Linking Metabolic Disorders and Immune System Phenomena in Schizophrenia: The Role of Adipose Tissue and Inflammation
Abstract
1. Introduction
2. Materials and Methods
3. Obesity-Induced Inflammation and Schizophrenia Symptoms
4. Imbalance of the Th1/Th2 Axis in Schizophrenia
4.1. The Role of Pro-Inflammatory Interleukins in the Pathophysiology of Schizophrenia
4.1.1. IL-6
4.1.2. TNF-α
4.1.3. CRP
4.1.4. IL-1β
4.1.5. IL-2
4.1.6. IFN-γ
4.1.7. IL-17
4.2. The Role of Anti-Inflammatory Interleukins in the Pathophysiology of Schizophrenia
4.2.1. IL-4
4.2.2. IL-10
4.2.3. IL-13
4.2.4. TGF-β
5. Potential Cross-Talk Between Obesity-Related Inflammation and Schizophrenia
6. Anti-Inflammatory Therapies in Schizophrenia
6.1. Aspirin
6.2. N-Acetylcysteine
6.3. Celecoxib
6.4. Minocycline
6.5. Tocilizumab
7. Limitations
8. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Nawaz, R.; Gul, S.; Amin, R.; Huma, T.; Al Mughairbi, F. Overview of Schizophrenia Research and Treatment in Pakistan. Heliyon 2020, 6, e05545. [Google Scholar] [CrossRef]
- Na, K.-S.; Jung, H.-Y.; Kim, Y.-K. The Role of Pro-Inflammatory Cytokines in the Neuroinflammation and Neurogenesis of Schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 277–286. [Google Scholar] [CrossRef]
- Manu, P.; Dima, L.; Shulman, M.; Vancampfort, D.; De Hert, M.; Correll, C.U. Weight Gain and Obesity in Schizophrenia: Epidemiology, Pathobiology, and Management. Acta Psychiatr. Scand. 2015, 132, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose Tissue as an Endocrine Organ. Mol. Cell. Endocrinol. 2010, 316, 129–139. [Google Scholar] [CrossRef]
- Saddichha, S.; Manjunatha, N.; Ameen, S.; Akhtar, S. Effect of Olanzapine, Risperidone, and Haloperidol Treatment on Weight and Body Mass Index in First-Episode Schizophrenia Patients in India: A Randomized, Double-Blind, Controlled, Prospective Study. J. Clin. Psychiatry 2007, 68, 1793–1798. [Google Scholar] [CrossRef]
- Strassnig, M.; Caceda, R.; Newcomer, J.; Harvey, P. Cognitive Deficits, Obesity and Disability in Schizophrenia. Transl. Neurosci. 2012, 3, 345–354. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Li, X.R.; Zhang, L.; Zhu, W.B.; Wu, Y.Q.; Guan, X.N.; Xiu, M.H.; Zhang, X.Y. Therapeutic Response Is Associated With Antipsychotic-Induced Weight Gain in Drug-Naive First-Episode Patients With Schizophrenia: An 8-Week Prospective Study. J. Clin. Psychiatry 2021, 82, 20m13469. [Google Scholar] [CrossRef] [PubMed]
- Doane, M.J.; Bessonova, L.; Friedler, H.S.; Mortimer, K.M.; Cheng, H.; Brecht, T.; O’Sullivan, A.K.; Cummings, H.; McDonnell, D.; Meyer, J.M. Weight Gain and Comorbidities Associated with Oral Second-Generation Antipsychotics: Analysis of Real-World Data for Patients with Schizophrenia or Bipolar I Disorder. BMC Psychiatry 2022, 22, 114. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; McCann, S.M.; Kennedy, S.H. Antipsychotic Metabolic Effects: Weight Gain, Diabetes Mellitus, and Lipid Abnormalities. Can. J. Psychiatry 2001, 46, 273–281. [Google Scholar] [CrossRef]
- Leucht, S.; Corves, C.; Arbter, D.; Engel, R.R.; Li, C.; Davis, J.M. Second-Generation versus First-Generation Antipsychotic Drugs for Schizophrenia: A Meta-Analysis. Lancet 2009, 373, 31–41. [Google Scholar] [CrossRef]
- Allison, D.B.; Mentore, J.L.; Heo, M.; Chandler, L.P.; Cappelleri, J.C.; Infante, M.C.; Weiden, P.J. Antipsychotic-Induced Weight Gain: A Comprehensive Research Synthesis. Am. J. Psychiatry 1999, 156, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- McWhinney, S.R.; Brosch, K.; Calhoun, V.D.; Crespo-Facorro, B.; Crossley, N.A.; Dannlowski, U.; Dickie, E.; Dietze, L.M.F.; Donohoe, G.; Du Plessis, S.; et al. Obesity and Brain Structure in Schizophrenia—ENIGMA Study in 3021 Individuals. Mol. Psychiatry 2022, 27, 3731–3737. [Google Scholar] [CrossRef] [PubMed]
- Panariello, F.; De Luca, V.; De Bartolomeis, A. Weight Gain, Schizophrenia and Antipsychotics: New Findings from Animal Model and Pharmacogenomic Studies. Schizophr. Res. Treat. 2011, 2011, 459284. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Brito Díaz, B.; Marcelino Rodríguez, I.; Almeida González, D.; Rodríguez Pérez, M.D.C.; Cabrera De León, A. An Overview of Leptin and the Th1/Th2 Balance. Open J. Immunol. 2014, 04, 42–50. [Google Scholar] [CrossRef][Green Version]
- Tsai, S.; Sajatovic, M.; Hsu, J.; Chung, K.; Chen, P.; Huang, Y. Body Mass Index, Residual Psychotic Symptoms, and Inflammation Associated with Brain Volume Reduction in Older Patients with Schizophrenia. Int. J. Geriatr. Psychiatry 2020, 35, 728–736. [Google Scholar] [CrossRef]
- Yeşilkaya, Ü.H.; Şen, M.; BalcIoğlu, Y.H.; Gokçay, H.; Çelikkıran, P.; Kırlıoğlu Balcıoğlu, S.; Karamustafalıoğlu, N. Evaluation of the Correlation Between Peripheral Inflammatory Markers and Suicide Risk in Drug-Naive First-Episode Schizophrenia. Arch. Neuropsychiatry 2024, 61, 275–280. [Google Scholar] [CrossRef]
- Baldini, V.; Gnazzo, M.; Varallo, G.; Atti, A.R.; De Ronchi, D.; Fiorillo, A.; Plazzi, G. Inflammatory Markers and Suicidal Behavior: A Comprehensive Review of Emerging Evidence. Ann. Gen. Psychiatry 2025, 24, 36. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, D.; Yang, X.; Tang, B.; Xia, C.; Luo, C.; Gong, Q.; Lui, S.; Hu, N. The Associations of Peripheral Interleukin Alterations and Hippocampal Subfield Volume Deficits in Schizophrenia. Cereb. Cortex 2024, 34, bhae308. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Sun, M.; Yang, Y.; Zhang, L.; Liu, Y.; Li, F.; Liu, H. SEP-363856 Exerts Neuroprotection through the PI3K/AKT/GSK-3β Signaling Pathway in a Dual-hit Neurodevelopmental Model of Schizophrenia-like Mice. Drug Dev. Res. 2024, 85, e22225. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, A.; Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rudkowski, K.; Kucharska-Mazur, J.; Mak, M.; Rek-Owodziń, K.; Plichta, P.; Bielecki, M.; et al. Greater Methylation of the IL-6 Promoter Region Is Associated with Decreased Integrity of the Corpus Callosum in Schizophrenia. J. Psychiatr. Res. 2024, 175, 108–117. [Google Scholar] [CrossRef]
- Liu, X.; Ling, Z.; Cheng, Y.; Wu, L.; Shao, L.; Gao, J.; Lei, W.; Zhu, Z.; Ding, W.; Song, Q.; et al. Oral Fungal Dysbiosis and Systemic Immune Dysfunction in Chinese Patients with Schizophrenia. Transl. Psychiatry 2024, 14, 475. [Google Scholar] [CrossRef]
- Lesh, T.A.; Careaga, M.; Rose, D.R.; McAllister, A.K.; Van De Water, J.; Carter, C.S.; Ashwood, P. Cytokine Alterations in First-Episode Schizophrenia and Bipolar Disorder: Relationships to Brain Structure and Symptoms. J. Neuroinflamm. 2018, 15, 165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Ye, Y.; Zou, Y.; Chen, W.; Wang, Z.; Zou, Z. Peripheral Cytokine Levels across Psychiatric Disorders: A Systematic Review and Network Meta-Analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 125, 110740. [Google Scholar] [CrossRef]
