Visceral Adiposity Index in Relation to Rotterdam Phenotypes of Polycystic Ovary Syndrome
Abstract
1. Introduction
1.1. PCOS Phenotypes
- Obese with insulin resistance.
- Obese without insulin resistance.
- Metabolically obese with normal body weight.
- Normal weight women with insulin resistance.
- Normal weight women without insulin resistance [10].
1.2. Metabolic Disorders Occurring in PCOS
2. Materials and Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christ, J.P.; Cedars, M.I. Current Guidelines for Diagnosing PCOS. Diagnostics 2023, 13, 1113. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Mateen, S.; Ahmad, R.; Moin, S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J. Assist. Reprod. Genet. 2022, 39, 2439–2473. [Google Scholar] [CrossRef]
- Radomski, D.; Orzechowska, A.; Barcz, E. Present conceptions of etiopathogenesis of polycystic ovary syndrome. Ginekol. Pol. 2007, 78, 393–399. [Google Scholar]
- Singh, S.; Pal, N.; Shubham, S.; Sarma, D.K.; Verma, V.; Marotta, F.; Kumar, M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 2023, 12, 1454. [Google Scholar] [CrossRef] [PubMed]
- Dapas, M.; Dunaif, A. Deconstructing a Syndrome: Genomic Insights into PCOS Causal Mechanisms and Classification. Endocr. Rev. 2022, 43, 927–965. [Google Scholar] [CrossRef]
- Kumar, R.; Minerva, S.; Shah, R.; Bhat, A.; Verma, S.; Chander, G.; Bhat, G.R.; Thapa, N.; Bhat, A.; Wakhloo, A.; et al. Role of genetic, environmental, and hormonal factors in the progression of PCOS: A review. J. Reprod. Healthc. Med. 2022, 3, 3. [Google Scholar] [CrossRef]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2023, 108, 2447–2469. [Google Scholar] [CrossRef]
- Livadas, S.; Diamanti-Kandarakis, E. Polycystic Ovary Syndrome: Definitions, Phenotypes and Diagnostic Approach. In Frontiers of Hormone Research; Macut, D., Pfeifer, M., Yildiz, B.O., Diamanti-Kandarakis, E., Eds.; S. Karger AG: Basel, Switzerland, 2013; Volume 40, pp. 1–21. ISBN 978-3-318-02238-4. [Google Scholar]
- Satyaraddi, A.; Cherian, K.; Kapoor, N.; Kunjummen, A.; Kamath, M.; Thomas, N.; Paul, T. Body composition, metabolic characteristics, and insulin resistance in obese and nonobese women with polycystic ovary syndrome. J. Hum. Reprod. Sci. 2019, 12, 78. [Google Scholar] [CrossRef]
- Jihad, A.; Sarhat, E. Altered Levels of Anti-Mullerian Hormone and Hepcidin as Potential Biomarkers for Polycystic Ovary Syndrome. Georgian Med. News 2023, 47–51. [Google Scholar]
- Pokorska-Niewiada, K.; Brodowska, A.; Szczuko, M. The Content of Minerals in the PCOS Group and the Correlation with the Parameters of Metabolism. Nutrients 2021, 13, 2214. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Costela-Ruiz, V.J.; García-Recio, E.; De Luna-Bertos, E.; Ruiz, C.; Illescas-Montes, R. Role of Vitamin D in the Metabolic Syndrome. Nutrients 2021, 13, 830. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Ribeiro, V.B.; Kogure, G.S.; Lopes, I.P.; Silva, R.C.; Pedroso, D.C.C.; Ferriani, R.A.; Furtado, C.L.M.; Reis, R.M.D. Association of measures of central fat accumulation indices with body fat distribution and metabolic, hormonal, and inflammatory parameters in women with polycystic ovary syndrome. Arch. Endocrinol. Metab. 2019, 63, 417–426. [Google Scholar] [CrossRef]
- Agrawal, H.; Aggarwal, K.; Jain, A. Visceral adiposity index: Simple Tool for assessing cardiometabolic risk in women with polycystic ovary syndrome. Indian J. Endocrinol. Metab. 2019, 23, 232. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Guo, C.; Zhang, D.; Liu, Y.; Zhang, P. Visceral adiposity index as a predictor of type 2 diabetes mellitus risk: A systematic review and dose–response meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Purnell, J.Q. Definitions, Classification, and Epidemiology of Obesity. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK279167/ (accessed on 15 February 2025).
