Rebuilding Mitochondrial Homeostasis and Inhibiting Ferroptosis: Therapeutic Mechanisms and Prospects for Spinal Cord Injury
Abstract
1. Background
2. Methodology
3. Mitochondrial Dysfunction and Homeostatic Imbalance in SCI
4. Ferroptosis in SCI
5. Mitochondrial Homeostasis Regulation Strategies
6. Ferroptosis Inhibition Strategy
7. Biomarkers and Monitoring Significance of Mitochondrial Function and Ferroptosis
8. Summary and Prospect
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Qin, H.; Diao, Y.; Hao, M.; Wang, Z.; Xie, M.; Hu, X.; Zhu, T. Analysis and comparison of the trends in burden of spinal cord injury in China and worldwide from 1990 to 2021: An analysis of the global burden of disease study 2021. Front. Public Health 2024, 12, 1517871. [Google Scholar]
- Yu, M.; Wang, Z.; Wang, D.; Aierxi, M.; Ma, Z.; Wang, Y. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. J. Neurosci. Res. 2023, 101, 1538–1554. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Z.; Jing, S.; Wang, B.; Ye, Z.; Xiong, W.; Liu, Y.; Liu, Y.; Xu, C.; Kumeria, T.; et al. Repair spinal cord injury with a versatile anti-oxidant and neural regenerative nanoplatform. J. Nanobiotechnol. 2024, 22, 351. [Google Scholar]
- Rizwana, N.; Agarwal, V.; Nune, M. Antioxidant for Neurological Diseases and Neurotrauma and Bioengineering Approaches. Antioxidants 2021, 11, 72. [Google Scholar] [CrossRef]
- Shojaie, L.; Iorga, A.; Dara, L. Cell Death in Liver Diseases: A Review. Int J. Mol. Sci. 2020, 21, 9682. [Google Scholar]
- Kang, R.; Xie, Y.; Zeh, H.J.; Klionsky, D.J.; Tang, D. Mitochondrial quality control mediated by PINK1 and PRKN: Links to iron metabolism and tumor immunity. Autophagy 2019, 15, 172–173. [Google Scholar]
- Cui, Y.; Bai, M.; Gao, S.; Zhao, H.; Mei, X. Zinc ions facilitate metabolic bioenergetic recovery post spinal cord injury by activating microglial mitophagy through the STAT3-FOXO3a-SOD2 pathway. Free Radic. Biol. Med. 2025, 227, 64–79. [Google Scholar] [PubMed]
- Cheng, X.T.; Sheng, Z.H. Developmental regulation of microtubule-based trafficking and anchoring of axonal mitochondria in health and diseases. Dev. Neurobiol. 2021, 81, 284–299. [Google Scholar] [PubMed]
- Guedes-Dias, P.; Holzbaur, E.L.F. Axonal transport: Driving synaptic function. Science 2019, 366, eaaw9997. [Google Scholar] [CrossRef]
- You, W.; Li, Y.; Liu, K.; Mi, X.; Li, Y.; Guo, X.; Li, Z. Latest assessment methods for mitochondrial homeostasis in cognitive diseases. Neural Regen. Res. 2024, 19, 754–768. [Google Scholar]
- Yan, X.; Wang, B.; Hu, Y.; Wang, S.; Zhang, X. Abnormal Mitochondrial Quality Control in Neurodegenerative Diseases. Front. Cell Neurosci. 2020, 14, 138. [Google Scholar]
- Xu, S.; Jia, J.; Mao, R.; Cao, X.; Xu, Y. Mitophagy in acute central nervous system injuries: Regulatory mechanisms and therapeutic potentials. Neural Regen. Res. 2025, 20, 2437–2453. [Google Scholar]
- Tian, H.; Chen, X.; Liao, J.; Yang, T.; Cheng, S.; Mei, Z.; Ge, J. Mitochondrial quality control in stroke: From the mechanisms to therapeutic potentials. J. Cell Mol. Med. 2022, 26, 1000–1012. [Google Scholar] [PubMed]
- Samuvel, D.J.; Li, L.; Krishnasamy, Y.; Gooz, M.; Takemoto, K.; Woster, P.M.; Lemasters, J.J.; Zhong, Z. Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice. Autophagy 2022, 18, 2671–2685. [Google Scholar] [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef]
- Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 2018, 20, 233–242. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, Z.; Fang, J.; Wang, J.; Tao, K.; Liu, J.; Liu, S. Exosomes derived from schwann cells alleviate mitochondrial dysfunction and necroptosis after spinal cord injury via AMPK signaling pathway-mediated mitophagy. Free Radic. Biol. Med. 2023, 208, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Yang, X.; Ge, M.; Hu, H.; Xu, C.; Wen, S.; Deng, H.; Mei, X. Zinc defends against Parthanatos and promotes functional recovery after spinal cord injury through SIRT3-mediated anti-oxidative stress and mitophagy. CNS Neurosci. Ther. 2023, 29, 2857–2872. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Pang, M.; Wang, Y.; Wang, X.; Lin, Y.; Lv, Y.; Xie, Z.; Hou, J.; Du, C.; Qiu, Y.; et al. Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis. Redox Biol. 2023, 67, 102871. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, S.; Li, J.; Li, Z.; Quan, J.; Liu, X.; Tang, Y.; Liu, B. The Latest View on the Mechanism of Ferroptosis and Its Research Progress in Spinal Cord Injury. Oxid. Med. Cell Longev. 2020, 2020, 6375938. [Google Scholar]
- Hassannia, B.; Vandenabeele, P.; Vanden Berghe, T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell 2019, 35, 830–849. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Bai, T.; Sun, Y. Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Front. Physiol. 2019, 10, 139. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Zhao, Y.; Gao, G. Mitochondria regulation in ferroptosis. Eur. J. Cell Biol. 2020, 99, 151058. [Google Scholar] [CrossRef]
- Seira, O.; Kolehmainen, K.; Liu, J.; Streijger, F.; Haegert, A.; Lebihan, S.; Boushel, R.; Tetzlaff, W. Ketogenesis controls mitochondrial gene expression and rescues mitochondrial bioenergetics after cervical spinal cord injury in rats. Sci. Rep. 2021, 11, 16359. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, T.; Xiong, M.; Li, S.; Li, W.-X.; Liu, J.; Zhou, X.; Qi, J.; Jiang, G.-B. Cannabidiol-loaded injectable chitosan-based hydrogels promote spinal cord injury repair by enhancing mitochondrial biogenesis. Int. J. Biol. Macromol. 2022, 221, 1259–1270. [Google Scholar] [CrossRef]
- Simmons, E.C.; Scholpa, N.E.; Cleveland, K.H.; Schnellmann, R.G. 5-hydroxytryptamine 1F Receptor Agonist Induces Mitochondrial Biogenesis and Promotes Recovery from Spinal Cord Injury. J. Pharmacol. Exp. Ther. 2020, 372, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Scholpa, N.E.; Simmons, E.C.; Thompson, A.D.; Carroll, S.S.; Schnellmann, R.G. 5-HT(1F) receptor agonism induces mitochondrial biogenesis and increases cellular function in brain microvascular endothelial cells. Front. Cell Neurosci. 2024, 18, 1365158. [Google Scholar] [CrossRef] [PubMed]
- Scholpa, N.E.; Williams, H.; Wang, W.; Corum, D.; Narang, A.; Tomlinson, S.; Sullivan, P.G.; Rabchevsky, A.G.; Schnellmann, R.G. Pharmacological Stimulation of Mitochondrial Biogenesis Using the Food and Drug Administration-Approved β(2)-Adrenoreceptor Agonist Formoterol for the Treatment of Spinal Cord Injury. J. Neurotrauma 2019, 36, 962–972. [Google Scholar] [CrossRef]
- Scholpa, N.E.; Simmons, E.C.; Crossman, J.D.; Schnellmann, R.G. Time-to-treatment window and cross-sex potential of β(2)-adrenergic receptor-induced mitochondrial biogenesis-mediated recovery after spinal cord injury. Toxicol. Appl. Pharmacol. 2021, 411, 115366. [Google Scholar] [CrossRef]
- Choi, S.Y.; Huang, P.; Jenkins, G.M.; Chan, D.C.; Schiller, J.; Frohman, M.A. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 2006, 8, 1255–1262. [Google Scholar] [CrossRef]
- Raiff, A.; Zhao, S.; Bekturova, A.; Zenge, C.; Mazor, S.; Chen, X.; Ru, W.; Makaros, Y.; Ast, T.; Ordureau, A.; et al. TOM20-driven E3 ligase recruitment regulates mitochondrial dynamics through PLD6. Nat. Chem. Biol. 2025, 1–11. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, S.; Wang, X.; Gu, C.; Guo, Q.; Li, X.; Zhang, C.; Zhang, N.; Zhang, L.; Huang, F. Apelin alleviated neuroinflammation and promoted endogenous neural stem cell proliferation and differentiation after spinal cord injury in rats. J. Neuroinflamm. 2022, 19, 160. [Google Scholar]
