Gut Microbiome and Metabolomics in Myeloid Neoplasms: Correlations with Genomic Profiles, Treatment Response/Complications and Clinical Outcome. Blood 2024, 144, 104. [Google Scholar] [CrossRef]
- Montassier, E.; Batard, E.; Massart, S.; Gastinne, T.; Carton, T.; Caillon, J.; Le Fresne, S.; Caroff, N.; Hardouin, J.B.; Moreau, P.; et al. 16S RRNA Gene Pyrosequencing Reveals Shift in Patient Faecal Microbiota during High-Dose Chemotherapy as Conditioning Regimen for Bone Marrow Transplantation. Microb. Ecol. 2014, 67, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Shouval, R.; Waters, N.R.; Gomes, A.L.C.; Zuanelli Brambilla, C.; Fei, T.; Devlin, S.M.; Nguyen, C.L.; Markey, K.A.; Dai, A.; Slingerland, J.B.; et al. Conditioning Regimens Are Associated with Distinct Patterns of Microbiota Injury in Allogeneic Hematopoietic Cell Transplantation. Clin. Cancer Res. 2023, 29, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.; Nørgaard, J.C.; Ilett, E.E.; Marandi, R.Z.; Noguera-Julian, M.; Paredes, R.; Murray, D.D.; Lundgren, J.; MacPherson, C.R.; Sengeløv, H. Metabolic Potential of the Gut Microbiome Is Significantly Impacted by Conditioning Regimen in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Int. J. Mol. Sci. 2022, 23, 11115. [Google Scholar] [CrossRef]
- Goudarzi, M.; Mak, T.D.; Jacobs, J.P.; Moon, B.H.; Strawn, S.J.; Braun, J.; Brenner, D.J.; Fornace, A.J.; Li, H.H. An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis. Radiat Res. 2016, 186, 219. [Google Scholar] [CrossRef]
- Zhao, T.-S.; Xie, L.-W.; Cai, S.; Xu, J.-Y.; Zhou, H.; Tang, L.-F.; Yang, C.; Fang, S.; Li, M.; Tian, Y. Dysbiosis of Gut Microbiota Is Associated With the Progression of Radiation-Induced Intestinal Injury and Is Alleviated by Oral Compound Probiotics in Mouse Model. Front. Cell. Infect. Microbiol. 2021, 11, 717636. [Google Scholar] [CrossRef]
- Schwabkey, Z.I.; Wiesnoski, D.H.; Chang, C.-C.; Tsai, W.-B.; Pham, D.; Ahmed, S.S.; Hayase, T.; Ortega Turrubiates, M.R.; El-Himri, R.K.; Sanchez, C.A.; et al. Diet-Derived Metabolites and Mucus Link the Gut Microbiome to Fever after Cytotoxic Cancer Treatment. Sci. Transl. Med. 2022, 14, eabo3445. [Google Scholar] [CrossRef]
- Lu, L.; Li, F.; Gao, Y.; Kang, S.; Li, J.; Guo, J. Microbiome in Radiotherapy: An Emerging Approach to Enhance Treatment Efficacy and Reduce Tissue Injury. Mol. Med. 2024, 30, 105. [Google Scholar] [CrossRef]
- Rashidi, A.; Kaiser, T.; Graiziger, C.; Holtan, S.G.; Rehman, T.U.; Weisdorf, D.J.; Dunny, G.M.; Khoruts, A.; Staley, C. Gut Dysbiosis during Antileukemia Chemotherapy versus Allogeneic Hematopoietic Cell Transplantation. Cancer 2020, 126, 1434–1447. [Google Scholar] [CrossRef]
- Gu, Z.; Xiong, Q.; Wang, L.; Wang, L.; Li, F.; Hou, C.; Dou, L.; Zhu, B.; Liu, D. The Impact of Intestinal Microbiota in Antithymocyte Globulin–Based Myeloablative Allogeneic Hematopoietic Cell Transplantation. Cancer 2022, 128, 1402–1410. [Google Scholar] [CrossRef]
- Peled, J.U.; Gomes, A.L.C.; Devlin, S.M.; Littmann, E.R.; Taur, Y.; Sung, A.D.; Weber, D.; Hashimoto, D.; Slingerland, A.E.; Slingerland, J.B.; et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2020, 382, 822. [Google Scholar] [CrossRef]
- Taur, Y.; Xavier, J.B.; Lipuma, L.; Ubeda, C.; Goldberg, J.; Gobourne, A.; Lee, Y.J.; Dubin, K.A.; Socci, N.D.; Viale, A.; et al. Intestinal Domination and the Risk of Bacteremia in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Infect. Dis. 2012, 55, 905. [Google Scholar] [CrossRef] [PubMed]
- Holler, E.; Butzhammer, P.; Schmid, K.; Hundsrucker, C.; Koestler, J.; Peter, K.; Zhu, W.; Sporrer, D.; Hehlgans, T.; Kreutz, M.; et al. Metagenomic Analysis of the Stool Microbiome in Patients Receiving Allogeneic Stem Cell Transplantation: Loss of Diversity Is Associated with Use of Systemic Antibiotics and More Pronounced in Gastrointestinal Graft-versus-Host Disease. Biol. Blood Marrow Transpl. 2014, 20, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Shono, Y.; Docampo, M.D.; Peled, J.U.; Perobelli, S.M.; Velardi, E.; Tsai, J.J.; Slingerland, A.E.; Smith, O.M.; Young, L.F.; Gupta, J.; et al. Increased GVHD-Related Mortality with Broad-Spectrum Antibiotic Use after Allogeneic Hematopoietic Stem Cell Transplantation in Human Patients and Mice. Sci. Transl. Med. 2016, 8, 339ra71. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.; Oefner, P.J.; Dettmer, K.; Hiergeist, A.; Koestler, J.; Gessner, A.; Weber, M.; Stämmler, F.; Hahn, J.; Wolff, D.; et al. Rifaximin Preserves Intestinal Microbiota Balance in Patients Undergoing Allogeneic Stem Cell Transplantation. Bone. Marrow Transpl. 2016, 51, 1087–1092. [Google Scholar] [CrossRef]
- Haak, B.W.; Littmann, E.R.; Chaubard, J.L.; Pickard, A.J.; Fontana, E.; Adhi, F.; Gyaltshen, Y.; Ling, L.; Morjaria, S.M.; Peled, J.U.; et al. Impact of Gut Colonization with Butyrate-Producing Microbiota on Respiratory Viral Infection Following Allo-HCT. Blood 2018, 131, 2978–2986. [Google Scholar] [CrossRef]
- Ziegler, M.; Han, J.H.; Landsburg, D.; Pegues, D.; Reesey, E.; Gilmar, C.; Gorman, T.; Bink, K.; Moore, A.; Kelly, B.J. Impact of Levofloxacin for the Prophylaxis of Bloodstream Infection on the Gut Microbiome in Patients With Hematologic Malignancy. Open Forum. Infect. Dis. 2019, 6, ofz252. [Google Scholar] [CrossRef]
- Weber, D.; Hiergeist, A.; Weber, M.; Dettmer, K.; Wolff, D.; Hahn, J.; Herr, W.; Gessner, A.; Holler, E. Detrimental Effect of Broad-Spectrum Antibiotics on Intestinal Microbiome Diversity in Patients After Allogeneic Stem Cell Transplantation: Lack of Commensal Sparing Antibiotics. Clin. Infect. Dis. 2019, 68, 1303–1310. [Google Scholar] [CrossRef]
- D’Amico, F.; Soverini, M.; Zama, D.; Consolandi, C.; Severgnini, M.; Prete, A.; Pession, A.; Barone, M.; Turroni, S.; Biagi, E.; et al. Gut Resistome Plasticity in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation. Sci. Rep. 2019, 9, 5649. [Google Scholar] [CrossRef]
- Galloway-Peña, J.R.; Shi, Y.; Peterson, C.B.; Sahasrabhojane, P.; Gopalakrishnan, V.; Brumlow, C.E.; Daver, N.G.; Alfayez, M.; Boddu, P.C.; Khan, M.A.W.; et al. Gut Microbiome Signatures Are Predictive of Infectious Risk Following Induction Therapy for Acute Myeloid Leukemia. Clin. Infect. Dis. 2020, 71, 63–71. [Google Scholar] [CrossRef]
- Stoma, I.; Littmann, E.R.; Peled, J.U.; Giralt, S.; van den Brink, M.R.M.; Pamer, E.G.; Taur, Y. Compositional Flux Within the Intestinal Microbiota and Risk for Bloodstream Infection With Gram-Negative Bacteria. Clin. Infect. Dis. 2021, 73, e4627–e4635. [Google Scholar] [CrossRef] [PubMed]
- Taplitz, R.A.; Kennedy, E.B.; Bow, E.J.; Crews, J.; Gleason, C.; Langston, A.A.; Flowers, C.R.; Hawley, D.K.; Nastoupil, L.J.; Rolston, K.V.; et al. Antimicrobial Prophylaxis for Adult Patients With Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 3043–3054. [Google Scholar] [CrossRef] [PubMed]
- Wren, C.M.; Cowper, J.; Greer, N.; Goldin, L.; Perry, A. Effect of Reduced Fluoroquinolone Use on Cephalosporin Use, Susceptibilities and Clostridioides Difficile Infections. Antibiotics 2022, 11, 1312. [Google Scholar] [CrossRef]
- Mikulska, M.; Tissot, F.; Cordonnier, C.; Akova, M.; Calandra, T.; Ceppi, M.; Bruzzi, P.; Viscoli, C.; Aljurf, M.; Averbuch, D.; et al. Fluoroquinolone Prophylaxis in Haematological Cancer Patients with Neutropenia: ECIL Critical Appraisal of Previous Guidelines. J. Infect. 2018, 76, 20–37. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Zocco, M.A.; D’Aversa, F.; Pompili, M.; Gasbarrini, A. Eubiotic Properties of Rifaximin: Disruption of the Traditional Concepts in Gut Microbiota Modulation. World J. Gastroenterol. 2017, 23, 4491. [Google Scholar] [CrossRef]
- Resources. Available online: https://www.ecil-leukaemia.com/en/resources/resources-ecil (accessed on 28 May 2025).