- Guo, J.; Liu, C.; Wang, Y.; Feng, B.; Zhang, X. Role of T Helper Lymphokines in the Immune-Inflammatory Pathophysiology of Schizophrenia: Systematic Review and Meta-Analysis. Nord. J. Psychiatry 2015, 69, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Borovcanin, M.; Jovanovic, I.; Radosavljevic, G.; Djukic Dejanovic, S.; Bankovic, D.; Arsenijevic, N.; Lukic, M.L. Elevated Serum Level of Type-2 Cytokine and Low IL-17 in First Episode Psychosis and Schizophrenia in Relapse. J. Psychiatr. Res. 2012, 46, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Noto, C.; Ota, V.K.; Santoro, M.L.; Ortiz, B.B.; Rizzo, L.B.; Higuchi, C.H.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Gadelha, A.; et al. Effects of Depression on the Cytokine Profile in Drug Naïve First-Episode Psychosis. Schizophr. Res. 2015, 164, 53–58. [Google Scholar] [CrossRef]
- Reale, M.; Costantini, E.; Greig, N.H. Cytokine Imbalance in Schizophrenia. From Research to Clinic: Potential Implications for Treatment. Front. Psychiatry 2021, 12, 536257. [Google Scholar] [CrossRef]
- Gkrinia, E.M.M.; Belančić, A. The Mechanisms of Chronic Inflammation in Obesity and Potential Therapeutic Strategies: A Narrative Review. Curr. Issues Mol. Biol. 2025, 47, 357. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, L.; He, Y.; Yuan, L.; Li, Z.; Zheng, W.; Tang, J.; Li, C.; Jin, K.; Liu, W.; et al. Compensatory Thickening of Cortical Thickness in Early Stage of Schizophrenia. Cereb. Cortex 2024, 34, bhae255. [Google Scholar] [CrossRef]
- Zhang, Y.; Catts, V.S.; Sheedy, D.; McCrossin, T.; Kril, J.J.; Shannon Weickert, C. Cortical Grey Matter Volume Reduction in People with Schizophrenia Is Associated with Neuro-Inflammation. Transl. Psychiatry 2016, 6, e982. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Lançon, C.; Korchia, T.; Auquier, P.; Boyer, L. The Role of Inflammation in the Treatment of Schizophrenia. Front. Psychiatry 2020, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Corley, E.; Gleeson, C.; Godfrey, E.; Cowman, M.; Patlola, S.R.; Cannon, D.M.; McKernan, D.P.; Kelly, J.P.; Hallahan, B.; McDonald, C.; et al. Corpus Callosum Microstructural Organization Mediates the Effects of Physical Neglect on Social Cognition in Schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 129, 110875. [Google Scholar] [CrossRef]
- Cui, L.-J.; Cai, L.-L.; Na, W.-Q.; Jia, R.-L.; Zhu, J.-L.; Pan, X. Interaction between Serum Inflammatory Cytokines and Brain-Derived Neurotrophic Factor in Cognitive Function among First-Episode Schizophrenia Patients. World J. Psychiatry 2024, 14, 1804–1814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, J.; Yan, H.; Yan, L.; Li, Y.; Zhang, C.; Li, Y.; Liu, B.; Lin, J.; Zhang, L.; et al. Correlations between Omega-3 Fatty Acids and Inflammatory/Glial Abnormalities: The Involvement of the Membrane and Neurotransmitter Dysfunction in Schizophrenia. Front. Cell. Neurosci. 2023, 17, 1163764. [Google Scholar] [CrossRef]
- Taha, M.A.; AL-maqati, T.N.; Alnaam, Y.A.; Alharbi, S.S.; Khaneen, R.; Almutairi, H.; AL-harbi, M. The Association between Brain-Derived Neurotrophic Factor (BDNF) Protein Level and Body Mass Index. Medicina 2022, 59, 99. [Google Scholar] [CrossRef]
- Corsi-Zuelli, F.; Donohoe, G.; Griffiths, S.L.; Del-Ben, C.M.; Watson, A.J.; Burke, T.; Lalousis, P.A.; McKernan, D.; Morris, D.; Kelly, J.; et al. Depressive and Negative Symptoms in the Early and Established Stages of Schizophrenia: Integrating Structural Brain Alterations, Cognitive Performance, and Plasma Interleukin 6 Levels. Biol. Psychiatry Glob. Open Sci. 2025, 5, 100429. [Google Scholar] [CrossRef]
- Herniman, S.E.; Wood, S.J.; Khandaker, G.; Dazzan, P.; Pariante, C.M.; Barnes, N.M.; Krynicki, C.R.; Nikkheslat, N.; Vincent, R.C.; Roberts, A.; et al. Network Analysis of Inflammation and Symptoms in Recent Onset Schizophrenia and the Influence of Minocycline during a Clinical Trial. Transl. Psychiatry 2023, 13, 297. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Haroon, E.; Miller, A.H.; Strauss, G.P.; Buckley, P.F.; Miller, B.J. TNF-α and IL-6 Are Associated with the Deficit Syndrome and Negative Symptoms in Patients with Chronic Schizophrenia. Schizophr. Res. 2018, 199, 281–284. [Google Scholar] [CrossRef]
- Miyano, T.; Hirouchi, M.; Yoshimura, N.; Hattori, K.; Mikkaichi, T.; Kiyosawa, N. Plasma microRNAs Associate Positive, Negative, and Cognitive Symptoms with Inflammation in Schizophrenia. Int. J. Mol. Sci. 2024, 25, 13522. [Google Scholar] [CrossRef]
- Lv, D.; Xiao, B.; Liu, H.; Wang, L.; Li, Y.; Zhang, Y.H.; Jin, Q. Enhanced NMDA Receptor Pathway and Glutamate Transmission in the Hippocampal Dentate Gyrus Mediate the Spatial Learning and Memory Impairment of Obese Rats. Pflüg. Arch. Eur. J. Physiol. 2024, 476, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Sales, A.J.; Gobira, P.H.; Pedrazzi, J.F.C.; Silveira, J.R.; Del Bel, E.; Gomes, F.V.; Guimarães, F.S. Doxycycline Diminishes the Rewarding and Psychomotor Effects Induced by Morphine and Cocaine. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 128, 110870. [Google Scholar] [CrossRef]
- Cheng, X.; Xie, Y.; Wang, A.; Zhu, C.; Yan, F.; Pei, W.; Zhang, X. Correlation between Elevated Serum Interleukin-1β, Interleukin-16 Levels and Psychiatric Symptoms in Patients with Schizophrenia at Different Stages. BMC Psychiatry 2023, 23, 396. [Google Scholar] [CrossRef] [PubMed]
- Rangel, S.C.; Da Silva, M.D.; Natrielli Filho, D.G.; Santos, S.N.; Do Amaral, J.B.; Victor, J.R.; Silva, K.C.N.; Tuleta, I.D.; França, C.N.; Shio, M.T.; et al. HERV-W Upregulation Expression in Bipolar Disorder and Schizophrenia: Unraveling Potential Links to Systemic Immune/Inflammation Status. Retrovirology 2024, 21, 7. [Google Scholar] [CrossRef]
- Enokida, T.; Hattori, K.; Okabe, K.; Noda, T.; Ota, M.; Sato, N.; Ogawa, S.; Tatsumi, M.; Hoshino, M.; Kunugi, H.; et al. Possible Association of Elevated CSF IL -6 Levels with Anxiety and Frustration in Psychiatric Disorders. Psychiatry Clin. Neurosci. 2024, 78, 792–799. [Google Scholar] [CrossRef]
- Sahoo, S.; Kale, A.; Basu, D.; Minz, R.W. Is There Any Association between Cognitive Deficits and Immune Markers in Acute and Transient Psychotic Disorders? A Pilot Study. Asian J. Psychiatry 2023, 89, 103754. [Google Scholar] [CrossRef]
- Zhuo, C.; Hu, S.; Chen, G.; Yang, L.; Cai, Z.; Tian, H.; Jiang, D.; Chen, C.; Wang, L.; Ma, X.; et al. Low-Dose Lithium Adjunct to Atypical Antipsychotic Treatment Nearly Improved Cognitive Impairment, Deteriorated the Gray-Matter Volume, and Decreased the Interleukin-6 Level in Drug-Naive Patients with First Schizophrenia Symptoms: A Follow-up Pilot Study. Schizophrenia 2023, 9, 71. [Google Scholar] [CrossRef]
- Ding, N.; Li, Z.; Liu, Z. Escitalopram Augmentation Improves Negative Symptoms of Treatment Resistant Schizophrenia Patients—A Randomized Controlled Trial. Neurosci. Lett. 2018, 681, 68–72. [Google Scholar] [CrossRef]
- Calevro, A.; Cotel, M.-C.; Natesan, S.; Modo, M.; Vernon, A.C.; Mondelli, V. Effects of Chronic Antipsychotic Drug Exposure on the Expression of Translocator Protein and Inflammatory Markers in Rat Adipose Tissue. Psychoneuroendocrinology 2018, 95, 28–33. [Google Scholar] [CrossRef]