- Amato, M.C.; Giordano, C.; Pitrone, M.; Galluzzo, A. Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011, 10, 183. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 15 February 2025).
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Guan, C.; Zahid, S.; Minhas, A.S.; Ouyang, P.; Vaught, A.; Baker, V.L.; Michos, E.D. Polycystic ovary syndrome: A “risk-enhancing” factor for cardiovascular disease. Fertil. Steril. 2022, 117, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Bir, A.; Ghosh, A.; Chowdhury, S. Visceral adiposity index and lipid accumulation product index: The promising role in assessing cardiometabolic risk in non-obese patients of PCOS. J. Educ. Health Promot. 2023, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qu, Z.; Lu, T.; Shao, X.; Cai, M.; Dilimulati, D.; Gao, X.; Mao, W.; Hu, F.; Su, L.; et al. Effects of a Dulaglutide plus Calorie-Restricted Diet versus a Calorie-Restricted Diet on Visceral Fat and Metabolic Profiles in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial. Nutrients 2023, 15, 556. [Google Scholar] [CrossRef]
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. [Google Scholar] [CrossRef]
- Torun, C.; Ankaralı, H.; Caştur, L.; Uzunlulu, M.; Erbakan, A.N.; Akbaş, M.M.; Gündüz, N.; Doğan, M.B.; Bahadır, M.A.; Oğuz, A. Prediction of visceral adipose tissue magnitude using a new model based on simple clinical measurements. Front. Endocrinol. 2024, 15, 1411678. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gui, J.; Liu, H.; Guo, L.-L.; Li, J.; Lei, Y.; Li, X.; Sun, L.; Yang, L.; Yuan, T.; et al. Predicting metabolic syndrome by obesity- and lipid-related indices in mid-aged and elderly Chinese: A population-based cross-sectional study. Front. Endocrinol. 2023, 14, 1201132. [Google Scholar] [CrossRef]
- Sharma, P.; Sarkar, A.; Kaur, H.; Gupta, U.; Kumar, B. Visceral Adiposity Index as an Indicator for Menstrual Disturbance, Hormonal and Metabolic Dysfunction in Polycystic Ovarian Syndrome. Cureus 2022, 14, e29796. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Verghi, M.; Galluzzo, A.; Giordano, C. The oligomenorrhoic phenotypes of polycystic ovary syndrome are characterized by a high visceral adiposity index: A likely condition of cardiometabolic risk. Hum. Reprod. 2011, 26, 1486–1494. [Google Scholar] [CrossRef]
- Shreenidhi, R.A.; Mahey, R.; Rajput, M.; Cheluvaraju, R.; Upadhyay, A.D.; Sharma, J.B.; Kachhawa, G.; Bhatla, N. Utility of Visceral Adiposity Index and Lipid Accumulation Products to Define Metabolically-Unhealthy Polycystic Ovary Syndrome in Asian Indian Women—A Cross Sectional Study. J. Hum. Reprod. Sci. 2024, 17, 50–57. [Google Scholar] [CrossRef]
Parameter | Phenotype A (Mean ± SD) | Phenotype B (Mean ± SD) | Phenotype C (Mean ± SD) | Phenotype D (Mean ± SD) | p-Value |
---|---|---|---|---|---|