- Hayase, E.; Hayase, T.; Chang, C.-C.; Miyama, T.; Karmouch, J.L.; Tsai, W.-B.; Jamal, M.A.; Jenq, R.R. Carbapenem Antibiotics Promote Mucus Degradation By Bacteroides and Aggravate Graft-Versus-Host Disease. Blood 2021, 138, 85. [Google Scholar] [CrossRef]
- Messina, J.A.; Tan, C.Y.; Ren, Y.; Hill, L.; Bush, A.; Lew, M.; Andermann, T.; Peled, J.U.; Gomes, A.; van den Brink, M.R.M.; et al. Enterococcus Intestinal Domination Is Associated With Increased Mortality in the Acute Leukemia Chemotherapy Population. Clin. Infect. Dis. 2024, 78, 414–422. [Google Scholar] [CrossRef]
- Meschiari, M.; Kaleci, S.; Del Monte, M.; Dessilani, A.; Santoro, A.; Scialpi, F.; Franceschini, E.; Orlando, G.; Cervo, A.; Monica, M.; et al. Vancomycin Resistant Enterococcus Risk Factors for Hospital Colonization in Hematological Patients: A Matched Case-Control Study. Antimicrob. Resist. Infect. Control 2023, 12, 126. [Google Scholar] [CrossRef]
- Janjusevic, A.; Cirkovic, I.; Minic, R.; Stevanovic, G.; Soldatovic, I.; Mihaljevic, B.; Vidovic, A.; Markovic Denic, L. Predictors of Vancomycin-Resistant Enterococcus spp. Intestinal Carriage Among High-Risk Patients In University Hospitals In Serbia. Antibiotics 2022, 11, 1228. [Google Scholar] [CrossRef]
- Saad, R.; Rizkallah, M.R.; Aziz, R.K. Gut Pharmacomicrobiomics: The Tip of an Iceberg of Complex Interactions between Drugs and Gut-Associated Microbes. Gut Pathog. 2012, 4, 16. [Google Scholar] [CrossRef]
- Pant, A.; Maiti, T.K.; Mahajan, D.; Das, B. Human Gut Microbiota and Drug Metabolism. Microb. Ecol. 2023, 86, 97–111. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A.L. Mapping Human Microbiome Drug Metabolism by Gut Bacteria and Their Genes. Nature 2019, 570, 462–467. [Google Scholar] [CrossRef]
- Smith, M.; Dai, A.; Ghilardi, G.; Amelsberg, K.V.; Devlin, S.M.; Pajarillo, R.; Slingerland, J.B.; Beghi, S.; Herrera, P.S.; Giardina, P.; et al. Gut Microbiome Correlates of Response and Toxicity Following Anti-CD19 CAR T Cell Therapy. Nat. Med. 2022, 28, 713–723. [Google Scholar] [CrossRef]
- Zhou, B.; Xia, X.; Wang, P.; Chen, S.; Yu, C.; Huang, R.; Zhang, R.; Wang, Y.; Lu, L.; Yuan, F.; et al. Induction and Amelioration of Methotrexate-Induced Gastrointestinal Toxicity Are Related to Immune Response and Gut Microbiota. EBioMedicine 2018, 33, 122–133. [Google Scholar] [CrossRef]
- Pflug, N.; Kluth, S.; Vehreschild, J.J.; Bahlo, J.; Tacke, D.; Biehl, L.; Eichhorst, B.; Fischer, K.; Cramer, P.; Fink, A.-M.; et al. Efficacy of Antineoplastic Treatment Is Associated with the Use of Antibiotics That Modulate Intestinal Microbiota. Oncoimmunology 2016, 5, e1150399. [Google Scholar] [CrossRef] [PubMed]
- Lehouritis, P.; Cummins, J.; Stanton, M.; Murphy, C.T.; McCarthy, F.O.; Reid, G.; Urbaniak, C.; Byrne, W.L.; Tangney, M. Local Bacteria Affect the Efficacy of Chemotherapeutic Drugs. Sci. Rep. 2015, 5, 14554. [Google Scholar] [CrossRef]
- Zhao, B.; Zhou, B.; Dong, C.; Zhang, R.; Xie, D.; Tian, Y.; Yang, L. Lactobacillus Reuteri Alleviates Gastrointestinal Toxicity of Rituximab by Regulating the Proinflammatory T Cells in Vivo. Front. Microbiol. 2021, 12, 645500. [Google Scholar] [CrossRef]
- Zhao, L.; Xing, C.; Sun, W.; Hou, G.; Yang, G.; Yuan, L. Lactobacillus Supplementation Prevents Cisplatin-Induced Cardiotoxicity Possibly by Inflammation Inhibition. Cancer Chemother. Pharmacol. 2018, 82, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Turk, S.; Yanpar, H.; Baesmat, A.S.; Canli, S.D.; Cinar, O.E.; Malkan, U.Y.; Turk, C.; Haznedaroglu, I.C.; Ucar, G. Enterotoxins A and B Produced by Staphylococcus Aureus Increase Cell Proliferation, Invasion and Cytarabine Resistance in Acute Myeloid Leukemia Cell Lines. Heliyon 2023, 9, e19743. [Google Scholar] [CrossRef]
- Hakim, H.; Dallas, R.; Wolf, J.; Tang, L.; Schultz-Cherry, S.; Darling, V.; Johnson, C.; Karlsson, E.A.; Chang, T.-C.; Jeha, S.; et al. Gut Microbiome Composition Predicts Infection Risk During Chemotherapy in Children With Acute Lymphoblastic Leukemia. Clin. Infect. Dis. 2018, 67, 541–548. [Google Scholar] [CrossRef] [PubMed]
- De Pietri, S.; Ingham, A.C.; Frandsen, T.L.; Rathe, M.; Krych, L.; Castro-Mejía, J.L.; Nielsen, D.S.; Nersting, J.; Wehner, P.S.; Schmiegelow, K.; et al. Gastrointestinal Toxicity during Induction Treatment for Childhood Acute Lymphoblastic Leukemia: The Impact of the Gut Microbiota. Int. J. Cancer 2020, 147, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Jenq, R.R.; Taur, Y.; Devlin, S.M.; Ponce, D.M.; Goldberg, J.D.; Ahr, K.F.; Littmann, E.R.; Ling, L.; Gobourne, A.C.; Miller, L.C.; et al. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biol. Blood Marrow Transpl. 2015, 21, 1373. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.Y.; Zhou, H.; Wang, S.F.; Chen, X.; Xiao, H.W. Gut Microbiota, Microbiota-derived Metabolites, and Graft-versus-host Disease. Cancer Med. 2024, 13, e6799. [Google Scholar] [CrossRef]
- Ilett, E.E.; Jørgensen, M.; Noguera-Julian, M.; Nørgaard, J.C.; Daugaard, G.; Helleberg, M.; Paredes, R.; Murray, D.D.; Lundgren, J.; MacPherson, C.; et al. Associations of the Gut Microbiome and Clinical Factors with Acute GVHD in Allogeneic HSCT Recipients. Blood Adv. 2020, 4, 5797–5809. [Google Scholar] [CrossRef]
- Stein-Thoeringer, C.K.; Nichols, K.B.; Lazrak, A.; Docampo, M.D.; Slingerland, A.E.; Slingerland, J.B.; Clurman, A.G.; Armijo, G.; Gomes, A.L.C.; Shono, Y.; et al. Lactose Drives Enterococcus Expansion to Promote Graft-versus-Host Disease. Science (1979) 2019, 366, 1143–1149. [Google Scholar] [CrossRef]
- Fujiwara, H.; Docampo, M.D.; Riwes, M.; Peltier, D.; Toubai, T.; Henig, I.; Wu, S.J.; Kim, S.; Taylor, A.; Brabbs, S.; et al. Microbial Metabolite Sensor GPR43 Controls Severity of Experimental GVHD. Nat. Commun. 2018, 9, 3674. [Google Scholar] [CrossRef]
- Peled, J.U.; Devlin, S.M.; Staffas, A.; Lumish, M.; Khanin, R.; Littmann, E.R.; Ling, L.; Kosuri, S.; Maloy, M.; Slingerland, J.B.; et al. Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation. J. Clin. Oncol. 2017, 35, 1650. [Google Scholar] [CrossRef]
- Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The Microbial Pharmacists within Us: A Metagenomic View of Xenobiotic Metabolism. Nat. Rev. Microbiol. 2016, 14, 273–287. [Google Scholar] [CrossRef]