- Li, H.; Peng, S.; Li, S.; Liu, S.; Lv, Y.; Yang, N.; Yu, L.; Deng, Y.-H.; Zhang, Z.; Fang, M.; et al. Chronic Olanzapine Administration Causes Metabolic Syndrome through Inflammatory Cytokines in Rodent Models of Insulin Resistance. Sci. Rep. 2019, 9, 1582. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Lu, R.; Lv, M.; Chen, J.; Li, J.; Long, J.; Cai, H.; Su, L.; Gong, Z. Association between the Levels of Toxic Heavy Metals and Schizophrenia in the Population of Guangxi, China: A Case-Control Study. Environ. Pollut. 2024, 363, 125179. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Birdi, A.; Nebhinani, N.; Banerjee, M.; Sharma, P.; Sharma, S.; Suthar, N.; Janu, V.C.; Yadav, D. Correlation Between Severity of Schizophrenia with Certain Trace Elements and TNF-α Gene Expression and Its Circulatory Level in the Population of Western India. Biol. Trace Elem. Res. 2025, 203, 2159–2169. [Google Scholar] [CrossRef]
- Hatzimanolis, A.; Foteli, S.; Xenaki, L.-A.; Selakovic, M.; Dimitrakopoulos, S.; Vlachos, I.; Kosteletos, I.; Soldatos, R.-F.; Gazouli, M.; Chatzipanagiotou, S.; et al. Elevated Serum Kynurenic Acid in Individuals with First-Episode Psychosis and Insufficient Response to Antipsychotics. Schizophrenia 2024, 10, 61. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Gou, M.; Li, W.; Li, N.; Tong, J.; Zhou, Y.; Xie, T.; Yu, T.; Feng, W.; et al. Relationship between Plasma TNF-α Levels and Agitation Symptoms in First Episode Patients with Schizophrenia. BMC Psychiatry 2024, 24, 480. [Google Scholar] [CrossRef]
- Serazetdinova, V.S.; Petrova, N.N.; Dorofeykov, V.V.; Mayorova, M.A. Clinical and Immunological Relationships in Patients with Early Schizophrenia. SS Korsakov J. Neurol. Psychiatry 2025, 125, 35. [Google Scholar] [CrossRef]
- Çiftci, H.; Aşut, G.; Kaya, H.; Çakmak, I.B.; Aydıner Yılmaz, M.; Çöpür, A.; Çalcı, E.; Fırat Oğuz, E.; Turhan, T.; Göka, E. Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Inflammatory Markers in Schizophrenia: A Comparative Analysis of Drug-Naive Schizophrenia Patients, Remitted Patients, and Healthy Controls. J. Psychiatr. Res. 2024, 169, 14–21. [Google Scholar] [CrossRef]
- Asada, R.; Hori, H.; Gotoh, L.; Yasumatsu, K.; Iida, H.; Kawasaki, H. Lower Plasma Tumor Necrosis Factor-α Is Associated with Symptomatic Remission in Patients with Schizophrenia. J. Psychiatr. Res. 2024, 177, 299–304. [Google Scholar] [CrossRef]
- Su, L.; Liu, X.; Li, Y.; Yuan, H.; Li, Q.; Li, C. Comparison of Olfactory Function, Cognitive Function and Serum Tumor Necrosis Factor-α between Bipolar and Schizophrenic Patients in the Remission Stage. BMC Psychiatry 2023, 23, 811. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, Q.; Zhou, X.; Yao, L.; Zhu, Q.; Fu, Z. Altered Levels of Cytokine, T- and B-Lymphocytes, and PD-1 Expression Rates in Drug-Naïve Schizophrenia Patients with Acute Phase. Sci. Rep. 2023, 13, 21711. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, W.; Bu, Y.; Li, J.; Hao, Y.; Bi, Y. Effects of 6-Week Olanzapine Treatment on Serum IL-2, IL-4, IL-8, IL-10, and TNF-α Levels in Drug-Naive Individuals with First-Episode Schizophrenia. BMC Psychiatry 2024, 24, 703. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, M.; Babic, D.; Rastovic, P.; Arapovic, J.; Martinac, M.; Jakovac, S.; Barbaric, R. Association of Tumor Necrosis Factor-Alpha with Psychopathology in Patients with Schizophrenia. Acta Medica Okayama 2023, 77, 395–405. [Google Scholar]
- Ermakov, E.; Melamud, M.; Boiko, A.; Kamaeva, D.; Ivanova, S.; Nevinsky, G.; Buneva, V. Association of Peripheral Inflammatory Biomarkers and Growth Factors Levels with Sex, Therapy and Other Clinical Factors in Schizophrenia and Patient Stratification Based on These Data. Brain Sci. 2023, 13, 836. [Google Scholar] [CrossRef]
- Sapienza, J.; Agostoni, G.; Comai, S.; Nasini, S.; Dall’Acqua, S.; Sut, S.; Spangaro, M.; Martini, F.; Bechi, M.; Buonocore, M.; et al. Neuroinflammation and Kynurenines in Schizophrenia: Impact on Cognition Depending on Cognitive Functioning and Modulatory Properties in Relation to Cognitive Remediation and Aerobic Exercise. Schizophr. Res. Cogn. 2024, 38, 100328. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-Y.; Chang, Y.-H.; Lee, S.-Y.; Chang, H.H.; Tsai, T.-Y.; Tseng, H.-H.; Wang, S.-M.; Chen, P.S.; Chen, K.C.; Lee, I.H.; et al. Transdiagnostic Features of Inflammatory Markers and Executive Function across Psychiatric Disorders. J. Psychiatr. Res. 2025, 181, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Pi, Z.; Zhu, L.; Zhang, J. Effect of Paliperidone Combined with Sertraline in the Treatment of Schizophrenia and Its Influence on Serum Neurofunctional Related Factors. Alpha Psychiatry 2025, 26, 38775. [Google Scholar] [CrossRef]
- Yang, H.; Peng, R.; Yang, M.; Zhang, J.; Shi, Z.; Zhang, X. Association between Elevated Serum Matrix Metalloproteinase-2 and Tumor Necrosis Factor-α, and Clinical Symptoms in Male Patients with Treatment-Resistant and Chronic Medicated Schizophrenia. BMC Psychiatry 2024, 24, 173. [Google Scholar] [CrossRef]
- Sobiś, J.; Kunert, Ł.; Rykaczewska-Czerwińska, M.; Świętochowska, E.; Gorczyca, P. The Effect of Aripiprazole on Leptin Levels of Patients with Chronic Schizophrenia and a Comparison of Leptin, Acute Phase Protein, and Cytokine Levels with Regard to Body Mass and Body Composition Indexes. Endokrynol. Pol. 2022, 73, 35–42. [Google Scholar] [CrossRef]
- Fond, G.; Lançon, C.; Auquier, P.; Boyer, L. C-Reactive Protein as a Peripheral Biomarker in Schizophrenia. An Updated Systematic Review. Front. Psychiatry 2018, 9, 392. [Google Scholar] [CrossRef]
- Hsuchou, H.; Kastin, A.J.; Mishra, P.K.; Pan, W. C-Reactive Protein Increases BBB Permeability: Implications for Obesity and Neuroinflammation. Cell Physiol. Biochem. 2012, 30, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Depp, C.; Martin, A.S.; Daly, R.E.; Glorioso, D.K.; Palmer, B.W.; Jeste, D.V. Associations of High Sensitivity C-Reactive Protein Levels in Schizophrenia and Comparison Groups. Schizophr. Res. 2015, 168, 456–460. [Google Scholar] [CrossRef]
- Johnsen, E.; Fathian, F.; Kroken, R.A.; Steen, V.M.; Jørgensen, H.A.; Gjestad, R.; Løberg, E.-M. The Serum Level of C-Reactive Protein (CRP) Is Associated with Cognitive Performance in Acute Phase Psychosis. BMC Psychiatry 2016, 16, 60. [Google Scholar] [CrossRef]
- Dickerson, F.; Stallings, C.; Origoni, A.; Schroeder, J.; Katsafanas, E.; Schweinfurth, L.; Savage, C.; Khushalani, S.; Yolken, R. Inflammatory Markers in Recent Onset Psychosis and Chronic Schizophrenia. Schizophr. Bull. 2015, 42, sbv108. [Google Scholar] [CrossRef]
- Fan, X.; Goff, D.C.; Henderson, D.C. Inflammation and Schizophrenia. Expert Rev. Neurother. 2007, 7, 789–796. [Google Scholar] [CrossRef]
- Dickerson, F.; Stallings, C.; Origoni, A.; Boronow, J.; Yolken, R. C-Reactive Protein Is Associated with the Severity of Cognitive Impairment but Not of Psychiatric Symptoms in Individuals with Schizophrenia. Schizophr. Res. 2007, 93, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Boozalis, T.; Teixeira, A.L.; Cho, R.Y.-J.; Okusaga, O. C-Reactive Protein Correlates with Negative Symptoms in Patients with Schizophrenia. Front. Public Health 2018, 5, 360. [Google Scholar] [CrossRef]