- Guo, Q.; Liu, Q.; Zhou, S.; Lin, Y.; Lv, A.; Zhang, L.; Li, L.; Huang, F. Apelin regulates mitochondrial dynamics by inhibiting Mst1-JNK-Drp1 signaling pathway to reduce neuronal apoptosis after spinal cord injury. Neurochem. Int. 2024, 180, 105885. [Google Scholar] [CrossRef]
- Xiong, M.; Wang, M.; Liu, X.; Luo, S.; Wang, X.; Yang, L.; Li, K.; Li, Y.; Wei, W.; Chen, H.; et al. Quercetin inhibits oligodendrocytes ferroptosis by blocking NCOA4-mediated ferritinophagy. Int. Immunopharmacol. 2025, 150, 114152. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Hao, J.; Duan, H.-Q.; Zhao, C.-X.; Sun, C.; Li, B.; Fan, B.-Y.; Li, W.-X.; Fu, X.-H.; et al. Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen. Res. 2019, 14, 532–541. [Google Scholar]
- Liu, G.; Deng, B.; Huo, L.; Fan, X.; Bai, H.; Zhao, Y.; Xu, L.; Gao, F.; Mu, X. Tetramethylpyrazine alleviates ferroptosis and promotes functional recovery in spinal cord injury by regulating GPX4/ACSL4. Eur. J. Pharmacol. 2024, 977, 176710. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Jiang, X.; Gu, W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020, 30, 478–490. [Google Scholar] [CrossRef]
- Ding, K.; Liu, C.; Li, L.; Yang, M.; Jiang, N.; Luo, S.; Sun, L. Acyl-CoA synthase ACSL4: An essential target in ferroptosis and fatty acid metabolism. Chin. Med. J. (Engl.) 2023, 136, 2521–2537. [Google Scholar] [PubMed]
- Jia, B.; Li, J.; Song, Y.; Luo, C. ACSL4-Mediated Ferroptosis and Its Potential Role in Central Nervous System Diseases and Injuries. Int. J. Mol. Sci. 2023, 24, 10021. [Google Scholar] [CrossRef]
- Le, X.; Mu, J.; Peng, W.; Tang, J.; Xiang, Q.; Tian, S.; Feng, Y.; He, S.; Qiu, Z.; Ren, G.; et al. DNA methylation downregulated ZDHHC1 suppresses tumor growth by altering cellular metabolism and inducing oxidative/ER stress-mediated apoptosis and pyroptosis. Theranostics 2020, 10, 9495–9511. [Google Scholar] [CrossRef]
- Zyba, S.J.; Shenvi, S.V.; Killilea, D.W.; Holland, T.C.; Kim, E.; Moy, A.; Sutherland, B.; Gildengorin, V.; Shigenaga, M.K.; King, J.C. A moderate increase in dietary zinc reduces DNA strand breaks in leukocytes and alters plasma proteins without changing plasma zinc concentrations. Am. J. Clin. Nutr. 2017, 105, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Tian, H.; Mao, L.; Li, D.; Lin, J.; Hu, H.; Huang, S.; Zhang, C.; Mei, X. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci. Ther. 2021, 27, 1023–1040. [Google Scholar] [CrossRef]
- Quadri, S.A.; Farooqui, M.; Ikram, A.; Zafar, A.; Khan, M.A.; Suriya, S.S.; Claus, C.F.; Fiani, B.; Rahman, M.; Ramachandran, A.; et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 2020, 43, 425–441. [Google Scholar]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, X.; Wang, J.; Shi, Y.; Hu, Q.; Cui, W.; Bai, H.; Zhou, J.; Du, Y.; Han, L.; et al. Adiponectin/AdiopR1 signaling prevents mitochondrial dysfunction and oxidative injury after traumatic brain injury in a SIRT3 dependent manner. Redox Biol. 2022, 54, 102390. [Google Scholar]
- Polito, R.; Di Meo, I.; Barbieri, M.; Daniele, A.; Paolisso, G.; Rizzo, M.R. Adiponectin Role in Neurodegenerative Diseases: Focus on Nutrition Review. Int. J. Mol. Sci. 2020, 21, 9255. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, T.; Hu, Q.; Wu, X.; Cai, Y.; Xie, W.; Zhang, S.; Wang, B.; Wang, J.; Feng, T.; et al. Adiponectin ameliorates traumatic brain injury-induced ferroptosis through AMPK- ACC1 signaling pathway. Brain Behav. Immun. 2025, 126, 160–175. [Google Scholar] [PubMed]
- Ye, S.; Luo, W.; Khan, Z.A.; Wu, G.; Xuan, L.; Shan, P.; Lin, K.; Chen, T.; Wang, J.; Hu, X.; et al. Celastrol Attenuates Angiotensin II-Induced Cardiac Remodeling by Targeting STAT3. Circ. Res. 2020, 126, 1007–1023. [Google Scholar]