- Haiser, H.J.; Gootenberg, D.B.; Chatman, K.; Sirasani, G.; Balskus, E.P.; Turnbaugh, P.J. Predicting and Manipulating Cardiac Drug Inactivation by the Human Gut Bacterium Eggerthella Lenta. Science 2013, 341, 295–298. [Google Scholar] [CrossRef]
- Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Krogh Pedersen, H.; et al. Disentangling Type 2 Diabetes and Metformin Treatment Signatures in the Human Gut Microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef]
- Klastersky, J.; de Naurois, J.; Rolston, K.; Rapoport, B.; Maschmeyer, G.; Aapro, M.; Herrstedt, J. on behalf of the ESMO Guidelines Committee Management of Febrile Neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016, 27, v111–v118. [Google Scholar] [CrossRef] [PubMed]
- Shbaklo, N.; Vicentini, C.; Busca, A.; Giaccone, L.; Dellacasa, C.; Dogliotti, I.; Lupia, T.; Zotti, C.M.; Corcione, S.; De Rosa, F.G. Cost-Effectiveness of Targeted Prophylaxis among Allogenic Stem Cell Transplant Recipients. Pharmaceuticals 2023, 16, 466. [Google Scholar] [CrossRef] [PubMed]
- Slavin, M.A.; Lingaratnam, S.; Mileshkin, L.; Booth, D.L.; Cain, M.J.; Ritchie, D.S.; Wei, A.; Thursky, K.A. Use of Antibacterial Prophylaxis for Patients with Neutropenia. Australian Consensus Guidelines 2011 Steering Committee. Intern. Med. J. 2011, 41, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Averbuch, D.; Orasch, C.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Viscoli, C.; Gyssens, I.C.; Kern, W.V.; Klyasova, G.; Marchetti, O.; et al. European Guidelines for Empirical Antibacterial Therapy for Febrile Neutropenic Patients in the Era of Growing Resistance: Summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica 2013, 98, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.J.; Majers, J.; Healy, R.; Jones, P.B.; Butler, A.M.; Snow, G.; Forsyth, S.; Lopansri, B.K.; Ford, C.D.; Hoda, D. Antimicrobial Stewardship in a Hematological Malignancy Unit: Carbapenem Reduction and Decreased Vancomycin-Resistant Enterococcus Infection. Clin. Infect. Dis. 2020, 71, 960–967. [Google Scholar] [CrossRef]
- Schauwvlieghe, A.; Dunbar, A.; Storme, E.; Vlak, A.; Aerts, R.; Maertens, J.; Sciot, B.; Van Der Wel, T.; Papageorgiou, G.; Moors, I.; et al. Stopping Antibiotic Therapy after 72 h in Patients with Febrile Neutropenia Following Intensive Chemotherapy for AML/MDS (Safe Study): A Retrospective Comparative Cohort Study. EClinicalMedicine 2021, 35, 100855. [Google Scholar] [CrossRef]
- de Gunzburg, J.; Ducher, A.; Modess, C.; Wegner, D.; Oswald, S.; Dressman, J.; Augustin, V.; Feger, C.; Andremont, A.; Weitschies, W.; et al. Targeted Adsorption of Molecules in the Colon with the Novel Adsorbent-Based Medicinal Product, DAV132: A Proof of Concept Study in Healthy Subjects. J. Clin. Pharmacol. 2015, 55, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Connelly, S.; Fanelli, B.; Hasan, N.A.; Colwell, R.R.; Kaleko, M. Oral Metallo-Beta-Lactamase Protects the Gut Microbiome From Carbapenem-Mediated Damage and Reduces Propagation of Antibiotic Resistance in Pigs. Front. Microbiol. 2019, 10, 101. [Google Scholar] [CrossRef]
- Jing, N.; Wang, L.; Zhuang, H.; Jiang, G.; Liu, Z. Ultrafine Jujube Powder Enhances the Infiltration of Immune Cells during Anti-PD-L1 Treatment against Murine Colon Adenocarcinoma. Cancers 2021, 13, 3987. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Leles, G.; Quintanilha, M.F.; Souza, R.O.; Miranda, V.C.; Rocha, V.M.; Trindade, L.M.; Jesus, L.C.L.; Mendes, V.; Andre, L.C.; D’Auriol-Souza, M.M.; et al. Effects of Dietary Fibre Intake in Chemotherapy-Induced Mucositis in Murine Model. Br. J. Nutr. 2021, 126, 853–864. [Google Scholar] [CrossRef]
- Wang, C.; Yang, S.; Gao, L.; Wang, L.; Cao, L. Carboxymethyl Pachyman (CMP) Reduces Intestinal Mucositis and Regulates the Intestinal Microflora in 5-Fluorouracil-Treated CT26 Tumour-Bearing Mice. Food Funct. 2018, 9, 2695–2704. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, A.; Carvalho, A.L.; Soares, R.; Barata, P. Faecalibacterium Prausnitzii in Differentiated Thyroid Cancer Patients Treated with Radioiodine. Nutrients 2023, 15, 2680. [Google Scholar] [CrossRef] [PubMed]
- Forslund, S.K. Fasting Intervention and Its Clinical Effects on the Human Host and Microbiome. J. Intern. Med. 2022, 293, 166–183. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, B.; Xiao, Y.; Liu, J.; Wang, Q.; Xiao, H.; Jin, Y.; Liu, Z.; Chen, Z.; Li, Y.; et al. Roseburia Intestinalis Sensitizes Colorectal Cancer to Radiotherapy through the Butyrate/OR51E1/RALB Axis. Cell Rep. 2024, 43, 113846. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Yan, X.; Liu, Y.; Huang, L.; Zhu, Y.; He, J.; Gao, R.; Kalady, M.F.; Goel, A.; Qin, H.; et al. Ketogenic Diet Alleviates Colitis by Reduction of Colonic Group 3 Innate Lymphoid Cells through Altering Gut Microbiome. Signal Transduct. Target. Ther. 2021, 6, 154. [Google Scholar] [CrossRef]
- Cagigas, M.L.; Rajakumar, G.; Skarratt, K.; Hayward, R.; Pelaia, T.; Ardjmand, A.; Vaughan, L.; Fontana, L.; Fuller, S. PB1796: ADMINISTRATION OF A KETOGENIC DIET FOR CHEMOTHERAPY PROTECTION IN ACUTE LEUKEMIA PATIENTS: IS IT FEASIBLE, SAFE, AND VALUABLE? PRELIMINARY RESULTS OF THE RANDOMIZED CONTROLLED TRIAL LEU-KETO STUDY. Hemasphere 2023, 7, e189423f. [Google Scholar] [CrossRef]
- Spencer, C.N.; McQuade, J.L.; Gopalakrishnan, V.; McCulloch, J.A.; Vetizou, M.; Cogdill, A.P.; Khan, M.A.W.; Zhang, X.; White, M.G.; Peterson, C.B.; et al. Dietary Fiber and Probiotics Influence the Gut Microbiome and Melanoma Immunotherapy Response. Science (1979) 2021, 374, 1632–1640. [Google Scholar] [CrossRef]
- Nagpal, R.; Shively, C.A.; Appt, S.A.; Register, T.C.; Michalson, K.T.; Vitolins, M.Z.; Yadav, H. Gut Microbiome Composition in Non-Human Primates Consuming a Western or Mediterranean Diet. Front. Nutr. 2018, 5, 28. [Google Scholar] [CrossRef]
- Pagliai, G.; Russo, E.; Niccolai, E.; Dinu, M.; Di Pilato, V.; Magrini, A.; Bartolucci, G.; Baldi, S.; Menicatti, M.; Giusti, B.; et al. Influence of a 3-Month Low-Calorie Mediterranean Diet Compared to the Vegetarian Diet on Human Gut Microbiota and SCFA: The CARDIVEG Study. Eur. J. Nutr. 2020, 59, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Tavil, B.; Koksal, E.; Yalcin, S.S.; Uckan, D. Pretransplant Nutritional Habits and Clinical Outcome in Children Undergoing Hematopoietic Stem Cell Transplant. Exp. Clin. Transplant. 2012, 10, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Matteucci, S.; De Pasquale, G.; Pastore, M.; Morenghi, E.; Pipitone, V.; Soekeland, F.; Caccialanza, R.; Mazzoleni, B.; Mancin, S. Low-Bacterial Diet in Cancer Patients: A Systematic Review. Nutrients 2023, 15, 3171. [Google Scholar] [CrossRef] [PubMed]
