Effects of Nicotine-Free E-Cigarettes on Gastrointestinal System: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Information Source and Search Strategies
2.2. Eligibility Criteria
3. Results
3.1. Nicotine-Free E-Cigarettes and Oral Health
3.2. NFEC and Liver Health and Function
3.3. NFEC and Gastrointestinal Microbiome
3.4. Nicotine-Free E-Cigarettes and Implications for Gastrointestinal Health
4. Discussion
5. Conclusions
Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCL20 | C-C motif chemokine ligand 20 |
CCL12 | C-C motif chemokine ligand 12 |
CCL5 | C-C motif chemokine ligand 5 |
CSC | Cigarette smoke condensate |
CX3CL1 | C-X3-C motif chemokine ligand I |
ECC | E-cigarette smoke condensate |
EC | Electronic cigarette, e-cigarette |
ENDS | Electronic nicotine delivery system |
EU | European Union |
EVALI | E-vaping-associated lung injury |
FDA | Food and Drug Administration |
GIT | Gastrointestinal tract |
HFD | High-fat diet |
HNSCC | Head and neck squamous cell carcinoma |
HGF | Human gingival fibroblast |
LFT | Liver function test |
IFN-ɣ | Interferon gamma |
IL-10 | Interleukin-10 |
MMP | Matrix metalloproteinase |
NC | Nicotine-containing |
NF | Nicotine-free |
NFEC | Nicotine-free e-cigarette |
SCC | Squamous cell carcinoma |
OSCC | Oral squamous cell carcinoma |
PG | Propylene glycol |
VG | Vegetable glycerine |
References
- Reitsma, M.B.; Fullman, N.; Ng, M.; Salama, J.S.; Abajobir, A.; Abate, K.H.; Abbafati, C.; Abera, S.F.; Abraham, B.; Abyu, G.Y.; et al. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: A systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017, 389, 1885–1906. [Google Scholar] [CrossRef]
- Le Foll, B.; Piper, M.E.; Fowler, C.D.; Tonstad, S.; Bierut, L.; Lu, L.; Jha, P.; Hall, W.D. Tobacco and nicotine use. Nat. Rev. Dis. Primers 2022, 8, 19. [Google Scholar] [CrossRef]
- Sharma, R.; Rakshit, B. Global burden of cancers attributable to tobacco smoking, 1990–2019: An ecological study. EPMA J. 2022, 14, 167–182. [Google Scholar] [CrossRef]
- West, R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 1018–1036. [Google Scholar] [CrossRef] [PubMed]
- Kotz, D.; Batra, A.; Kastaun, S. Smoking cessation attempts and common strategies employed. Dtsch. Arztebl. Int. 2020, 117, 7–13. [Google Scholar] [CrossRef]
- McAlinden, K.D.; Eapen, M.S.; Lu, W.; Sharma, P.; Sohal, S.S. The rise of electronic nicotine delivery systems and the emergence of electronic-cigarette-driven disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 319, L585–L595. [Google Scholar] [CrossRef]
- Khanal, G.; Karna, A.; Kandel, S.; Sharma, H.K. Prevalence, correlates, and perception of e-cigarettes among undergraduate students of Kathmandu Metropolitan City, Nepal: A cross-sectional study. J. Smok. Cessat. 2023, 2023, 1330946. [Google Scholar] [CrossRef]
- Battelle Memorial Institute. Research Proposal Regarding Project Ariel; Battelle Memorial Institute: Columbus, OH, USA, 1962; Bates No. 301120592–301120600; Available online: https://www.industrydocumentslibrary.ucsf.edu/tobacco/docs/#id=hlbx0199 (accessed on 10 July 2025).