Age [years] | 25.35 (SD = 4.96) | 26.32 (SD = 4.48) | 24.45 (SD = 4.74) | 25.97 (SD = 5.58) | 0.3349 |
Weight [kg] | 68.72 (SD = 14.02) | 74.79 (SD = 21.67) | 67.02 (SD = 13.22) | 71.63 (SD = 16.63) | 0.5266 |
Height [cm] | 164.97 (SD = 6.2) | 165.64 (SD = 5.93) | 164.97 (SD = 6.05) | 166.56 (SD = 6.06) | 0.6866 |
BMI [kg/m2] | 25.29 (SD = 5.11) | 27.29 (SD = 8.03) | 24.62 (SD = 4.65) | 25.77 (SD = 5.64) | 0.7112 |
Waist circumference [cm] | 80.510(SD = 12.86) | 87.79 (SD = 19.58) | 79.45 (SD = 12.61) | 82.77 (SD = 13.4) | 0.3415 |
Hip circumference [cm] | 100.15 (SD = 9.69) | 105.18 (SD = 16.38) | 99.95 (SD = 10.34) | 101.42 (SD = 11.92) | 0.7982 |
Waist–hip ratio | 0.8 (SD = 0.08) | 0.83 (SD = 0.08) | 0.79 (SD = 0.07) | 0.81 (SD = 0.07) | 0.1694 |
PBF [%] | 32.63 (SD = 8.84) | 35.15 (SD = 10.41) | 32.62 (SD = 9.08) | 32.67 (SD = 8.57) | 0.4795 |
Insulin 0’ [µIU/mL] | 8.9 (SD = 5.1) | 10.82 (SD = 8.48) | 6.45 (SD = 3.09) | 8.98 (SD = 7.89) | 0.8497 |
HOMA-IR | 1.9 (SD = 1.13) | 2.54 (SD = 2.46) | 1.38 (SD = 0.73) | 1.94 (SD = 1.73) | 0.037 |
Glucose 0’ [mg/dL] | 85.57 (SD = 5.99) | 91.53 (SD = 13.43) | 85.01 (SD = 6.57) | 86.57 (SD = 6.8) | 0.6449 |
Glucose 120’ [mg/dL] | 108.45 (SD = 32.45) | 113.78 (SD = 37.07) | 111.31 (SD = 22.1) | 105.42 (SD = 29.47) | 0.7635 |
TSH [µIU/mL] | 3.71 (SD = 20.6) | 2.13 (SD = 0.89) | 2.0 (SD = 0.94) | 2.3 (SD = 1.12) | 0.1669 |
Feature |
BMI p-Value: 0.7285 |
WC p-Value: 0.2111 |
TG p-Value: 0.0747 |
HDL p-Value: 0.0038 |
Glucose 0’ p-Value: 0.0338 |
VAI p-Value: 0.149 | ||
---|---|---|---|---|---|---|---|---|
Phenotype | ||||||||
A | 46.1% | 41.8% | 11.4% | 8.51% | 2.9% | 14.2% | ||
B | 51.6% | 61.3% | 9.7% | 25.8% | 13.3% | 16.1% | ||
C | 37.5% | 37.5% | 0% | 5% | 0% | 2.5% | ||
D | 46.7% | 50% | 13.3% | 0% | 0% | 13.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluta, D.; Staśczak, A.; Stokowy, T.; Migacz, M.; Kochman, K.; Holecki, M. Visceral Adiposity Index in Relation to Rotterdam Phenotypes of Polycystic Ovary Syndrome. Biomedicines 2025, 13, 1997. https://doi.org/10.3390/biomedicines13081997
Pluta D, Staśczak A, Stokowy T, Migacz M, Kochman K, Holecki M. Visceral Adiposity Index in Relation to Rotterdam Phenotypes of Polycystic Ovary Syndrome. Biomedicines. 2025; 13(8):1997. https://doi.org/10.3390/biomedicines13081997
Chicago/Turabian StylePluta, Dagmara, Alicja Staśczak, Tomasz Stokowy, Maciej Migacz, Klaudia Kochman, and Michał Holecki. 2025. "Visceral Adiposity Index in Relation to Rotterdam Phenotypes of Polycystic Ovary Syndrome" Biomedicines 13, no. 8: 1997. https://doi.org/10.3390/biomedicines13081997
APA StylePluta, D., Staśczak, A., Stokowy, T., Migacz, M., Kochman, K., & Holecki, M. (2025). Visceral Adiposity Index in Relation to Rotterdam Phenotypes of Polycystic Ovary Syndrome. Biomedicines, 13(8), 1997. https://doi.org/10.3390/biomedicines13081997