- Food Safety for Older Adults and People with Cancer, Diabetes, HIV/AIDS, Organ Transplants, and Autoimmune Diseases|FDA. Available online: https://www.fda.gov/food/people-risk-foodborne-illness/food-safety-older-adults-and-people-cancer-diabetes-hivaids-organ-transplants-and-autoimmune (accessed on 27 October 2024).
- Ciernikova, S.; Sevcikova, A.; Drgona, L.; Mego, M. Modulating the Gut Microbiota by Probiotics, Prebiotics, Postbiotics, and Fecal Microbiota Transplantation: An Emerging Trend in Cancer Patient Care. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2023, 1878, 188990. [Google Scholar] [CrossRef]
- Iyer, C.; Kosters, A.; Sethi, G.; Kunnumakkara, A.B.; Aggarwal, B.B.; Versalovic, J. Probiotic Lactobacillus Reuteri Promotes TNF-Induced Apoptosis in Human Myeloid Leukemia-Derived Cells by Modulation of NF-KappaB and MAPK Signalling. Cell Microbiol. 2008, 10, 1442–1452. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, J.; Zhou, X.; You, M.; Du, Q.; Yang, X.; He, J.; Zou, J.; Cheng, L.; Li, M.; et al. Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations. PLoS ONE 2014, 9, e102116. [Google Scholar] [CrossRef]
- Ghoneum, M.; Gimzewski, J. Apoptotic Effect of a Novel Kefir Product, PFT, on Multidrug-Resistant Myeloid Leukemia Cells via a Hole-Piercing Mechanism. Int. J. Oncol. 2014, 44, 830–837. [Google Scholar] [CrossRef]
- Liu, J.; Luo, W.; Chen, Q.; Chen, X.; Zhou, G.; Sun, H. Curcumin Sensitizes Response to Cytarabine in Acute Myeloid Leukemia by Regulating Intestinal Microbiota. Cancer Chemother. Pharmacol. 2022, 89, 243–253. [Google Scholar] [CrossRef]
- Kwak, S.-H.; Cho, Y.-M.; Noh, G.-M.; Om, A.-S. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prev. 2014, 19, 253. [Google Scholar] [CrossRef]
- Ambesh, P.; Stroud, S.; Franzova, E.; Gotesman, J.; Sharma, K.; Wolf, L.; Kamholz, S. Recurrent Lactobacillus Bacteremia in a Patient With Leukemia. J. Investig. Med. High Impact Case Rep. 2017, 5, 2324709617744233. [Google Scholar] [CrossRef]
- Martín, R.; Langella, P. Emerging Health Concepts in the Probiotics Field: Streamlining the Definitions. Front. Microbiol. 2019, 10, 1047. [Google Scholar] [CrossRef]
- Balendra, V.; Rosenfeld, R.; Amoroso, C.; Castagnone, C.; Rossino, M.G.; Garrone, O.; Ghidini, M. Postbiotics as Adjuvant Therapy in Cancer Care. Nutrients 2024, 16, 2400. [Google Scholar] [CrossRef] [PubMed]
- Mederle, A.L.; Semenescu, A.; Drăghici, G.A.; Dehelean, C.A.; Vlăduț, N.V.; Nica, D.V. Sodium Butyrate: A Multifaceted Modulator in Colorectal Cancer Therapy. Medicina 2025, 61, 136. [Google Scholar] [CrossRef] [PubMed]
- Condoluci, A.; Rossi, D. Mechanisms of Resistance to Venetoclax. Blood 2022, 140, 2094–2096. [Google Scholar] [CrossRef]
- Pulliam, S.R.; Pellom, S.T.; Shanker, A.; Adunyah, S.E. Butyrate Regulates the Expression of Inflammatory and Chemotactic Cytokines in Human Acute Leukemic Cells during Apoptosis. Cytokine 2016, 84, 74–87. [Google Scholar] [CrossRef]
- Kawakatsu, R.; Tadagaki, K.; Yamasaki, K.; Yoshida, T. Venetoclax Efficacy on Acute Myeloid Leukemia Is Enhanced by the Combination with Butyrate. Sci. Rep. 2024, 14, 4975. [Google Scholar] [CrossRef]
- Yoshida, T.; Yamasaki, K.; Tadagaki, K.; Kuwahara, Y.; Matsumoto, A.; Sofovic, A.E.; Kondo, N.; Sakai, T.; Okuda, T. Tumor Necrosis Factor related Apoptosis inducing Ligand Is a Novel Transcriptional Target of Runt related Transcription Factor 1. Int. J. Oncol. 2022, 60, 6. [Google Scholar] [CrossRef]
- Reyna-Figueroa, J.; Barrón-Calvillo, E.; García-Parra, C.; Galindo-Delgado, P.; Contreras-Ochoa, C.; Lagunas-Martínez, A.; Campos-Romero, F.H.; Silva-Estrada, J.A.; Limón-Rojas, A.E. Probiotic Supplementation Decreases Chemotherapy-Induced Gastrointestinal Side Effects in Patients With Acute Leukemia. J. Pediatr. Hematol. Oncol. 2019, 41, 468–472. [Google Scholar] [CrossRef]
- Wada, M.; Nagata, S.; Saito, M.; Shimizu, T.; Yamashiro, Y.; Matsuki, T.; Asahara, T.; Nomoto, K. Effects of the Enteral Administration of Bifidobacterium Breve on Patients Undergoing Chemotherapy for Pediatric Malignancies. Support. Care Cancer 2010, 18, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Iyama, S.; Sato, T.; Tatsumi, H.; Hashimoto, A.; Tatekoshi, A.; Kamihara, Y.; Horiguchi, H.; Ibata, S.; Ono, K.; Murase, K.; et al. Efficacy of Enteral Supplementation Enriched with Glutamine, Fiber, and Oligosaccharide on Mucosal Injury Following Hematopoietic Stem Cell Transplantation. Case Rep. Oncol. 2014, 7, 692. [Google Scholar] [CrossRef]
- Yoshifuji, K.; Inamoto, K.; Kiridoshi, Y.; Takeshita, K.; Sasajima, S.; Shiraishi, Y.; Yamashita, Y.; Nisaka, Y.; Ogura, Y.; Takeuchi, R.; et al. Prebiotics Protect against Acute Graft-versus-Host Disease and Preserve the Gut Microbiota in Stem Cell Transplantation. Blood Adv. 2020, 4, 4607–4617. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Tilak, T.; Bakhshi, S.; Raina, V.; Kumar, L.; Chaudhary, S.P.; Sahoo, R.K.; Gupta, R.; Thulkar, S. Lactobacillus Brevis CD2 Lozenges Prevent Oral Mucositis in Patients Undergoing High Dose Chemotherapy Followed by Haematopoietic Stem Cell Transplantation. ESMO Open 2016, 1, 138. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, H.; Lu, X.; Xia, L. Viable Bifidobacterium Tablets for the Prevention of Chemotherapy-/Radiation-Induced Mucositis in Patients Undergoing Haematopoietic Stem Cell Transplantation. Support. Care Cancer 2023, 31, 282. [Google Scholar] [CrossRef] [PubMed]
- Gorshein, E.; Wei, C.; Ambrosy, S.; Budney, S.; Vivas, J.; Shenkerman, A.; Manago, J.; McGrath, M.K.; Tyno, A.; Lin, Y.; et al. Lactobacillus Rhamnosus GG Probiotic Enteric Regimen Does Not Appreciably Alter the Gut Microbiome or Provide Protection against GVHD after Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Transpl. 2017, 31, e12947. [Google Scholar] [CrossRef]