- Gilbert, H.A. Smokeless Non-Tobacco Cigarette. U.S. Patent 3,200,819, 17 August 1965. [Google Scholar]
- Li, H. Non-Combustible Electronic Atomizing Cigarette. CN Patent 2643681, 29 September 2004. [Google Scholar]
- DeVito, E.E.; Krishnan-Sarin, S. E-cigarettes: Impact of e-liquid components and device characteristics on nicotine exposure. Curr. Neuropharmacol. 2018, 16, 438–459. [Google Scholar] [CrossRef]
- Gordon, T.; Karey, E.; Rebuli, M.E.; Escobar, Y.H.; Jaspers, I.; Chen, L.C. E-cigarette toxicology. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Fadus, M.C.; Smith, T.T.; Squeglia, L.M. The rise of e-cigarettes, pod mod devices, and JUUL among youth: Factors influencing use, health implications, and downstream effects. Drug Alcohol Depend. 2019, 201, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Mao, T.; Zhen, S.; Xu, Y.; Qu, C. Comparative analysis of e-cigarette prevalence and influencing factors among adolescents in Jiangsu Province, China. Front. Public Health 2023, 11, 1221334. [Google Scholar] [CrossRef]
- Gades, M.S.; Alcheva, A.; Riegelman, A.L.; Hatsukami, D.K. The role of nicotine and flavor in the abuse potential and appeal of electronic cigarettes for adult current and former cigarette and electronic cigarette users: A systematic review. Nicotine Tob. Res. 2022, 24, 1332–1343. [Google Scholar] [CrossRef]
- Davis, D.R.; Bold, K.W.; Camenga, D.; Kong, G.; Jackson, A.; Lee, J.; Rajesh-Kumar, L.; Krishnan-Sarin, S.; Morean, M.E. Use and product characteristics of “tobacco free nicotine” e-cigarettes among young adults. Nicotine Tob. Res. 2023, 25, 379–385. [Google Scholar] [CrossRef]
- Kinnunen, J.M.; Rimpelä, A.H.; Lindfors, P.L.; Clancy, L.; Alves, J.; Hoffmann, L.; Richter, M.; Kunst, A.E.; Lorant, V. Electronic cigarette use among 14- to 17-year-olds in Europe. Eur. J. Public Health 2021, 31, 402–408. [Google Scholar] [CrossRef]
- Davis, D.R.; Rajesh-Kumar, L.; Morean, M.E.; Kong, G.; Bold, K.W.; Krishnan-Sarin, S.; Camenga, D.E. Why young adults use tobacco-free nicotine e-cigarettes: An analysis of qualitative data. Addict. Behav. 2024, 150, 107925. [Google Scholar] [CrossRef] [PubMed]
- Vassey, J.; Valente, T.; Barker, J.; Stanton, C.; Li, D.; Laestadius, L.; Cruz, T.B.; Unger, J.B. E-cigarette brands and social media influencers on Instagram: A social network analysis. Tob. Control 2023, 32, e184–e191. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.; Schott, A.S.; Lee, J.; Dashtian, H.; Murthy, D. Understanding e-cigarette content and promotion on YouTube through machine learning. Tob. Control 2023, 32, 739–746. [Google Scholar] [CrossRef]
- Lyu, J.C.; Huang, P.; Jiang, N.; Ling, P.M. A systematic review of e-cigarette marketing communication: Messages, communication channels, and strategies. Int. J. Environ. Res. Public Health 2022, 19, 9263. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.; Kuguru, K.E.; Bhatti, H.; Sen, I.; Morean, M.E. Marketing content on e-cigarette brand-sponsored Facebook profile pages. Subst. Use Misuse 2021, 56, 442–448. [Google Scholar] [CrossRef]
- Kalkhoran, S.; Glantz, S.A. E-cigarettes and smoking cessation in real-world and clinical settings: A systematic review and meta-analysis. Lancet Respir. Med. 2016, 4, 116–128. [Google Scholar] [CrossRef]
- Park, J.Y.; Seo, D.C.; Lin, H.C. E-cigarette use and intention to initiate or quit smoking among US youths. Am. J. Public Health 2016, 106, 672–678. [Google Scholar] [CrossRef]
- Zhu, S.H.; Sun, J.Y.; Bonnevie, E.; Cummins, S.E.; Gamst, A.; Yin, L.; Lee, M. Four hundred and sixty brands of e-cigarettes and counting: Implications for product regulation. Tob. Control 2014, 23 (Suppl. S3), iii3–iii9. [Google Scholar] [CrossRef]
- Mayo-Wilson, E. Should e-cigarette regulation be based on randomized trials or observational studies? Am. J. Public Health 2021, 111, 219–220. [Google Scholar] [CrossRef]
- Center for Tobacco Products. Premarket Tobacco Product Applications; U.S. Food Drug Administration: Silver Spring, MD, USA, 7 September 2023. Available online: https://www.fda.gov/tobacco-products/market-and-distribute-tobacco-product/premarket-tobacco-product-applications (accessed on 14 July 2025).