- Shen, W.; Li, C.; Liu, Q.; Cai, J.; Wang, Z.; Pang, Y.; Ning, G.; Yao, X.; Kong, X.; Feng, S. Celastrol inhibits oligodendrocyte and neuron ferroptosis to promote spinal cord injury recovery. Phytomedicine 2024, 128, 155380. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.; Xu, G.; Liu, S.; Gong, Z.; Lu, F.; Xia, X.; Jiang, J.; Wang, H.; Zou, F.; et al. Dihydroorotate dehydrogenase regulates ferroptosis in neurons after spinal cord injury via the P53-ALOX15 signaling pathway. CNS Neurosci. Ther. 2023, 29, 1923–1939. [Google Scholar]
Intervention Type | Intervention/Target | Model Type | Key Outcomes | Limitations |
---|---|---|---|---|
Mitochondrial Biogenesis (MB) Regulation | Cannabidiol-loaded in situ gelling hydrogel | In vivo: Rat model with T9 spinal cord segment resection | Activates PGC-1α/NRF2 pathway, enhances MB, alleviates mitochondrial dysfunction and apoptosis, and promotes SCI repair | Hydrogel degradation rate and long-term safety not clarified; no evaluation of effects on chronic-phase nerve regeneration |
LY344864 (5-HT1F receptor agonist) | In vivo: Mouse model with T10–12 thoracic contusion (80 kdyn force) | Attenuates PGC-1α reduction as early as 3 days post-injury, improves mitochondrial homeostasis, promotes vascular repair, motor function recovery, and lesion size reduction | Only verified within 21 days; no data on universality across different spinal segment injuries | |
Lasmiditan (5-HT1FR agonist) | In vivo: SCI model mice; In vitro: Endothelial cells | Induces MB, enhances endothelial cell function via the VE-Cadherin–Akt–FoxO1–claudin-5 axis, and improves vascular recovery and motor function | Endothelial cell mechanisms not validated in spinal neurons; lacks dose-dependent data | |
Formoterol (β2-adrenergic receptor agonist) | In vivo: SCI model in female C57BL/6 mice | Restores expression of mitochondrial proteins (e.g., PGC-1α, Nrf2) 3 days post-injury, increases white/gray matter volume, with a treatment window of at least 8 h and cross-sex potential | Efficacy details in male models insufficiently elaborated; no analysis of long-term effects on organs like the heart | |
Mitochondrial Dynamics Regulation | CRL2–FEM1B–PLD6 pathway | In vitro: Cell experiments (focusing on mitochondrial localization and degradation mechanisms) | TOM20 mediates CRL2-FEM1B localization to mitochondria, balancing mitochondrial fusion/fission by regulating PLD6 levels | Not validated in in vivo SCI models; lacks direct evaluation of neuronal function |
Apelin (targeting Mst1–JNK–Drp1 pathway) | In vitro: H2O2-stimulated PC-12 cells; In vivo: Rat spinal cord transection model | Inhibits mitochondrial fission, enhances antioxidant capacity, clears excess ROS, reduces apoptosis, protects neurons, and promotes functional recovery post-SCI | Interactions with fusion-related proteins (e.g., Mfn1/2) not clarified; insufficient dose optimization for long-term administration | |
Mitophagy Regulation | Mesenchymal Stem Cell (MSC) transplantation | In vivo: Mouse model with T10 spinal cord crush injury | MSC-derived mitochondria fuse with damaged neuronal mitochondria, reducing excessive mitophagy associated with ferroptosis | Immunological rejection risks of MSC transplantation unassessed; functional integrity of fused mitochondria not confirmed |
Zinc ions/TFP (FOXO3a activator) | In vitro: H2O2-induced SCI cell model; In vivo: SCI mouse model | Activates FOXO3a, enhances mitophagy, restores mitochondrial stability, improves spinal microenvironment, and promotes motor function recovery | Synergistic effects of zinc ions and TFP not explored; no analysis of effects on astrocyte autophagy |
Intervention | Model Type | Mechanism Targeting the “Death Triangle” | Key Outcomes | Limitations |
---|---|---|---|---|
Quercetin | In vitro: OPCs In vivo: C57 mice with T10 weight-drop SCI | Inhibits iron overload (blocks NCOA4-mediated ferritinophagy + downregulates Id2/transferrin pathway, reducing iron release and uptake) | Reduces intracellular Fe2+, NCOA4, and PTGS2 levels; decreases MDA accumulation; promotes myelin and axon formation | In vitro studies only focused on OPCs, excluding neurons/astrocytes; toxicity data for high in vivo doses (>100 mg/kg) are lacking |