- Barzilay, R.; Lobel, T.; Krivoy, A.; Shlosberg, D.; Weizman, A.; Katz, N. Elevated C-Reactive Protein Levels in Schizophrenia Inpatients Is Associated with Aggressive Behavior. Eur. Psychiatry 2016, 31, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Stańczykiewicz, B.; Kotowicz, K.; Rybakowski, J.K.; Samochowiec, J.; Frydecka, D. Cytokines and C-Reactive Protein Alterations with Respect to Cognitive Impairment in Schizophrenia and Bipolar Disorder: A Systematic Review. Schizophr. Res. 2018, 192, 16–29. [Google Scholar] [CrossRef]
- Dickerson, F.; Yolken, R. 12. C-Reactive Protein and Suicide Attempts in Schizophrenia. Schizophr. Bull. 2017, 43, S11. [Google Scholar] [CrossRef][Green Version]
- Gonzalez-Blanco, L.; Garcia-Portilla, M.P.; Garcia-Alvarez, L.; de la Fuente-Tomas, L.; Garcia, C.I.; Saiz, P.A.; Bobes, J. Elevated C-Reactive Protein as a Predictor of a Random One-Year Clinical Course in the First Ten Years of Schizophrenia. Psychiatry Res. 2018, 269, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, S.A.; Jones, P.B.; Nordstrom, T.; Timonen, M.; Mäki, P.; Miettunen, J.; Jääskeläinen, E.; Järvelin, M.-R.; Stochl, J.; Murray, G.K.; et al. Serum C-Reactive Protein in Adolescence and Risk of Schizophrenia in Adulthood: A Prospective Birth Cohort Study. Brain Behav. Immun. 2017, 59, 253–259. [Google Scholar] [CrossRef]
- Koskuvi, M.; Pörsti, E.; Hewitt, T.; Räsänen, N.; Wu, Y.-C.; Trontti, K.; McQuade, A.; Kalyanaraman, S.; Ojansuu, I.; Vaurio, O.; et al. Genetic Contribution to Microglial Activation in Schizophrenia. Mol. Psychiatry 2024, 29, 2622–2633. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, M.; Wu, X.; Zhang, X.; Lv, Z.; Zhao, K.; Zhang, J.; Su, Y.; Zhu, F. HERV-W Env Induces Neuron Pyroptosis via the NLRP3–CASP1–GSDMD Pathway in Recent-Onset Schizophrenia. Int. J. Mol. Sci. 2025, 26, 520. [Google Scholar] [CrossRef]
- Li, H.; Chen, W.; Gou, M.; Li, W.; Tong, J.; Zhou, Y.; Xie, T.; Yu, T.; Feng, W.; Li, Y.; et al. The Relationship between TLR4/NF-κB/IL-1β Signaling, Cognitive Impairment, and White-Matter Integrity in Patients with Stable Chronic Schizophrenia. Front. Psychiatry 2022, 13, 966657. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Long, Q.; Zhang, Y.; You, X.; Guo, Z.; Cao, X.; Yu, L.; Qin, F.; Teng, Z.; et al. Abnormal Expression of miR-3653-3p, Caspase 1, IL-1β in Peripheral Blood of Schizophrenia. BMC Psychiatry 2023, 23, 822. [Google Scholar] [CrossRef]
- Yan, F.; Meng, X.; Cheng, X.; Pei, W.; Chen, Y.; Chen, L.; Zheng, M.; Shi, L.; Zhu, C.; Zhang, X. Potential Role between Inflammatory Cytokines and Tie-2 Receptor Levels and Clinical Symptoms in Patients with First-Episode Schizophrenia. BMC Psychiatry 2023, 23, 538. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-H.; Kim, H.; Kim, J.-W.; Ryu, S.; Lee, J.-Y.; Kim, J.-M.; Shin, I.-S.; Kim, S.-W. Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia. J. Pers. Med. 2022, 12, 1137. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Z.; Zhang, Y.; Tang, P.; Zhuang, Y.; Liu, L.; Fan, H.; Yao, X.; Li, W.; Xia, L.; et al. Sex Differences in the Association between Metabolic Disorder and Inflammatory Cytokines in Han Chinese Patients with Chronic Schizophrenia. Front. Psychiatry 2025, 15, 1520279. [Google Scholar] [CrossRef] [PubMed]
- Ratke, I.; Torsvik, A.; Bartz-Johannessen, C.A.; Fathian, F.; Joa, I.; Reitan, S.M.K.; Løberg, E.M.; Rettenbacher, M.; Skrede, S.; Steen, V.M.; et al. Sex Differences in the Peripheral Levels of Cytokines during 12-Month Antipsychotic Treatment in a Drug-Naïve Schizophrenia Spectrum Cohort. Brain Behav. Immun. Health 2025, 44, 100959. [Google Scholar] [CrossRef]
- Çakici, N.; Sutterland, A.L.; Penninx, B.W.J.H.; Dalm, V.A.; De Haan, L.; Van Beveren, N.J.M. Altered Peripheral Blood Compounds in Drug-Naïve First-Episode Patients with Either Schizophrenia or Major Depressive Disorder: A Meta-Analysis. Brain Behav. Immun. 2020, 88, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Romeo, B.; Brunet-Lecomte, M.; Martelli, C.; Benyamina, A. Kinetics of Cytokine Levels during Antipsychotic Treatment in Schizophrenia: A Meta-Analysis. Int. J. Neuropsychopharmacol. 2018, 21, 828–836. [Google Scholar] [CrossRef]
- León-Ortiz, P.; Rivera-Chávez, L.F.; Torres-Ruíz, J.; Reyes-Madrigal, F.; Carrillo-Vázquez, D.; Moncada-Habib, T.; Cassiano-Quezada, F.; Cadenhead, K.S.; Gómez-Martín, D.; De La Fuente-Sandoval, C. Systemic Inflammation and Cortical Neurochemistry in Never-Medicated First Episode-Psychosis Individuals. Brain Behav. Immun. 2023, 111, 270–276. [Google Scholar] [CrossRef]
- Parksepp, M.; Haring, L.; Kilk, K.; Taalberg, E.; Kangro, R.; Zilmer, M.; Vasar, E. A Marked Low-Grade Inflammation and a Significant Deterioration in Metabolic Status in First-Episode Schizophrenia: A Five-Year Follow-Up Study. Metabolites 2022, 12, 983. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, W.-H.; Du, Y.; Li, X.-S.; Yu, Y.; Wang, H.; Cheng, Y. Altered Peripheral Immune Profiles in First-Episode, Drug-Free Patients With Schizophrenia: Response to Antipsychotic Medications. Front. Med. 2021, 8, 757655. [Google Scholar] [CrossRef]
- Shangguan, F.; Chen, Z.; Lv, Y.; Zhang, X.-Y. Interaction between High Interleukin-2 and High Cortisol Levels Is Associated with Psychopathology in Patients with Chronic Schizophrenia. J. Psychiatr. Res. 2023, 165, 255–263. [Google Scholar] [CrossRef]
- Wu, Z.W.; Yu, H.H.; Wang, X.; Guan, H.Y.; Xiu, M.H.; Zhang, X.Y. Interrelationships Between Oxidative Stress, Cytokines, and Psychotic Symptoms and Executive Functions in Patients With Chronic Schizophrenia. Psychosom. Med. 2021, 83, 485–491. [Google Scholar] [CrossRef]
- Ozdilli, K.; Mervan Aytac, H.; Ceren Tuncel, F.; Oyaci, Y.; Pehlivan, M.; Pehlivan, S. Evaluation of Gene-Gene Interaction between the Interleukin (IL)-2 and IL-2RA Gene Polymorphisms in Schizophrenia Patients in the Turkish Population. Neurosci. J. 2024, 29, 51–56. [Google Scholar]
- Guo, X.; Kong, L.; Wen, Y.; Chen, L.; Hu, S. Impact of Second-Generation Antipsychotics Monotherapy or Combined Therapy in Cytokine, Lymphocyte Subtype, and Thyroid Antibodies for Schizophrenia: A Retrospective Study. BMC Psychiatry 2024, 24, 695. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhu, M.; Li, Y.; Liu, N.; Wang, X.; Yang, B.; Li, S.; Li, Z. Association of Cytokines Levels, Psychopathology and Cognition among CR-TRS Patients with Metabolic Syndrome. Schizophrenia 2024, 10, 47. [Google Scholar] [CrossRef]
- Lv, M.; Wang, X.; He, X.; Wang, Z.; Li, X.; Tan, Y.; Zhang, X.Y. Obesity, Cytokines and Psychopathology in Patients with Chronic Schizophrenia. Front. Psychiatry 2025, 16, 1574041. [Google Scholar] [CrossRef] [PubMed]
- González-Blanco, L.; García-Portilla, M.P.; García-Álvarez, L.; De La Fuente-Tomás, L.; Iglesias García, C.; Sáiz, P.A.; Rodríguez-González, S.; Coto-Montes, A.; Bobes, J. ¿Pueden ser la interleucina-2 y la interleucina-1β biomarcadores específicos de la sintomatología negativa en la esquizofrenia? Rev. Psiquiatr. Salud Ment. 2019, 12, 9–16. [Google Scholar] [CrossRef]