- Center for Tobacco Products. Regulation and Enforcement of Non-Tobacco Nicotine (NTN) Products; U.S. Food and Drug Administration: Silver Spring, MD, USA, 6 February 2024. Available online: https://www.fda.gov/tobacco-products/products-ingredients-components/regulation-and-enforcement-non-tobacco-nicotine-ntn-products (accessed on 14 July 2025).
- European Commission. Electronic Cigarettes; European Commission: Brussels, Belgium, 2024; Available online: https://health.ec.europa.eu/tobacco/product-regulation/electronic-cigarettes_en (accessed on 14 July 2025).
- New York State Department of Health. New York State Department of Health Announces Statewide Ban of Flavored Nicotine Vapor Products Takes Effect Today; New York State Department of Health: Albany, NY, USA, 2020.
- Kowitt, S.; Meernik, C.; Baker, H.; Osman, A.; Huang, L.-L.; Goldstein, A.O. Perceptions and experiences with flavored non-menthol tobacco products: A systematic review of qualitative studies. Int. J. Environ. Res. Public Health 2017, 14, 338. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Statement from FDA Commissioner Scott Gottlieb, M.D., on New Enforcement Actions and a Youth Tobacco Prevention Plan to Stop Youth Use of, and Access to, JUUL and Other E-Cigarettes; US Food and Drug Administration: Silver Spring, MD, USA, 2018.
- Appleton, S.; Cyrus-Miller, H.; Seltzer, R.; Gilligan, K.; McKinney, W. Market survey of disposable e-cigarette nicotine content and e-liquid volume. BMC Public Health 2022, 22, 1760. [Google Scholar] [CrossRef] [PubMed]
- Etter, J.F.; Bugey, A. E-cigarette liquids: Constancy of content across batches and accuracy of labeling. Addict. Behav. 2017, 73, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Seiler-Ramadas, R.; Sandner, I.; Haider, S.; Grabovac, I.; Dorner, T.E. Health effects of electronic cigarette (e-cigarette) use on organ systems and its implications for public health. Wien. Klin. Wochenschr. 2021, 133, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Qazi, S.U.; Ansari, M.H.; Ghazanfar, S.; Ghazanfar, S.S.; Farooq, M. Comparison of acute effects of e-cigarettes with and without nicotine and tobacco cigarettes on hemodynamic and endothelial parameters: A systematic review and meta-analysis. High Blood Press. Cardiovasc. Prev. 2024, 31, 225–237. [Google Scholar] [CrossRef]
- Dai, Z.; Xie, B.; Jiang, C.; Peng, Y.; Lin, J.; Chen, Q.; Sun, J. Aerosolized nicotine-free e-liquid base constituents exacerbate mitochondrial dysfunction and endothelial glycocalyx shedding via the AKT/GSK3β-mPTP pathway in lung injury models. Respir. Res. 2025, 26, 82. [Google Scholar] [CrossRef]
- Gellatly, S.; Pavelka, N.; Crue, T.; Schweitzer, K.S.; Day, B.J.; Min, E.; Numata, M.; Voelker, D.R.; Scruggs, A.; Petrache, I.; et al. Nicotine-free e-cigarette vapor exposure stimulates IL6 and mucin production in human primary small airway epithelial cells. J. Inflamm. Res. 2020, 13, 175–185. [Google Scholar] [CrossRef]
- Yu, V.; Rahimy, M.; Korrapati, A.; Xuan, Y.; Zou, A.E.; Krishnan, A.R.; Tsui, T.; Aguilera, J.A.; Advani, S.; Crotty Alexander, L.E.; et al. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral Oncol. 2016, 52, 58–65. [Google Scholar] [CrossRef]
- Sancilio, S.; Gallorini, M.; Cataldi, A.; Di Giacomo, V. Cytotoxicity and apoptosis induction by e-cigarette fluids in human gingival fibroblasts. Clin. Oral Investig. 2016, 20, 477–483. [Google Scholar] [CrossRef]
- Sancilio, S.; Gallorini, M.; Cataldi, A.; Sancillo, L.; Rana, R.A.; Di Giacomo, V. Modifications in human oral fibroblast ultrastructure, collagen production and lysosomal compartment in response to e-cigarette fluids. J. Periodontol. 2017, 88, 673–680. [Google Scholar] [CrossRef]
- Alanazi, H.; Park, H.J.; Chakir, J.; Semlali, A.; Rouabhia, M. Comparative study of the effects of cigarette smoke and electronic cigarettes on human gingival fibroblast proliferation, migration and apoptosis. Food Chem. Toxicol. 2018, 118, 390–398. [Google Scholar] [CrossRef]