- Zeiser, R.; Blazar, B.R. Acute Graft-versus-Host Disease—Biologic Process, Prevention, and Therapy. N. Engl. J. Med. 2017, 377, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.R.; Ferrara, J.L.M. The Primacy of the Gastrointestinal Tract as a Target Organ of Acute Graft-versus-Host Disease: Rationale for the Use of Cytokine Shields in Allogeneic Bone Marrow Transplantation. Blood 2000, 95, 2754–2759. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 180861. [Google Scholar] [CrossRef]
- Ivanov, I.I.; Atarashi, K.; Manel, N.; Brodie, E.L.; Shima, T.; Karaoz, U.; Wei, D.; Goldfarb, K.C.; Santee, C.A.; Lynch, S.V.; et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 2009, 139, 485–498. [Google Scholar] [CrossRef]
- Van der Velden, W.J.F.M.; Herbers, A.H.E.; Netea, M.G.; Blijlevens, N.M.A. Mucosal Barrier Injury, Fever and Infection in Neutropenic Patients with Cancer: Introducing the Paradigm Febrile Mucositis. Br. J. Haematol. 2014, 167, 441–452. [Google Scholar] [CrossRef]
- Cheng, H.; Guan, X.; Chen, D.; Ma, W. The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms 2019, 7, 583. [Google Scholar] [CrossRef]
- Vaishnava, S.; Behrendt, C.L.; Ismail, A.S.; Eckmann, L.; Hooper, L.V. Paneth Cells Directly Sense Gut Commensals and Maintain Homeostasis at the Intestinal Host-Microbial Interface. Proc. Natl. Acad. Sci. USA 2008, 105, 20858–20863. [Google Scholar] [CrossRef]
- Koyama, M.; Hill, G.R. Alloantigen Presentation and Graft-versus-Host Disease: Fuel for the Fire. Blood 2016, 127, 2963–2970. [Google Scholar] [CrossRef] [PubMed]
- Elinav, E.; Strowig, T.; Kau, A.L.; Henao-Mejia, J.; Thaiss, C.A.; Booth, C.J.; Peaper, D.R.; Bertin, J.; Eisenbarth, S.C.; Gordon, J.I.; et al. NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis. Cell 2011, 145, 745–757. [Google Scholar] [CrossRef]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef]
- Mathewson, N.D.; Jenq, R.; Mathew, A.V.; Koenigsknecht, M.; Hanash, A.; Toubai, T.; Oravecz-Wilson, K.; Wu, S.R.; Sun, Y.; Rossi, C.; et al. Gut Microbiome-Derived Metabolites Modulate Intestinal Epithelial Cell Damage and Mitigate Graft-versus-Host Disease. Nat. Immunol. 2016, 17, 505–513. [Google Scholar] [CrossRef]
- Todor, S.B.; Ichim, C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children 2025, 12, 166. [Google Scholar] [CrossRef]
- Pinzon-Leal, P.; Gutierrez-Barbosa, H.; Medina-Moreno, S.; Zapata, J.C. The Microbiome, Inflammation, and GVHD Axis: The Balance Between the “Gut” and the Bad. Immuno 2025, 5, 10. [Google Scholar] [CrossRef]
- Markey, K.A.; Schluter, J.; Gomes, A.L.C.; Littmann, E.R.; Pickard, A.J.; Taylor, B.P.; Giardina, P.A.; Weber, D.; Dai, A.; Docampo, M.D.; et al. The Microbe-Derived Short-Chain Fatty Acids Butyrate and Propionate Are Associated with Protection from Chronic GVHD. Blood 2020, 136, 130–136. [Google Scholar] [CrossRef]
- Nigam, M.; Panwar, A.S.; Singh, R.K. Orchestrating the Fecal Microbiota Transplantation: Current Technological Advancements and Potential Biomedical Application. Front. Med. Technol. 2022, 4, 961569. [Google Scholar] [CrossRef]
- Bieganska, E.A.; Kosinski, P.; Wolski, M. Possible Applications of Fecal Microbiota Transplantation in the Pediatric Population: A Systematic Review. Biomedicines 2025, 13, 1393. [Google Scholar] [CrossRef] [PubMed]
- Zerdan, M.B.; Niforatos, S.; Nasr, S.; Nasr, D.; Ombada, M.; John, S.; Dutta, D.; Lim, S.H. Fecal Microbiota Transplant for Hematologic and Oncologic Diseases: Principle and Practice. Cancers 2022, 14, 691. [Google Scholar] [CrossRef]
- Mayer, E.F.; Maron, G.; Dallas, R.H.; Ferrolino, J.; Tang, L.; Sun, Y.; Danziger-Isakov, L.; Paulsen, G.C.; Fisher, B.T.; Vora, S.B.; et al. A Multicenter Study to Define the Epidemiology and Outcomes of Clostridioides Difficile Infection in Pediatric Hematopoietic Cell and Solid Organ Transplant Recipients. Am. J. Transplant. 2020, 20, 2133–2142. [Google Scholar] [CrossRef]
- Webb, B.J.; Brunner, A.; Ford, C.D.; Gazdik, M.A.; Petersen, F.B.; Hoda, D. Fecal Microbiota Transplantation for Recurrent Clostridium Difficile Infection in Hematopoietic Stem Cell Transplant Recipients. Transpl. Infect. Dis. 2016, 18, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Seong, H.; Lee, S.K.; Cheon, J.H.; Yong, D.E.; Koh, H.; Kang, Y.K.; Jeong, W.Y.; Lee, W.J.; Sohn, Y.; Cho, Y.; et al. Fecal Microbiota Transplantation for Multidrug-Resistant Organism: Efficacy and Response Prediction. J. Infect. 2020, 81, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Robinson, P.D.; Fisher, B.T.; Phillips, R.; Morgan, J.E.; Lehrnbecher, T.; Kuczynski, S.; Koenig, C.; Haeusler, G.M.; Esbenshade, A.; et al. Guideline for the Management of Clostridioides Difficile Infection in Pediatric Patients with Cancer and Hematopoietic Cell Transplantation Recipients: 2024 Update. EClinicalMedicine 2024, 72, 102604. [Google Scholar] [CrossRef]
- Kelly, C.R.; Ihunnah, C.; Fischer, M.; Khoruts, A.; Surawicz, C.; Afzali, A.; Aroniadis, O.; Barto, A.; Borody, T.; Giovanelli, A.; et al. Fecal Microbiota Transplant for Treatment of Clostridium Difficile Infection in Immunocompromised Patients. Am. J. Gastroenterol. 2014, 109, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Conover, K.R.; Absah, I.; Ballal, S.; Brumbaugh, D.; Cho, S.; Cardenas, M.C.; Knackstedt, E.D.; Goyal, A.; Jensen, M.K.; Kaplan, J.L.; et al. Fecal Microbiota Transplantation for Clostridioides Difficile Infection in Immunocompromised Pediatric Patients. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 440–446. [Google Scholar] [CrossRef]
- Nallar, S.C.; Xu, D.Q.; Kalvakolanu, D.V. Bacteria and Genetically Modified Bacteria as Cancer Therapeutics: Current Advances and Challenges. Cytokine 2017, 89, 160–172. [Google Scholar] [CrossRef]
- Forbes, N.S. Engineering the Perfect (Bacterial) Cancer Therapy. Nat. Rev. Cancer 2010, 10, 785–794. [Google Scholar] [CrossRef]
- Wang, J.; Ghosh, D.; Maniruzzaman, M. Using Bugs as Drugs: Administration of Bacteria-Related Microbes to Fight Cancer. Adv. Drug. Deliv. Rev. 2023, 197, 114825. [Google Scholar] [CrossRef]
- Mayakrishnan, V.; Kannappan, P.; Tharmalingam, N.; Bose, R.J.C.; Madheswaran, T.; Ramasamy, M. Bacterial Cancer Therapy: A Turning Point for New Paradigms. Drug. Discov. Today 2022, 27, 2043–2050. [Google Scholar] [CrossRef]
- Li, M.; Lu, M.; Lai, Y.; Zhang, X.; Li, Y.; Mao, P.; Liang, Z.; Mu, Y.; Lin, Y.; Zhao, A.Z.; et al. Inhibition of Acute Leukemia with Attenuated Salmonella Typhimurium Strain VNP20009. Biomed. Pharmacother. 2020, 129, 110425. [Google Scholar] [CrossRef]