- Larsen, J.B.; Reitan, S.K.; Løberg, E.-M.; Rettenbacher, M.; Bruserud, Ø.; Larsen, T.K.; Anda, L.; Bartz-Johannessen, C.; Johnsen, E.; Kroken, R.A. The Association between Cytokines and Psychomotor Speed in a Spectrum of Psychotic Disorders: A Longitudinal Study. Brain Behav. Immun. Health 2021, 18, 100392. [Google Scholar] [CrossRef] [PubMed]
- Fenn-Moltu, S.; Deakin, B.; Drake, R.; Howes, O.D.; Lawrie, S.M.; Lewis, S.; Nikkheslat, N.; Walters, J.T.R.; MacCabe, J.H.; Mondelli, V.; et al. The Association between Peripheral Inflammation, Brain Glutamate and Antipsychotic Response in Schizophrenia: Data from the STRATA Collaboration. Brain Behav. Immun. 2023, 111, 343–351. [Google Scholar] [CrossRef]
- Clark, D.N.; Brown, S.V.; Xu, L.; Lee, R.-L.; Ragusa, J.V.; Xu, Z.; Milner, J.D.; Filiano, A.J. Prolonged STAT1 Signaling in Neurons Causes Hyperactive Behavior. Brain Behav. Immun. 2025, 124, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Li, W.; Yan, Q.; Zhou, P.; Xia, Y.; Yao, W.; Zhu, F. HERV-W ENV Induces Innate Immune Activation and Neuronal Apoptosis via Linc01930/cGAS Axis in Recent-Onset Schizophrenia. Int. J. Mol. Sci. 2023, 24, 3000. [Google Scholar] [CrossRef]
- Ouyang, L.; Li, D.; Li, Z.; Ma, X.; Yuan, L.; Fan, L.; Yang, Z.; Zhang, Z.; Li, C.; He, Y.; et al. IL-17 and TNF-β: Predictive Biomarkers for Transition to Psychosis in Ultra-High Risk Individuals. Front. Psychiatry 2022, 13, 1072380. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.E.; Walker, A.K.; O’Donnell, M.; Galletly, C.; Lloyd, A.R.; Liu, D.; Weickert, C.S.; Weickert, T.W. Peripheral NF-κB Dysregulation in People with Schizophrenia Drives Inflammation: Putative Anti-Inflammatory Functions of NF-κB Kinases. Transl. Psychiatry 2022, 12, 21. [Google Scholar] [CrossRef]
- Hidese, S. Search for Cerebrospinal Fluid Biomarkers in Patients with Major Psychiatric Disorders: Multiplex Immunoassay Findings and Proximity Extension Assay Prospects. Neuropsychopharmacol. Rep. 2024, 44, 314–320. [Google Scholar] [CrossRef]
- Li, M.; Luo, G.; Qiu, Y.; Zhang, X.; Sun, X.; Li, Y.; Zhao, Y.; Sun, W.; Yang, S.; Li, J. Negative Symptoms and Neurocognition in Drug-Naïve Schizophrenia: Moderating Role of Plasma Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Interferon-Gamma (INF-γ). Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1071–1081. [Google Scholar] [CrossRef]
- Sun, X.; Luo, G.; Li, X.; Wang, J.; Qiu, Y.; Li, M.; Li, J. The Relationship between Inflammatory Markers, Clinical Characteristics, and Cognitive Performance in Drug-Naïve Patients with Schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Lemos, H.; Schooler, N.R.; Goff, D.C.; Kopelowicz, A.; Lauriello, J.; Manschreck, T.; Mendelowitz, A.; Miller, D.D.; Severe, J.B.; et al. Longitudinal Study of Inflammation and Relapse in Schizophrenia. Schizophr. Res. 2023, 252, 88–95. [Google Scholar] [CrossRef]
- He, X.; Ma, Q.; Fan, Y.; Zhao, B.; Wang, W.; Zhu, F.; Ma, X.; Zhou, L. The Role of Cytokines in Predicting the Efficacy of Acute Stage Treatment in Patients with Schizophrenia. Neuropsychiatr. Dis. Treat. 2020, 16, 191–199. [Google Scholar] [CrossRef]
- Jeppesen, R.; Borbye-Lorenzen, N.; Christensen, R.H.B.; Sørensen, N.V.; Köhler-Forsberg, O.; Skogstrand, K.; Benros, M.E. Levels of Cytokines in the Cerebrospinal Fluid of Patients with Psychotic Disorders Compared to Individually Matched Healthy Controls. Brain Behav. Immun. 2024, 117, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Kosger, F.; Yigitaslan, S.; Essizoglu, A.; Gulec, G.; Dag Karatas, R.; Sevil Degirmenci, S. Inflammation and Oxidative Stress in Deficit Schizophrenia. Arch. Neuropsychiatry 2020, 57, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Corsi-Zuelli, F.; Quattrone, D.; Ragazzi, T.C.C.; Loureiro, C.M.; Shuhama, R.; Menezes, P.R.; Louzada-Junior, P.; Del-Ben, C.M. Transdiagnostic Dimensions of Symptoms and Experiences Associated with Immune Proteins in the Continuity of Psychosis. Psychol. Med. 2024, 54, 2099–2111. [Google Scholar] [CrossRef]
- Enache, D.; Nikkheslat, N.; Fathalla, D.; Morgan, B.P.; Lewis, S.; Drake, R.; Deakin, B.; Walters, J.; Lawrie, S.M.; Egerton, A.; et al. Peripheral Immune Markers and Antipsychotic Non-Response in Psychosis. Schizophr. Res. 2021, 230, 1–8. [Google Scholar] [CrossRef]
- Samoud, S.; Mtiraoui, A.; Zamali, I.; Galai, Y.; Hannachi, N.; Manoubi, W.; Nakhli, J.; Louzir, H.; Kissi, Y.E. Comparative Analysis of Serum BAFF and IL-17 Levels Pre- and Post-Antipsychotic Treatment for Acute Schizophrenia. Int. J. Mol. Sci. 2025, 26, 385. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, H.; Yang, G.; Yang, Y.; Li, W.; Song, M.; Shao, M.; Su, X.; Lv, L. Associations between Expression of Indoleamine 2, 3-Dioxygenase Enzyme and Inflammatory Cytokines in Patients with First-Episode Drug-Naive Schizophrenia. Transl. Psychiatry 2021, 11, 595. [Google Scholar] [CrossRef]
- Chen, D.; Li, H.; Zhao, Q.; Song, J.; Lin, C.; Yu, J. Effect of Risperidone Treatment on Insulin-like Growth Factor-1 and Interleukin-17 in Drug Naïve First-Episode Schizophrenia. Psychiatry Res. 2021, 297, 113717. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, Q.; Yao, Y.; Song, S.; Zhou, X.; Liu, H.; Zhang, K. Role of HOMA-IR and IL-6 as Screening Markers for the Metabolic Syndrome in Patients with Chronic Schizophrenia: A Psychiatric Hospital-Based Cross-Sectional Study. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1063–1070. [Google Scholar] [CrossRef]
- Skorobogatov, K.; De Picker, L.; Wu, C.-L.; Foiselle, M.; Richard, J.-R.; Boukouaci, W.; Bouassida, J.; Laukens, K.; Meysman, P.; Le Corvoisier, P.; et al. Immune-Based Machine Learning Prediction of Diagnosis and Illness State in Schizophrenia and Bipolar Disorder. Brain Behav. Immun. 2024, 122, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.-C.; Chu, H.-T.; Tsai, C.-K.; Chang, H.-A.; Yang, F.-C.; Huang, S.-Y.; Liang, C.-S. Distinct Inflammation Biomarkers in Healthy Individuals and Patients with Schizophrenia: A Reliability Testing of Multiplex Cytokine Immunoassay by Bland-Altman Analysis. Psychiatry Investig. 2019, 16, 607–614. [Google Scholar] [CrossRef]
- Cyran, A.; Pawlak, E.; Piotrowski, P.; Bielawski, T.; Samochowiec, J.; Tyburski, E.; Chęć, M.; Rembacz, K.; Łaczmański, Ł.; Bieniek, W.; et al. The Deficit Subtype of Schizophrenia Is Associated with a Pro-Inflammatory Phenotype but Not with Altered Levels of Zonulin: Findings from a Case-Control Study. Psychoneuroendocrinology 2023, 153, 106109. [Google Scholar] [CrossRef] [PubMed]
- Chenniappan, R.; Nandeesha, H.; Kattimani, S.; Nanjaiah, N.D. Interleukin-17 and Interleukin-10 Association with Disease Progression in Schizophrenia. Ann. Neurosci. 2020, 27, 24–28. [Google Scholar] [CrossRef]
- Zheng, Y.; Cai, X.; Wang, D.; Chen, X.; Wang, T.; Xie, Y.; Li, H.; Wang, T.; He, Y.; Li, J.; et al. Exploring the Relationship between Lipid Metabolism and Cognition in Individuals Living with Stable-Phase Schizophrenia: A Small Cross-Sectional Study Using Olink Proteomics Analysis. BMC Psychiatry 2024, 24, 593. [Google Scholar] [CrossRef]