- Rouabhia, M.; Alanazi, H.; Park, H.J.; Gonçalves, R.B. Cigarette smoke and e-cigarette vapor dysregulate osteoblast interaction with titanium dental implant surface. J. Oral Implantol. 2019, 45, 421–426. [Google Scholar] [CrossRef]
- Tsai, K.Y.F.; Hirschi Budge, K.M.; Lepre, A.P.; Rhees, M.S.; Ajdaharian, J.; Geiler, J.; Epperson, D.G.; Astle, K.J.; Winden, D.R.; Arroyo, J.A.; et al. Cell invasion, RAGE expression, and inflammation in oral squamous cell carcinoma (OSCC) cells exposed to e-cigarette flavoring. Clin. Exp. Dent. Res. 2020, 6, 618–625. [Google Scholar] [CrossRef]
- Beklen, A.; Uckan, D. Electronic cigarette liquid substances propylene glycol and vegetable glycerin induce an inflammatory response in gingival epithelial cells. Hum. Exp. Toxicol. 2021, 40, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Manyanga, J.; Ganapathy, V.; Bouharati, C.; Mehta, T.; Sadhasivam, B.; Acharya, P.; Zhao, D.; Queimado, L. Electronic cigarette aerosols alter the expression of cisplatin transporters and increase drug resistance in oral cancer cells. Sci. Rep. 2021, 11, 1821. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, F.; Andriasian, L.; Tran, N.C.; Lux, R. Effect of Cigarette and E-Cigarette Smoke Condensates on Candida albicans Biofilm Formation and Gene Expression. Int. J. Environ. Res. Public Health 2022, 19, 4626. [Google Scholar] [CrossRef] [PubMed]
- Tolba, Y.M.; Omar, S.S.; El Hak, A.R.; Nagui, D.A. Electronic cigarettes can damage lingual papillae and taste buds. Can vitamins C and E supplementation reverse this damage? Life Sci. 2023, 329, 121955. [Google Scholar] [CrossRef]
- Ma, T.; Lee, A.; Eng, B.; Patel, V.; Michel, S.L.J.; Kane, M.A.; Dalby, R.; Schneider, A. Aerosolized e-liquid base constituents induce cytotoxicity and genotoxicity in oral keratinocytes. Oral Dis. 2025, 31, 482–491. [Google Scholar] [CrossRef]
- Vámos, O.; Kulcsár, N.; MikEC, B.; Kelemen, K.; Kaán, R.; Abafalvi, L.; Dinya, E.; Vág, J.; Hermann, P.; Kispélyi, B. Acute effects of traditional and electronic cigarettes on palatal blood flow in smokers: A cross-over pilot study. J. Oral Biol. Craniofac. Res. 2024, 14, 100580. [Google Scholar] [CrossRef] [PubMed]
- Beverly, M.L.S.; Chaudhary, P.P.; Dabdoub, S.M.; Kim, S.; Chatzakis, E.; Williamson, K.; Ganesan, S.M.; Yadav, M.; Ratley, G.; D’Souza, B.N.; et al. Toxic cultures: E-cigarettes and the oral microbial exposome. npj Biofilms Microbiomes 2025, 11, 66. [Google Scholar] [CrossRef]
- El Golli, N.; Jrad-Lamine, A.; Neffati, H.; Rahali, D.; Dallagi, Y.; Dkhili, H.; Ba, N.; El May, M.V.; El Fazaa, S. Impact of e-cigarette refill liquid with or without nicotine on liver function in adult rats. Toxicol. Mech. Methods 2016, 26, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, G.; Chan, Y.L.; Nguyen, T.; van Reyk, D.; Saad, S.; Oliver, B.G. Modulation of Neural Regulators of Energy Homeostasis, and of Inflammation, in the Pups of Mice Exposed to E-Cigarettes. Neurosci. Lett. 2018, 684, 61–66. [Google Scholar] [CrossRef]
- Li, G.; Chan, Y.L.; Wang, B.; Saad, S.; George, J.; Oliver, B.G.; Chen, H. E-Cigarettes Damage the Liver and Alter Nutrient Metabolism in Pregnant Mice and Their Offspring. Ann. N. Y. Acad. Sci. 2020, 1475, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Rickard, B.P.; Ho, H.; Tiley, J.B.; Jaspers, I.; Brouwer, K.L.R. E-Cigarette Flavoring Chemicals Induce Cytotoxicity in HepG2 Cells. ACS Omega 2021, 6, 6462–6470. [Google Scholar] [CrossRef]
- Chen, H.; Li, G.; Chan, Y.L.; Zhang, H.E.; Gorrell, M.D.; Pollock, C.A.; Saad, S.; Oliver, B.G. Differential Effects of ‘Vaping’ on Lipid and Glucose Profiles and Liver Metabolic Markers in Obese Versus Non-obese Mice. Front. Physiol. 2021, 12, 755124. [Google Scholar] [CrossRef]
- Chen, H.; Chan, Y.L.; Thorpe, A.E.; Pollock, C.A.; Saad, S.; Oliver, B.G. Inhaled or Ingested, Which Is Worse, E-Vaping or High-Fat Diet? Front. Immunol. 2022, 13, 913044. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, J.; Fonseca, A.G.; Moshensky, A.; Kothari, T.; Sayed, I.M.; Ibeawuchi, S.-R.; Pranadinata, R.F.; Ear, J.; Sahoo, D.; et al. E-Cigarettes Compromise the Gut Barrier and Trigger Inflammation. iScience 2021, 24, 102035. [Google Scholar] [CrossRef]