Deferoxamine | In vitro: Neurons In vivo: Rats with T10 modified Allen’s contusion | Inhibits iron overload (chelates free Fe2+) + enhances antioxidant defense (upregulates Xc−/GPX4 axis, reducing GSH depletion) | Decreases free iron concentration and lipid ROS; repairs mitochondrial function; improves motor function | Long-term use may cause systemic iron deficiency; no evaluation of axonal regeneration in the chronic phase (>4 weeks) |
Tetramethylpyrazine (TMP) | In vitro: Neurons In vivo: Rats with laminectomy-induced contusion | Enhances antioxidant defense (upregulates GPX4) + regulates PUFA metabolism (downregulates ACSL4, reducing conversion of PUFA to oxidizable phospholipids) | Increases GSH and SOD levels; decreases Fe2+, ROS, and MDA; inhibits neuronal ferroptosis | In vitro effects on glial cells not verified; in vivo lacks stratified data for different injury severities (e.g., complete/incomplete SCI) |
Zinc (ZnG) | In vitro: Neurons + astrocytes In vivo: Mice with T10 contusion | Enhances antioxidant defense (activates NRF2/HO-1 pathway, upregulates GPX4 and SOD) | Reduces lipid peroxides, MDA, and ROS; rescues mitochondrial function; decreases inflammatory factors | No analysis of gender differences (zinc metabolism is gender-specific); high doses (>20 mg/kg) may induce neuronal apoptosis |
Adiponectin (APN) | In vitro: Neurons In vivo: TBI mouse model (extrapolatable to SCI) | Regulates PUFA metabolism (inhibits production of PUFA such as arachidonic acid) + enhances antioxidant defense (activates AMPK pathway) | Reduces MDA, 4-HNE, and NOX2/COX2 expression; alleviates ferroptosis-related lipid peroxidation | Lacks direct data in SCI models; unclear effects on spinal cord-specific cells (e.g., oligodendrocytes) |
Celastrol | In vitro: Neurons + OPCs In vivo: Rats with T10 weight-drop contusion | Enhances antioxidant defense (upregulates NRF2–xCT–GPX4 axis) | Reduces ROS accumulation; inhibits ferroptosis in neurons and OPCs; promotes motor function recovery | In vitro dose–effect relationship not clarified; long-term in vivo toxicity (e.g., liver injury) needs evaluation |
Dihydroorotate dehydrogenase | In vitro: Neurons In vivo: SCI rat model | Enhances antioxidant defense (inhibits P53/ALOX15 pathway, reducing lipid peroxides) | Decreases activity of ferroptosis-related molecules; reduces mitochondrial damage | No clear direct association with the “death triangle” in its mechanism; clinical translation potential remains to be verified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Qin, Q.; Liang, W.; Guo, H.; Diao, Y.; Tian, S.; Wang, X. Rebuilding Mitochondrial Homeostasis and Inhibiting Ferroptosis: Therapeutic Mechanisms and Prospects for Spinal Cord Injury. Biomedicines 2025, 13, 2290. https://doi.org/10.3390/biomedicines13092290
Wang Q, Qin Q, Liang W, Guo H, Diao Y, Tian S, Wang X. Rebuilding Mitochondrial Homeostasis and Inhibiting Ferroptosis: Therapeutic Mechanisms and Prospects for Spinal Cord Injury. Biomedicines. 2025; 13(9):2290. https://doi.org/10.3390/biomedicines13092290
Chicago/Turabian StyleWang, Qin, Qingqing Qin, Wenqiang Liang, Haoran Guo, Yang Diao, Shengsheng Tian, and Xin Wang. 2025. "Rebuilding Mitochondrial Homeostasis and Inhibiting Ferroptosis: Therapeutic Mechanisms and Prospects for Spinal Cord Injury" Biomedicines 13, no. 9: 2290. https://doi.org/10.3390/biomedicines13092290
APA StyleWang, Q., Qin, Q., Liang, W., Guo, H., Diao, Y., Tian, S., & Wang, X. (2025). Rebuilding Mitochondrial Homeostasis and Inhibiting Ferroptosis: Therapeutic Mechanisms and Prospects for Spinal Cord Injury. Biomedicines, 13(9), 2290. https://doi.org/10.3390/biomedicines13092290