- Borovcanin, M.M.; Minic Janicijevic, S.; Jovanovic, I.P.; Gajovic, N.M.; Jurisevic, M.M.; Arsenijevic, N.N. Type 17 Immune Response Facilitates Progression of Inflammation and Correlates with Cognition in Stable Schizophrenia. Diagnostics 2020, 10, 926. [Google Scholar] [CrossRef]
- Feingold, K.R. Obesity and Dyslipidemia. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Nguyen, J.C.D.; Killcross, A.S.; Jenkins, T.A. Obesity and Cognitive Decline: Role of Inflammation and Vascular Changes. Front. Neurosci. 2014, 8, 375. [Google Scholar] [CrossRef]
- Zhilyaeva, T.V.; Rukavishnikov, G.V.; Manakova, E.A.; Mazo, G.E. Serum Interleukin-6 in Schizophrenia: Associations with Clinical and Sociodemographic Characteristics. Consort. Psychiatr. 2023, 4, 5–16. [Google Scholar] [CrossRef]
- Chen, P.; Yang, H.-D.; Wang, J.-J.; Zhu, Z.-H.; Zhao, H.-M.; Yin, X.-Y.; Cai, Y.; Zhu, H.-L.; Fu, J.-L.; Zhang, X.-Z.; et al. Association of Serum Interleukin-6 with Negative Symptoms in Stable Early-Onset Schizophrenia. World J. Psychiatry 2024, 14, 794–803. [Google Scholar] [CrossRef] [PubMed]
- King, S.; Holleran, L.; Mothersill, D.; Patlola, S.; Rokita, K.; McManus, R.; Kenyon, M.; McDonald, C.; Hallahan, B.; Corvin, A.; et al. Early Life Adversity, Functional Connectivity and Cognitive Performance in Schizophrenia: The Mediating Role of IL-6. Brain Behav. Immun. 2021, 98, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Blanco, L.; Garcia-Portilla, M.P.; Dal Santo, F.; Garcia-Alvarez, L.; De La Fuente-Tomas, L.; Menendez-Miranda, I.; Bobes-Bascaran, T.; Saiz, P.A.; Bobes, J. Predicting Real-World Functioning in Outpatients with Schizophrenia: Role of Inflammation and Psychopathology. Psychiatry Res. 2019, 280, 112509. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Noghabi, P.; Shahini, N.; Salimi, Z.; Ghorbani, S.; Bagheri, Y.; Derakhshanpour, F. Elevated Serum IL-17 A and CCL20 Levels as Potential Biomarkers in Major Psychotic Disorders: A Case-Control Study. BMC Psychiatry 2024, 24, 677. [Google Scholar] [CrossRef]
- Guo, T.; Chen, L.; Luan, L.; Yang, M.; Zhang, X.; Yang, H. Variations in Inflammatory Regulators in Male Patients with Chronic Schizophrenia Associated with Psychopathology and Cognitive Deficits. BMC Psychiatry 2024, 24, 811. [Google Scholar] [CrossRef]
- Maes, M.; Sirivichayakul, S.; Matsumoto, A.K.; Maes, A.; Michelin, A.P.; De Oliveira Semeão, L.; De Lima Pedrão, J.V.; Moreira, E.G.; Barbosa, D.S.; Geffard, M.; et al. Increased Levels of Plasma Tumor Necrosis Factor-α Mediate Schizophrenia Symptom Dimensions and Neurocognitive Impairments and Are Inversely Associated with Natural IgM Directed to Malondialdehyde and Paraoxonase 1 Activity. Mol. Neurobiol. 2020, 57, 2333–2345. [Google Scholar] [CrossRef]
- Şimşek, Ş.; Yıldırım, V.; Çim, A.; Kaya, S. Serum IL-4 and IL-10 Levels Correlate with the Symptoms of the Drug-Naive Adolescents with First Episode, Early Onset Schizophrenia. J. Child Adolesc. Psychopharmacol. 2016, 26, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gao, Y.; Ma, Q.; Zhao, B.; He, X.; Zhu, F.; Wang, W.; Ma, X.; Li, Y. Grey Matter Volume and Its Association with Cognitive Impairment and Peripheral Cytokines in Excited Individuals with Schizophrenia. Brain Imaging Behav. 2022, 16, 2618–2626. [Google Scholar] [CrossRef]
- Ntouros, E.; Karanikas, E.; Floros, G.; Andreou, C.; Tsoura, A.; Garyfallos, G.; Bozikas, V.P. Social Cognition in the Course of Psychosis and Its Correlation with Biomarkers in a Male Cohort. Cognit. Neuropsychiatry 2018, 23, 103–115. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; De Campos-Carli, S.M.; Ferretjans, R.; Teixeira-Carvalho, A.; Martins-Filho, O.A.; Teixeira, A.L.; Salgado, J.V. The Association of Cognitive Performance and IL-6 Levels in Schizophrenia Is Influenced by Age and Antipsychotic Treatment. Nord. J. Psychiatry 2020, 74, 187–193. [Google Scholar] [CrossRef]
- Dahan, S.; Bragazzi, N.L.; Yogev, A.; Bar-Gad, M.; Barak, V.; Amital, H.; Amital, D. The Relationship between Serum Cytokine Levels and Degree of Psychosis in Patients with Schizophrenia. Psychiatry Res. 2018, 268, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Malashenkova, I.K.; Ushakov, V.L.; Zakharova, N.V.; Krynskiy, S.A.; Ogurtsov, D.P.; Hailov, N.A.; Chekulaeva, E.I.; Ratushnyy, A.Y.; Kartashov, S.I.; Kostyuk, G.P.; et al. Neuro-Immune Aspects of Schizophrenia with Severe Negative Symptoms: New Diagnostic Markers of Disease Phenotype. Sovrem. Tehnol. V Med. 2021, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Xiu, M.H.; Yang, G.G.; Tan, Y.L.; Chen, D.C.; Tan, S.P.; Wang, Z.R.; Yang, F.D.; Okusaga, O.; Soares, J.C.; Zhang, X.Y. Decreased Interleukin-10 Serum Levels in First-Episode Drug-Naïve Schizophrenia: Relationship to Psychopathology. Schizophr. Res. 2014, 156, 9–14. [Google Scholar] [CrossRef]
- Pantovic-Stefanovic, M.; Velimirovic, M.; Jurisic, V.; Puric, M.; Gostiljac, M.; Dodic, S.; Minic, I.; Nesic, M.; Nikolic, T.; Petronijevic, N.; et al. Exploring the Role of TNF-α, TGF-β, and IL-6 Serum Levels in Categorical and Noncategorical Models of Mood and Psychosis. Sci. Rep. 2024, 14, 23117. [Google Scholar] [CrossRef]
- Nani, J.V.; Almeida, P.G.C.; Noto, C.; Bressan, R.A.; Brietzke, E.; Hayashi, M.A.F. Unraveiling the Correlation among Neurodevelopmental and Inflammatory Biomarkers in Patients with Chronic Schizophrenia. Nord. J. Psychiatry 2022, 76, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Minic Janicijevic, S.; Jovanovic, I.P.; Gajovic, N.M.; Jurisevic, M.M.; Debnath, M.; Arsenijevic, N.N.; Borovcanin, M.M. Galectin-3 Mediated Risk of Inflammation in Stable Schizophrenia, with Only Possible Secondary Consequences for Cognition. World J. Psychiatry 2022, 12, 1183–1193. [Google Scholar] [CrossRef]
- Schmitt Junior, A.A.; Primo De Carvalho Alves, L.; Padilha, B.L.; Da Rocha, N.S. Serum Cytokine Variations among Inpatients with Major Depression, Bipolar Disorder, and Schizophrenia versus Healthy Controls: A Prospective ‘True-to-Life’ Study. Ther. Adv. Psychopharmacol. 2023, 13, 20451253221135463. [Google Scholar] [CrossRef]
- Carril Pardo, C.; Oyarce Merino, K.; Vera-Montecinos, A. Neuroinflammatory Loop in Schizophrenia, Is There a Relationship with Symptoms or Cognition Decline? Int. J. Mol. Sci. 2025, 26, 310. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Y.; Chen, H.-Y.; Lin, J.-J.; Lu, M.-K.; Tan, H.-P.; Jang, F.-L.; Lin, S.-H. Alterations of Plasma Cytokine Biomarkers for Identifying Age at Onset of Schizophrenia with Neurological Soft Signs. Int. J. Med. Sci. 2020, 17, 255–262. [Google Scholar] [CrossRef]
- Hoprekstad, G.E.; Kjelby, E.; Gjestad, R.; Fathian, F.; Larsen, T.K.; Reitan, S.K.; Rettenbacher, M.; Torsvik, A.; Skrede, S.; Johnsen, E.; et al. Depression Trajectories and Cytokines in Schizophrenia Spectrum Disorders—A Longitudinal Observational Study. Schizophr. Res. 2023, 252, 77–87. [Google Scholar] [CrossRef]
- Hernandez, J.D.; Li, T.; Ghannam, H.; Rau, C.M.; Masuda, M.Y.; Madura, J.A.; Jacobsen, E.A.; De Filippis, E. Linking Adipose Tissue Eosinophils, IL-4, and Leptin in Human Obesity and Insulin Resistance. JCI Insight 2024, 9, e170772. [Google Scholar] [CrossRef]