- Jasper, A.E.; Faniyi, A.A.; Davis, L.C.; Grudzinska, F.S.; Halston, R.; Hazeldine, J.; Parekh, D.; Sapey, E.; Thickett, D.R.; Scott, A. E-Cigarette Vapor Renders Neutrophils Dysfunctional Due to Filamentous Actin Accumulation. J. Allergy Clin. Immunol. 2024, 153, 320–329.e8. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Hajek, P.; McRobbie, H. Nicotine content of electronic cigarettes, its release in vapour and its consistency across batches: Regulatory implications. Addiction 2014, 109, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Haworth-Duff, A.; Parkes, G.M.B.; Reed, N.J. A simple approach to analysing trace metals in aerosols produced by e-cigarettes. Drug Test Anal. 2023, 15, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Neu, H.M.; Lee, A.; Brandis, J.E.P.; Patel, V.; Schneider, A.; Kane, M.A.; Dalby, R.N.; Michel, S.L.J. Cigalike electronic nicotine delivery systems e-liquids contain variable levels of metals. Sci. Rep. 2020, 10, 11907. [Google Scholar] [CrossRef] [PubMed]
- Nottage, M.K.; Taylor, E.V.; East, K.A.; McNeill, A.; Thrasher, J.F.; Reid, J.L.; Hammond, D.; Simonavičius, E. Packaging of disposable vaping products and e-liquids in England, Canada and the United States: A content analysis. Addiction 2025, 120, 483–495. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Study type: Observational studies Experimental studies | Study type: Narrative reviews Commentary |
Studies evaluating the effects of nicotine-free e-cigarettes on gastrointestinal system | Studies with primary endpoints not related to GIT |
Animal and in vitro studies Ex vivo studies Microbiological studies | Research published in languages other than English |
Articles without full-text availability | |
Duplicates |
First Author’s Name/Year/Country | Study Model | Aim | Key Findings | Oral Health Implications |
---|---|---|---|---|
Yu et al./2016 [39]/England | In vitro (human oral keratinocytes and HNSCC cell lines) | To assess genotoxic and cytotoxic potential of NF and NC EC exposure on epithelial and HNSCC cell lines | Similar increases in DNA strand breaks, increased apoptosis, and decreased clonogenic survival in both groups | NFECs may impair gingival tissue repair and promote oral soft tissue damage |
Sancilio et al./2016 [40]/Italy | In vitro (primary human gingival fibroblasts) | To determine the cytotoxic and pro-apoptotic effects of EC exposure via ROS production and apoptosis-related protein expression | Both NC and NFEC exposure induced similar increases in ROS production after 24 h, along with increased Bax expression and apoptosis after 48 h of exposure | The cytotoxicity exerted on HGF by EC exposure is not entirely attributable to nicotine |
Sancilio et al./2017 [41]/Italy | In vitro (primary human gingival fibroblasts (HFGs)) | To examine the structural and molecular changes in fibroblasts exposed to ECs with and without nicotine | Increased production of autophagic vesicles and increased number of pro-collagen I production in fibroblasts exposed to EC | EC exposure may alter tissue remodelling and repair in a nicotine-independent manner |
Alanzi et al./2018 [42]/Canada | In vitro (primary human gingival fibroblasts) | To examine how EC exposure with and without nicotine affects human gingival fibroblast migration and wound healing | Decreased cell proliferation rates, delayed wound healing, increased apoptosis in both groups, more pronounced with nicotine | EC exposure impairs tissue repair and regeneration; more pronounced with NC EC exposure |