- Cuozzo, M.; Castelli, V.; Avagliano, C.; Cimini, A.; D’angelo, M.; Cristiano, C.; Russo, R. Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain. Biomedicines 2021, 9, 346. [Google Scholar] [CrossRef]
- Juan, Z.; Chen, J.; Ding, B.; Yongping, L.; Liu, K.; Wang, L.; Le, Y.; Liao, Q.; Shi, J.; Huang, J.; et al. Probiotic Supplement Attenuates Chemotherapy-Related Cognitive Impairment in Patients with Breast Cancer: A Randomised, Double-Blind, and Placebo-Controlled Trial. Eur. J. Cancer 2022, 161, 10–22. [Google Scholar] [CrossRef]
- Shen, S.; Lim, G.; You, Z.; DIng, W.; Huang, P.; Ran, C.; Doheny, J.; Caravan, P.; Tate, S.; Hu, K.; et al. Gut Microbiota Is Critical for the Induction of Chemotherapy-Induced Pain. Nat. Neurosci. 2017, 20, 1213–1216. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef]
- Hitchings, R.; Kelly, L. Predicting and Understanding the Human Microbiome’s Impact on Pharmacology. Trends Pharmacol. Sci. 2019, 40, 495. [Google Scholar] [CrossRef]
- Mima, K.; Kosumi, K.; Baba, Y.; Hamada, T.; Baba, H.; Ogino, S. The Microbiome, Genetics, and Gastrointestinal Neoplasms: The Evolving Field of Molecular Pathological Epidemiology to Analyze the Tumor-Immune-Microbiome Interaction. Hum. Genet. 2021, 140, 725–746. [Google Scholar] [CrossRef]
- Trac, Q.T. Statistical and Computational Methodologies for Omics Data Analyses and Drug Response Prediction; Karolinska Institutet: Stockholm, Sweden, 2024. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, F.H.; Wu, P.Q.; Xing, H.Y.; Ma, T. The Role of The Tumor Microbiome in Tumor Development and Its Treatment. Front. Immunol. 2022, 13, 935846. [Google Scholar] [CrossRef]
- Fu, A.; Yao, B.; Dong, T.; Chen, Y.; Yao, J.; Liu, Y.; Li, H.; Bai, H.; Liu, X.; Zhang, Y.; et al. Tumor-Resident Intracellular Microbiota Promotes Metastatic Colonization in Breast Cancer. Cell 2022, 185, 1356–1372.e26. [Google Scholar] [CrossRef]
- Castillo, D.J.; Rifkin, R.F.; Cowan, D.A.; Potgieter, M. The Healthy Human Blood Microbiome: Fact or Fiction? Front. Cell Infect. Microbiol. 2019, 9, 449041. [Google Scholar] [CrossRef]
- Cheng, H.S.; Tan, S.P.; Wong, D.M.K.; Koo, W.L.Y.; Wong, S.H.; Tan, N.S. The Blood Microbiome and Health: Current Evidence, Controversies, and Challenges. Int. J. Mol. Sci. 2023, 24, 5633. [Google Scholar] [CrossRef]
- Woerner, J.; Huang, Y.; Hutter, S.; Gurnari, C.; Sánchez, J.M.H.; Wang, J.; Huang, Y.; Schnabel, D.; Aaby, M.; Xu, W.; et al. Circulating Microbial Content in Myeloid Malignancy Patients Is Associated with Disease Subtypes and Patient Outcomes. Nat. Commun. 2022, 13, 1038. [Google Scholar] [CrossRef]
- Tan, C.C.S.; Ko, K.K.K.; Chen, H.; Liu, J.; Loh, M.; Chia, M.; Nagarajan, N. No Evidence for a Common Blood Microbiome Based on a Population Study of 9770 Healthy Humans. Nat. Microbiol. 2023, 8, 973–985. [Google Scholar] [CrossRef]
Group | Types | Drugs |
Chemotherapy | Antimetabolites | Cytarabine |
Fludarabine | ||
Cladribine | ||
Clofarabine | ||
Thioguanine | ||
Decitabine | ||
Methotrexate | ||
Azacitidine | ||
alkylating agents | Cyclophosphamide | |
anti-microtubule agents | vincristine | |
topoisomerase inhibitors | doxorubicin | |
mitoxantrone | ||
cytotoxic antibiotics | idarubicin | |
daunorubicin | ||
mitoxantrone | ||
doxorubicin | ||
targeted therapy | inhibitor of the b-cell lymphoma 2 regulator protein | venetoclax |
fms-related tyrosine kinase 3 inhibitors | midostaurin | |
quizartinib | ||
gilteritinib | ||
sorafenib | ||
menin inhibitor | revumenib | |
isocitrate dehydrogenase inhibitors | enasidenib | |
ivosidenib | ||
olutasidenib | ||
antibody drug conjugate | gemtuzumab ozogamicin | |
hedgehog pathway inhibitor | glasdegib | |
Other | hypomethylating agents | azacitidine |
decitabine | ||
dexamethasone | ||
Steroids | prednisone | |
Retinoids | all-trans retinoic acid | |
arsenic trioxide | ||
hydroxycarbamide | ||
combinations of antineoplastic agents | daunorubicin hydrochloride and cytarabine liposome | |
cytarabine, daunorubicin hydrochloride, and etoposide phosphate |
Ref | Study Group | Sampling Time Point | Methodology (Material) | Antibiotics | Use | Comparator | Main Results | |||
---|---|---|---|---|---|---|---|---|---|---|
Alpha Diversity | Composition | Resistome | Metabolites | |||||||
[46] | n = 94 HSCT recipients (AML n = 44) | serial analyses from before HSCT to 35 days post-HSCT | 16S ribosomal RNA gene sequencing (fecal specimens) | vancomycin | P | temporal variations of microbiota profiles | ↓ | ↔ | n/a | n/a |
ciprofloxacin, levofloxacin | P | temporal variations of microbiota profiles | ↓ | 10-fold ↓ in Proteobacteria dominance | n/a | n/a | ||||
metronidazole | T | temporal variations of microbiota profiles | ↓ | 3-fold ↑ in enterococcal dominance | n/a | n/a | ||||
cephalosporins, beta-lactam–beta-lactamase combinations, carbapenems | T | temporal variations of microbiota profiles | ↓ | ↔ | n/a | n/a | ||||
[47] | n = 34 HSCT recipients (AML n = 14) | serial analyses from before HSCT to day 28 post-HSCT | next-generation sequencing (fecal specimens), strain-specific enterococcal PCR (fecal specimens), liquid chromatography–tandem mass spectrometry of urinary IS (urine) | trimethoprim/sulfamethoxazole followed by ciprofloxacin + metronidazole | P | temporal variations of microbiota profiles | ↑ in the proportion of E. faecalis and E. faecium; ↓ in other Firmicutes and phyla | n/a | ↓ 3-IS levels | |
systemic antibiotics | T | temporal variations of microbiota profiles | ↓ | ↑ mainly in E. faecalis and, to a lesser extent, E. faecium | n/a | ↓ 3-IS levels | ||||
[48] | n = 857 HSCT recipients (AML n = 277) | prior to and after the initiation of a specific antibiotic treatment | 16S ribosomal RNA gene sequencing (fecal specimens) | vancomycin + ciprofloxacin | P | comparison with other | n/a | minor perturbations | n/a | n/a |
iv or oral trimethoprim/sulfamethoxazole | T | comparison with other | n/a | minor perturbations | n/a | n/a | ||||
oral atovaquone | T | comparison with other | n/a | minor perturbations | n/a | n/a | ||||
imipenem–cilastatin | T | comparison with other | n/a | minor perturbations | n/a | n/a | ||||