- Corsi-Zuelli, F.; Loureiro, C.M.; Shuhama, R.; Fachim, H.A.; Menezes, P.R.; Louzada-Junior, P.; Mondelli, V.; Del-Ben, C.M. Cytokine Profile in First-Episode Psychosis, Unaffected Siblings and Community-Based Controls: The Effects of Familial Liability and Childhood Maltreatment. Psychol. Med. 2020, 50, 1139–1147. [Google Scholar] [CrossRef]
- Michalczyk, A.; Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rudkowski, K.; Kucharska-Mazur, J.; Mak, M.; Rek-Owodziń, K.; Plichta, P.; Bielecki, M.; et al. Serum Inflammatory Markers and Their Associations with the Integrity of the Cingulum Bundle in Schizophrenia, from Prodromal Stages to Chronic Psychosis. J. Clin. Med. 2022, 11, 6352. [Google Scholar] [CrossRef] [PubMed]
- Arabska, J.; Wysokiński, A.; Brzezińska-Błaszczyk, E.; Kozłowska, E. Serum Levels and in Vitro CX3CL1 (Fractalkine), CXCL8, and IL-10 Synthesis in Phytohemaglutinin-Stimulated and Non-Stimulated Peripheral Blood Mononuclear Cells in Subjects with Schizophrenia. Front. Psychiatry 2022, 13, 845136. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Massa, N.; Pearce, B.D.; Wommack, E.C.; Alrohaibani, A.; Goel, N.; Cuthbert, B.; Fargotstein, M.; Felger, J.C.; Haroon, E.; et al. Inflammatory Markers Are Associated with Psychomotor Slowing in Patients with Schizophrenia Compared to Healthy Controls. Npj Schizophr. 2020, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Almulla, A.F.; Al-Rawi, K.F.; Maes, M.; Al-Hakeim, H.K. In Schizophrenia, Immune-Inflammatory Pathways Are Strongly Associated with Depressive and Anxiety Symptoms, Which Are Part of a Latent Trait Which Comprises Neurocognitive Impairments and Schizophrenia Symptoms. J. Affect. Disord. 2021, 287, 316–326. [Google Scholar] [CrossRef]
- Golimbet, V.; Lezheiko, T.; Mikhailova, V.; Korovaitseva, G.; Kolesina, N.; Plakunova, V.; Kostyuk, G. A Study of the Association between Polymorphisms in the Genes for Interleukins IL-6 and IL-10 and Negative Symptoms Subdomains in Schizophrenia. Indian J. Psychiatry 2022, 64, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, H.; Wang, D.; Wei, G.; Zhou, H.; Wang, L.; Zhou, Y.; Zhang, X. The Interactive Effect of Genetic Polymorphisms of IL-10 and COMT on Cognitive Function in Schizophrenia. J. Psychiatr. Res. 2021, 136, 501–507. [Google Scholar] [CrossRef]
- Năstase, M.G.; Vlaicu, I.; Trifu, S.C. Genetic Polymorphism and Neuroanatomical Changes in Schizophrenia. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2022, 63, 307–322. [Google Scholar] [CrossRef]
- Zakowicz, P.; Pawlak, J.; Kapelski, P.; Wiłkość-Dębczyńska, M.; Szałkowska, A.; Twarowska-Hauser, J.; Rybakowski, J.; Skibińska, M. Genetic Association Study Reveals Impact of Interleukin 10 Polymorphisms on Cognitive Functions in Schizophrenia. Behav. Brain Res. 2022, 419, 113706. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-Y.; Choo, J.M.; Lee, Y.-J.; Lee, Y.; Cho, C.-H.; Kim, S.-H.; Lee, H.-J. Association between the IL10 Rs1800896 Polymorphism and Tardive Dyskinesia in Schizophrenia. Psychiatry Investig. 2020, 17, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, J.K.; Olesen, R.H.; Vendelbo, J.; Hyde, T.M.; Kleinman, J.E.; Bibby, B.M.; Brock, B.; Rungby, J.; Larsen, A. High BMI Levels Associate with Reduced mRNA Expression of IL10 and Increased mRNA Expression of iNOS (NOS2) in Human Frontal Cortex. Transl. Psychiatry 2017, 7, e1044. [Google Scholar] [CrossRef]
- Fang, X.; Yu, L.; Wang, D.; Chen, Y.; Wang, Y.; Wu, Z.; Liu, R.; Ren, J.; Tang, W.; Zhang, C. Association Between SIRT1, Cytokines, and Metabolic Syndrome in Schizophrenia Patients with Olanzapine or Clozapine Monotherapy. Front. Psychiatry 2020, 11, 602121. [Google Scholar] [CrossRef]
- Pandey, G.N.; Rizavi, H.S.; Zhang, H.; Ren, X. Abnormal Gene and Protein Expression of Inflammatory Cytokines in the Postmortem Brain of Schizophrenia Patients. Schizophr. Res. 2018, 192, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, Y.; Ju, P.; Gao, J.; Zhang, L.; Li, J.; Wang, K.; Zhang, J.; Li, C.; Xia, Q.; et al. Network Association of Biochemical and Inflammatory Abnormalities with Psychiatric Symptoms in First-Episode Schizophrenia Patients. Front. Psychiatry 2022, 13, 834539. [Google Scholar] [CrossRef]
- Noto, M.N.; Maes, M.; Nunes, S.O.V.; Ota, V.K.; Rossaneis, A.C.; Verri, W.A.; Cordeiro, Q.; Belangero, S.I.; Gadelha, A.; Bressan, R.A.; et al. Activation of the Immune-Inflammatory Response System and the Compensatory Immune-Regulatory System in Antipsychotic Naive First Episode Psychosis. Eur. Neuropsychopharmacol. 2019, 29, 416–431. [Google Scholar] [CrossRef]
- Amoli, M.M.; Khatami, F.; Arzaghi, S.M.; Enayati, S.; Nejatisafa, A.-A. Over-Expression of TGF-Β1 Gene in Medication Free Schizophrenia. Psychoneuroendocrinology 2019, 99, 265–270. [Google Scholar] [CrossRef]
- Pan, S.; Zhou, Y.; Yan, L.; Xuan, F.; Tong, J.; Li, Y.; Huang, J.; Feng, W.; Chen, S.; Cui, Y.; et al. TGF-Β1 Is Associated with Deficits in Cognition and Cerebral Cortical Thickness in First-Episode Schizophrenia. J. Psychiatry Neurosci. 2022, 47, E86–E98. [Google Scholar] [CrossRef] [PubMed]
- Kathuria, A.; Lopez-Lengowski, K.; Roffman, J.L.; Karmacharya, R. Distinct Effects of Interleukin-6 and Interferon-γ on Differentiating Human Cortical Neurons. Brain Behav. Immun. 2022, 103, 97–108. [Google Scholar] [CrossRef]
- Karampas, A.; Leontaritis, G.; Markozannes, G.; Asimakopoulos, A.; Archimandriti, D.T.; Spyrou, P.; Georgiou, G.; Plakoutsis, M.; Kotsis, K.; Voulgari, P.V.; et al. Adiponectin, Resistin, Interleukin-4 and TGF-Β2 Levels in Treatment Resistant Schizophrenia Patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2025, 136, 111221. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, C.; Huang, L.; Luo, C.; Ju, P.; Chen, J. Identification of Key Modules in Metabolic Syndrome Induced by Second-Generation Antipsychotics Based on Co-Expression Network Analysis. Comput. Struct. Biotechnol. J. 2024, 23, 723–731. [Google Scholar] [CrossRef]
- Bergin, R.; Kinlen, D.; Kedia-Mehta, N.; Hayes, E.; Cassidy, F.C.; Cody, D.; O’Shea, D.; Hogan, A.E. Mucosal-Associated Invariant T Cells Are Associated with Insulin Resistance in Childhood Obesity, and Disrupt Insulin Signalling via IL-17. Diabetologia 2022, 65, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Mangodt, T.C.; Van Herck, M.A.; Nullens, S.; Ramet, J.; De Dooy, J.J.; Jorens, P.G.; De Winter, B.Y. The Role of Th17 and Treg Responses in the Pathogenesis of RSV Infection. Pediatr. Res. 2015, 78, 483–491. [Google Scholar] [CrossRef]