Rouabhia et al./2019 [43]/Canada | In vitro (human osteoblasts on titanium implants) | To assess the effects of TC and EC exposure with and without nicotine on osteoblast interaction with dental implant material | Decreased cell adhesion, ALP activity in osteoblasts, decreased mineralization rates, and increased apoptosis—most pronounced with TC exposure, with comparable effects in NC- and NFEC groups | Osseointegration compromise; dental implant complications minimally attributable to nicotine in TC and EC exposure |
Tsai et al./2020 [44]/United States | In vitro study (human gingival and tongue SCC) | To examine the impact of electronic cigarette flavouring and nicotine on SCC and RAGE expression and pro-inflammatory signalling | Increased cell invasion in gingival cells with Red Hot EC flavouring, decreased with Green Apple EC flavour, nicotine-dependent increases in RAGE expression, and differential expression of IL-1 a, IL-8, and MMP | EC flavours may exert a spectrum of effects, including carcinogenic effects |
Beklen et al./2021 [45]/England | In vitro (human gingival epithelial cells) | To determine the effects of unflavoured EC exposure on gingival epithelial cells | Decreased cell viability; increased IL-6, IL-8, and MMP-6 production; PG > VG | Inflammatory and cytotoxic potential of main solvents used for transport of nicotine and flavours in EC |
Manyanga et al./2021 [46]/United States | In vitro study (human H&N SCC) | Effects of EC exposure on chemotherapeutic resistance of HNSCC | Exposure to EC aerosol increased the concentration of cisplatin needed to induce 50% reduction in cell growth in a nicotine-independent manner | EC exposure may increase chemotherapeutic resistance of HNSCC |
Haghighi et al./2022 [47]/United States | In vitro study using C. albicans planktonic and biofilm cultures | To investigate and compare effects of pure nicotine, TC, EC, and NFEC exposure on growth, morphology, biofilm formation, and gene expression of C. albicans, including interaction with antifungal drugs | Nicotine at low concentrations enhanced C. albicans biofilm formation; both TC and EC inhibited growth at much lower nicotine concentrations than pure nicotine; EC stimulates EAP1 and ALS3 expression | Smoking and vaping may enhance C. albicans pathogenicity and increased biofilm formation and virulence gene expression; NFEC had minimal effect, suggesting nicotine is the main contributor to virulence enhancements |
Tolba et al./2023 [48]/Egypt | In vivo (rat lingual papillae) | Effect of EC exposure via intraperitoneal injections with and without nicotine, as well as pure nicotine, on histomorphological parameters of taste buds and the possibility of damage reversal via vitamin E and C supplementation | Abnormal epithelial stratification and mitotic figs; decrease in taste buds to epithelium surface in all groups | EC exposure may damage taste buds |
Ma et al./2024 [49]/United States | In vitro (human oral keratinocytes) | To evaluate cytotoxic and genotoxic effects of EC with and without nicotine | EC aerosols increase cytotoxicity and induce DNA damaging responses | Effects of EC liquids on oral keratinocyte health similar to acrolein treatment |
Vamos et al./2024 [50]/Netherlands | Pilot clinical study | How traditional tobacco and electronic cigarettes (NC and NF variants) affect palatal blood flow | Minimal changes in palatal blood flow before and after exposure in any group | Electronic cigarettes may pose acute vascular risk to oral health |
Lee-Scott Beverly et al./2025 [51]/United States | In vitro; multi-specimen oral biofilm microcosms + human saliva samples | How e-cigarette aerosols are metabolized by oral microbiome and their effects on microbial metabolism, biofilm architecture, and function | E-cigarette aerosols are metabolized by oral bacteria, altering metabolome and gene expression via xenobiotic degradation and quorum sensing; biofilm density increased, exopolysaccharide-rich, regardless of nicotine content; findings verified in human saliva samples | Oral microbial metabolism of e-cig aerosols may disrupt host–microbiome balance; promote gingival inflammation, caries, antimicrobial resistance; and alter oral mucosal barriers |