piperacillin–tazobactam | T | comparison with other | n/a | greater ↓ in Bacteroidetes and Lactobacillus; trend towards a ↓ in Clostridia and Actinobacteria (no statistical significance); ↓ in Enterococcus, Akkermansia, and Erysipelotrichia (similar to aztreonam and cefepime) | n/a | n/a | ||||
aztreonam | T | comparison with other | n/a | ↓ in Enterococcus, Akkermansia, and Erysipelotrichia (similar to piperacillin–tazobactam) | n/a | n/a | ||||
cefepime | T | comparison with other | n/a | ↓ in Enterococcus, Akkermansia, and Erysipelotrichia (similar to piperacillin–tazobactam) | n/a | n/a | ||||
[49] | n = 394 HSCT recipients (acute leukemia n = 219) | serial analyses from before conditioning and weekly within the first 28 days after HSCT | 3-IS (urine), 16S ribosomal RNA gene sequencing (fecal specimens) | rifaximin | P | ciprofloxacin–metronidazole | n/a | ↓ in E. faecium and E. faecalis | n/a | ↑ 3-IS levels |
[50] | n = 360 HSCT recipients (AML n = 197) | serial analyses from before HSCT to the time of stem cell engraftment | 16S ribosomal RNA gene sequencing (fecal specimens), concentrations of SCFAs using targeted metabolomics methodology (fecal samples) | metronidazole | T | temporal variations of microbiota profiles | n/a | ↓ in butyrate-producing bacteria | n/a | butyrate, acetate, propionate, and desamino-tyrosine correlated with the abundance of butyrate-producing bacteria |
beta-lactams | T | temporal variations of microbiota profiles | n/a | ↓ in butyrate-producing bacteria | n/a | |||||
vancomycin | T | temporal variations of microbiota profiles | n/a | ↔ | n/a | |||||
fluoroquinolones | T | temporal variations of microbiota profiles | n/a | ↔ | n/a | |||||
[51] | n = 60 (AML n = 26) | within 7 days after antibiotics exposure | 16S ribosomal RNA gene sequencing (fecal specimens) | levofloxacin | P | no antibiotics | ↑ | trend toward ↓ dominance of non-Bacteroidetes; ↓ in Proteobacteria; ↑ in Lachnospiraceae, Ruminococcaceae, Blautia | n/a | n/a |
oral vancomycin | P | no antibiotics | ↓ | ↓ in Bacteroidetes; ↑ risk of dominance of non-Bacteroidetes | n/a | n/a | ||||
cefepime, piperacillin–tazobactam, meropenem | T | no antibiotics | ↓ | trend toward ↑ Enterococcus; ↓ in Clostridia and Blautia | n/a | n/a | ||||
[52] | n = 161 HSCT recipients (AML n = 87) | serial analyses within the first 10 days after HSCT | 3-IS (urine), 16S ribosomal RNA gene sequencing (fecal specimens) | rifaximin | P | rifaximin with/withouTsystemic antibiotics vs. ciprofloxacin–metronidazole with/without systemic antibiotics | ↑ | ↑ in Clostridium cluster XIVa (CCXIVa) abundance; ↓ in enterococcal load (not statistically significant) | n/a | ↑ 3-IS levels |
ciprofloxacin + metronidazole | P | temporal variations of microbiota profiles | ↓ | domination of Akkermansia, Eubacterium, or Enterococcus | n/a | ↓ 3-IS levels | ||||
piperacillin–tazobactam, meropenem + vancomycin, ceftazidime, vancomycin | T | temporal variations of microbiota profiles | ↓ | domination of Akkermansia, Eubacterium, or Enterococcus | n/a | ↓ 3-IS levels (except vancomycin alone) | ||||
systemic antibiotics | T | temporal variations of microbiota profiles | ↓ | ↑ mainly in E. faecalis and, to a lesser extent, E. faecium | n/a | ↓ 3-IS levels | ||||
[53] | n = 8 HSCT recipients (AML n = 8) | serial analyses from before HSCT to 85 days post-HSCT | WGS metagenome sequencing (fecal specimens) | fluoroquinolones | P | temporal variations of the gut resistome in each individual | n/a | ARU26—↑ in Bacteroides sp. D1, Prevotella intermedia, Capnocytophaga ochracea, and Bacteroides fragilis species; ARU38—↑ in B. fragilis and Bacteroides sp. | ↑ trend for AMR genes: ARU4 (tetracycline inhibitor), ARU26 (β-lactamase CFXA3), and ARU38 (erythromycin resistance); consolidation of AMR genes present before transplanting and acquisition of new AMR genes, particularly in aGvHD-positive patients, extending beyond the antibiotics used during treatment | n/a |
beta-lactams | T | temporal variations of the gut resistome in each individual | n/a | n/a | ||||||
[54] | n = 97 AML | serial analyses from baseline to neutrophil recovery during induction chemotherapy | 16S ribosomal RNA gene sequencing (oral swabs and fecal specimens) | carbapenem | T | temporal variations of microbiota profiles | ↓ when carbapenems for >72 h | n/a | n/a | n/a |
cephalosporin | T | temporal variations of microbiota profiles | ↔ | n/a | n/a | n/a | ||||
piperacillin–tazobactam | T | temporal variations of microbiota profiles | ↔ | n/a | n/a | n/a | ||||
[43] | n = 20 HSCT recipients (AML n = 10); n = 20 intensively treated acute leukemia (AML = 16) | acute leukemia—serial analyses from day 1 of chemotherapy until day 28 or discharge; HSCT—serial analyses from the day of transplantation until day 14 after transplantation. | 16S ribosomal RNA gene sequencing (fecal specimens) | levofloxacin | P | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | ↓ in Enterococcus domination (both groups) | n/a | n/a |
cephalosporins third-generation or higher | T | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | ↑ in Lactobacillus domination (acute leukemia); ↑ in Enterococcus domination (acute leukemia) | n/a | n/a | ||||
iv vancomycin | T | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | ↑ in Lactobacillus domination (acute leukemia) | n/a | n/a | ||||
oral vancomycin | T | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | no impact on domination | n/a | n/a | ||||
piperacillin–tazobactam | T | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | no impact on domination | n/a | n/a | ||||
carbapenems | T | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | no impact on domination | n/a | n/a | ||||
metronidazol/clindamycin | T | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | ↑ in Enterococcus domination (acute leukemia) | n/a | n/a | ||||
linezolid/daptomycin | T | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | no impact on domination | n/a | n/a | ||||
cefepime + iv vancomycin | T | comparison of variations of microbiota profiles in 2 cohorts of patients | ↓ in both cohorts; n/a for particular antibiotics | no impact on domination | n/a | n/a | ||||
[55] | n = 708 HSCT recipients (AML n = 360) | serial analyses from the start of pretransplant conditioning until engraftment | 16S ribosomal RNA gene sequencing (fecal specimens) | ciprofloxacin | P | no antibiotics | n/a | ↓ in BSIs and intestinal colonization by Gram-negative microbes, including Klebsiella, Citrobacter, Enterobacter, and Desulfovibrio; ↑ in Escherichia, Pseudomonas, and Stenotrophomonas; ↑ in breakthrough with E. coli in intestinal colonization and BSIs | ↑ in fluoroquinolone resistance | n/a |
ClinicalTrials.Gov ID | Purpose | Intervention | Outcome Measure | Study Population | Study Design | State | Results |
---|---|---|---|---|---|---|---|
NCT06899581 | to assess the impact of leukemia treatment on GM and its recovery trajectory | dietary supplement: enteral nutrition food-derived ingredient | GM, alpha and beta-diversity, Firmicutes to Bacteroidetes ratio, composition | Child | observational, case–control, prospective | Recruiting | no results posted |
NCT02928523 (ODYSSEE) | to assess autologous FMT efficacy in preventing dysbiosis complications in AML patients receiving intensive treatment | autologous FMT MaaT011 post-chemotherapy | dysbiosis correction (microbiota alpha and beta diversity), MDRB eradication (bacterial culture), biological parameters | Adult | interventional, phase 1 and phase 2, single group assignment, open label | completed | restoration of GM diversity and community recovery of microbial richness and diversity to baseline levels safety |
NCT03959241 | to assess whether GM diversity at neutrophil engraftment predicts one-year non-relapse mortality in patients receiving reduced-intensity allo-HSCT | tacrolimus/methotrexate versus post-transplant cyclophosphamide/tacrolimus/mycophenolate mofetil in non-myeloablative/reduced intensity conditioning allogeneic peripheral blood stem cell transplantation | percentage of participants with GVHD/relapse or progression-free survival at one year | Adult | interventional, phase 3, randomized, parallel assignment 1:1, open label | completed | no results on GM finding posted |
NCT02949427 | to characterize oral and nasal microbiota, including fungi, before and after chemotherapy, and supportive care | chemotherapy and supportive care | diversity index of oronasal mycobiome and microbiome, relative abundance of the oronasal fungal microbiome and microbiome | 4 years to 21 years | observational, cohort, prospective | completed | no results posted |
NCT04940468 | to determine whether dietary intervention to increase fiber and decrease fat reduces C. difficile infection recurrence in a cohort of oncology patients | diet higher in fiber and lower in fat | C. difficile toxins A and B, fecal microbiome (16S rRNA, shotgun metagenomic sequencing) | 9 years and older | interventional, randomized, parallel assignment, open label | recruiting | no results posted |
NCT06355583 | to test the ability to restore GM to healthier levels in patients with blood cancers scheduled to have HSCT | capsule with communities of dried, intestinal microorganisms from screened, pooled human stool samples (IMT) swallowed 2 weeks before HSCT | tolerability and acceptability of IMT, GM diversity (richness and evenness), health, infective/microbiological, and hematological outcomes (days of fever, admission to intensive care unit, survival, non-relapsed mortality, and incidence of GVHD) | 18 years and older | interventional, phase 2, randomized, parallel assignment, masking: triple (participant, care provider, investigator) | recruiting | no results posted |
NCT04214249 | to correlate microbial/metabolome changes at baseline and changes with clinical response (immune-checkpoint expression, kinetics of immune cell subset recovery, and programming) in the standard of care and experimental arm | pembrolizumab in combination with conventional intensive chemotherapy as frontline therapy in patients with AML | rate of MRD negative—complete response/complete remission with incomplete recovery, immune cell subsets, PD-1 and PD-L1 expression, protein signatures, T cell receptor sequencing, GM | 18 years to 75 years | interventional, phase 2, randomized, parallel assignment, open label | active, not recruiting | no results posted |
NCT05596981 | to investigate the effect of sorafenib maintenance therapy in FLT3-ITD-positive AML patients after allo-HSCT on GM | sorafenib | variation of GM composition and diversity (16s rRNA sequencing of serial stool samples), variation of gut barrier integrity (serum levels of zonulin, I-FABP, and citrulline or other potential candidates), treatment outcomes, GVHD | 18 years to 65 years | observational, cohort, perspective | recruiting | no results posted |
NCT03678493 | to asses efficacy of FMT in AML patients and allo-HSCT recipients | 3 treatments of oral capsule FMT vs. placebo after each exposure to antibacterial antibiotics | number of infections, FMT engraftment, GVHD | 18 years and older | interventional, randomized, double-blind, placebo-controlled, open-label | completed | safety, intestinal dysbiosis amelioration, no decrease in infections |
NCT04629430 | to see whether HSCT patients can consistently eat a diet rich in prebiotics | prebiotic foods/drinks | frequency of participants ingesting the required diet, GVHD, incidence of C. difficile infection, patient weight, number of days to neutrophil engraftment | 18 years and older | interventional, single group assignment, open label | completed | no results posted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowicka, A.; Tomczak, H.; Szałek, E.; Karbownik, A.; Gil, L. Microbial Crosstalk with Therapy: Pharmacomicrobiomics in AML—One Step Closer to Personalized Medicine. Biomedicines 2025, 13, 1761. https://doi.org/10.3390/biomedicines13071761
Nowicka A, Tomczak H, Szałek E, Karbownik A, Gil L. Microbial Crosstalk with Therapy: Pharmacomicrobiomics in AML—One Step Closer to Personalized Medicine. Biomedicines. 2025; 13(7):1761. https://doi.org/10.3390/biomedicines13071761
Chicago/Turabian StyleNowicka, Aneta, Hanna Tomczak, Edyta Szałek, Agnieszka Karbownik, and Lidia Gil. 2025. "Microbial Crosstalk with Therapy: Pharmacomicrobiomics in AML—One Step Closer to Personalized Medicine" Biomedicines 13, no. 7: 1761. https://doi.org/10.3390/biomedicines13071761
APA StyleNowicka, A., Tomczak, H., Szałek, E., Karbownik, A., & Gil, L. (2025). Microbial Crosstalk with Therapy: Pharmacomicrobiomics in AML—One Step Closer to Personalized Medicine. Biomedicines, 13(7), 1761. https://doi.org/10.3390/biomedicines13071761