First Author’s Name/Year/Country | Study Model | Aim | Key Findings | Hepatic Health Implications |
---|---|---|---|---|
Golli et al./2016 [52]/England | In vivo animal study (adult rat liver) | Effect of ECs on hepatic parameters, lipid peroxidation, and antioxidant activity | Increased LFT probes, reduction in antioxidant enzyme activity, increased lipid peroxidation, inflammatory cell infiltration, and cell death; more pronounced than with nicotine alone | NFEC alters hepatic metabolism and promotes cellular damage; nicotine presence worsens histopathological injuries |
Chen et al./2018 [53]/Switzerland | In vivo animal study (mouse dams) | Impact of EC use during pregnancy | Offspring of dams exposed to EC were the heaviest and with the most body fat | Maternal EC exposure may exert long-term metabolic effects in offspring |
Li et al./2020 [54]/United States | In vivo (rat offspring with maternal EC exposure during and after gestation) | Effects of EC smoking on hepatic health in dams and their offspring | Metabolic changes and liver damage, notably steatosis; nicotine provides a potential protective effect | Vaping may induce long-term metabolic changes |
Rickard et al./2021 [55]/United States | In vitro (HepG2 cells) | Effect of common EC flavours and e-liquid base constituents (PG and VG) on liver cell toxicity | Vanillin, ethyl vanillin, and ethyl maltol decreased HepG2 cell viability; repeated exposure caused increased cytotoxicity | Frequent vaping can cause hepatotoxicity |
Chen et al./2021 [56]/Switzerland | In vivo animal study (mice) | Impact of EC exposure with and without nicotine on lipid and glucose profiles as well as liver metabolic markers in mice fed HFD | NFEC exposure increased lipid content in both blood and liver of chow-fed mice | EC exposure may alter hepatic lipid metabolism through adaptive responses |
Chen et al./2022 [57]/Switzerland | In vivo animal study (rats) | How NFECs affect inflammatory responses in mice with long-term high-fat diet | Both EC exposure and HFD consumption increased serum IFN-γ, CX3CL1, IL-10, CCL20, CCL12, and CCL5 levels; levels of IFN-γ, CX3CL1, and IL-10 were higher in mice exposed to ECs than those fed on HFD | Short-term NFEC exposure is more potent than long-term HFD consumption in causing systemic inflammation, particularly in liver |
First Author’s Name/Year/Country | Study Model | Aim | Key Findings | Gut Health Implications |
---|---|---|---|---|
Sharma et al./2021 [58]/United States | In vitro (murine and human enteroid-derived monolayer) | Effects of EC use on the gut barrier | Chronic, but not acute, NFEC exposure increased inflammation and reduced expression of tight junction markers; co-culture with bacteria caused barrier disruption | NFEC liquid components may compromise gut health |
Jasper et al./2024 [59]/England | In vitro (human neutrophils) | How EC exposure affects neutrophil function and phenotype | Altered neutrophil surface marker expression, decreased phagocytic function, and excessive filamentous actin polymerization | EC liquids may disrupt neutrophilic function at the gut barrier level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jukic, I.; Matulic, I.; Vukovic, J. Effects of Nicotine-Free E-Cigarettes on Gastrointestinal System: A Systematic Review. Biomedicines 2025, 13, 1998. https://doi.org/10.3390/biomedicines13081998
Jukic I, Matulic I, Vukovic J. Effects of Nicotine-Free E-Cigarettes on Gastrointestinal System: A Systematic Review. Biomedicines. 2025; 13(8):1998. https://doi.org/10.3390/biomedicines13081998
Chicago/Turabian StyleJukic, Ivana, Ivona Matulic, and Jonatan Vukovic. 2025. "Effects of Nicotine-Free E-Cigarettes on Gastrointestinal System: A Systematic Review" Biomedicines 13, no. 8: 1998. https://doi.org/10.3390/biomedicines13081998
APA StyleJukic, I., Matulic, I., & Vukovic, J. (2025). Effects of Nicotine-Free E-Cigarettes on Gastrointestinal System: A Systematic Review. Biomedicines, 13(8), 1998. https://doi.org/10.3390/biomedicines13081998