- Matia-Garcia, I.; Vadillo, E.; Pelayo, R.; Muñoz-Valle, J.F.; García-Chagollán, M.; Loaeza-Loaeza, J.; Vences-Velázquez, A.; Salgado-Goytia, L.; García-Arellano, S.; Parra-Rojas, I. Th1/Th2 Balance in Young Subjects: Relationship with Cytokine Levels and Metabolic Profile. J. Inflamm. Res. 2021, 14, 6587–6600. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic Syndrome in Psychiatric Patients: Overview, Mechanisms, and Implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Rarinca, V.; Vasile, A.; Visternicu, M.; Burlui, V.; Halitchi, G.; Ciobica, A.; Singeap, A.-M.; Dobrin, R.; Burlui, E.; Maftei, L.; et al. Relevance of Diet in Schizophrenia: A Review Focusing on Prenatal Nutritional Deficiency, Obesity, Oxidative Stress and Inflammation. Front. Nutr. 2024, 11, 1497569. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Cheng, Y.; Liu, X.; Xu, X.; Wu, L.; Shao, L.; Zhu, Z.; Ding, W.; Song, Q.; Zhao, L.; et al. Schizophrenia-Associated Alterations in Fecal Mycobiota and Systemic Immune Dysfunction: A Cohort Study of Elderly Chinese Patients. Front. Immunol. 2025, 16, 1607739. [Google Scholar] [CrossRef]
- Van Nimwegen, L.J.M.; Storosum, J.G.; Blumer, R.M.E.; Allick, G.; Venema, H.W.; De Haan, L.; Becker, H.; Van Amelsvoort, T.; Ackermans, M.T.; Fliers, E.; et al. Hepatic Insulin Resistance in Antipsychotic Naive Schizophrenic Patients: Stable Isotope Studies of Glucose Metabolism. J. Clin. Endocrinol. Metab. 2008, 93, 572–577. [Google Scholar] [CrossRef]
- Klemettilä, J.-P.; Kampman, O.; Seppälä, N.; Viikki, M.; Hämäläinen, M.; Moilanen, E.; Leinonen, E. Cytokine and Adipokine Alterations in Patients with Schizophrenia Treated with Clozapine. Psychiatry Res. 2014, 218, 277–283. [Google Scholar] [CrossRef]
- Chase, K.A.; Rosen, C.; Gin, H.; Bjorkquist, O.; Feiner, B.; Marvin, R.; Conrin, S.; Sharma, R.P. Metabolic and Inflammatory Genes in Schizophrenia. Psychiatry Res. 2015, 225, 208–211. [Google Scholar] [CrossRef]
- Soldevila-Matías, P.; Sánchez-Ortí, J.V.; Correa-Ghisays, P.; Balanzá-Martínez, V.; Selva-Vera, G.; Sanchis-Sanchis, R.; Iglesias-García, N.; Monfort-Pañego, M.; Tomás-Martínez, P.; Victor, V.M.; et al. Exercise as a Promoter of Neurocognitive Improvement in People with Psychiatric Disorders and Comorbid Obesity: A Randomized Controlled Trial. Psychiatry Res. 2024, 342, 116226. [Google Scholar] [CrossRef]
- He, J.; Wei, Y.; Li, J.; Tang, Y.; Liu, J.; He, Z.; Zhou, R.; He, X.; Ren, H.; Liao, Y.; et al. Sex Differences in the Association of Treatment-Resistant Schizophrenia and Serum Interleukin-6 Levels. BMC Psychiatry 2023, 23, 470. [Google Scholar] [CrossRef] [PubMed]
- Mednova, I.A.; Boiko, A.S.; Kornetova, E.G.; Parshukova, D.A.; Semke, A.V.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Adipocytokines and Metabolic Syndrome in Patients with Schizophrenia. Metabolites 2020, 10, 410. [Google Scholar] [CrossRef]
- Arabska, J.; Strzelecki, D.; Kozłowska, E.; Brzezińska-Błaszczyk, E.; Wysokiński, A. The Association between Serum Levels of TNF-α and IL-6 in Schizophrenic Patients and Their Metabolic Status—A Case Control Study. J. Neuroimmunol. 2020, 347, 577344. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.; Fransen, A.; Janssen, J.; Van Os, J.; Drukker, M. Almost All Antipsychotics Result in Weight Gain: A Meta-Analysis. PLoS ONE 2014, 9, e94112. [Google Scholar] [CrossRef]
- Barton, B.B.; Segger, F.; Fischer, K.; Obermeier, M.; Musil, R. Update on Weight-Gain Caused by Antipsychotics: A Systematic Review and Meta-Analysis. Expert Opin. Drug Saf. 2020, 19, 295–314. [Google Scholar] [CrossRef] [PubMed]
- Fountaine, R.J.; Taylor, A.E.; Mancuso, J.P.; Greenway, F.L.; Byerley, L.O.; Smith, S.R.; Most, M.M.; Fryburg, D.A. Increased Food Intake and Energy Expenditure Following Administration of Olanzapine to Healthy Men. Obesity 2010, 18, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Fehsel, K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024, 12, 2294. [Google Scholar] [CrossRef]
- Liang, J.; Cai, Y.; Xue, X.; Li, X.; Li, Z.; Xu, C.; Xie, G.; Yu, Y. Does Schizophrenia Itself Cause Obesity? Front. Psychiatry 2022, 13, 934384. [Google Scholar] [CrossRef] [PubMed]
- Grimm, O.; Kaiser, S.; Plichta, M.M.; Tobler, P.N. Altered Reward Anticipation: Potential Explanation for Weight Gain in Schizophrenia? Neurosci. Biobehav. Rev. 2017, 75, 91–103. [Google Scholar] [CrossRef]
- Agarwal, S.M.; Stogios, N.; Ahsan, Z.A.; Lockwood, J.T.; Duncan, M.J.; Takeuchi, H.; Cohn, T.; Taylor, V.H.; Remington, G.; Faulkner, G.E.J.; et al. Pharmacological Interventions for Prevention of Weight Gain in People with Schizophrenia. Cochrane Database Syst. Rev. 2022, 2023, CD013337. [Google Scholar] [CrossRef]
- Hong, J.; Bang, M. Anti-Inflammatory Strategies for Schizophrenia: A Review of Evidence for Therapeutic Applications and Drug Repurposing. Clin. Psychopharmacol. Neurosci. 2020, 18, 10–24. [Google Scholar] [CrossRef]
- Prabakaran, S.; Swatton, J.E.; Ryan, M.M.; Huffaker, S.J.; Huang, J.-J.; Griffin, J.L.; Wayland, M.; Freeman, T.; Dudbridge, F.; Lilley, K.S.; et al. Mitochondrial Dysfunction in Schizophrenia: Evidence for Compromised Brain Metabolism and Oxidative Stress. Mol. Psychiatry 2004, 9, 684–697. [Google Scholar] [CrossRef]
- Laan, W.; Grobbee, D.E.; Selten, J.-P.; Heijnen, C.J.; Kahn, R.S.; Burger, H. Adjuvant Aspirin Therapy Reduces Symptoms of Schizophrenia Spectrum Disorders: Results From a Randomized, Double-Blind, Placebo-Controlled Trial. J. Clin. Psychiatry 2010, 71, 520–527. [Google Scholar] [CrossRef]
- Attari, A.; Mojdeh, A.; Khalifeh Soltani, F.A.S.; Najarzadegan, M.R. Aspirin Inclusion in Antipsychotic Treatment on Severity of Symptoms in Schizophrenia: A Randimized Clinical Trial. Iran. J. Psychiatry Behav. Sci. 2016, 11, e5848. [Google Scholar] [CrossRef]
- Schmidt, L.; Phelps, E.; Friedel, J.; Shokraneh, F. Acetylsalicylic Acid (Aspirin) for Schizophrenia. Cochrane Database Syst. Rev. 2019, 2019, CD012116. [Google Scholar] [CrossRef]
- Weiser, M.; Zamora, D.; Levi, L.; Nastas, I.; Gonen, I.; Radu, P.; Matei, V.; Nacu, A.; Boronin, L.; Davidson, M.; et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr. Bull. 2021, 47, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Cherneva, D.I.; Kehayova, G.; Dimitrova, S.; Dragomanova, S. The Central Nervous System Modulatory Activities of N-Acetylcysteine: A Synthesis of Two Decades of Evidence. Curr. Issues Mol. Biol. 2025, 47, 710. [Google Scholar] [CrossRef]
- Kerksick, C.; Willoughby, D. The Antioxidant Role of Glutathione and N-Acetyl-Cysteine Supplements and Exercise-Induced Oxidative Stress. J. Int. Soc. Sports Nutr. 2005, 2, 38. [Google Scholar] [CrossRef]
- Yolland, C.O.; Hanratty, D.; Neill, E.; Rossell, S.L.; Berk, M.; Dean, O.M.; Castle, D.J.; Tan, E.J.; Phillipou, A.; Harris, A.W.; et al. Meta-Analysis of Randomised Controlled Trials with N -Acetylcysteine in the Treatment of Schizophrenia. Aust. N. Z. J. Psychiatry 2020, 54, 453–466. [Google Scholar] [CrossRef]
- Berk, M.; Copolov, D.; Dean, O.; Lu, K.; Jeavons, S.; Schapkaitz, I.; Anderson-Hunt, M.; Judd, F.; Katz, F.; Katz, P.; et al. N-Acetyl Cysteine as a Glutathione Precursor for Schizophrenia—A Double-Blind, Randomized, Placebo-Controlled Trial. Biol. Psychiatry 2008, 64, 361–368. [Google Scholar] [CrossRef]
- Breier, A.; Liffick, E.; Hummer, T.A.; Vohs, J.L.; Yang, Z.; Mehdiyoun, N.F.; Visco, A.C.; Metzler, E.; Zhang, Y.; Francis, M.M. Effects of 12-Month, Double-Blind N-Acetyl Cysteine on Symptoms, Cognition and Brain Morphology in Early Phase Schizophrenia Spectrum Disorders. Schizophr. Res. 2018, 199, 395–402. [Google Scholar] [CrossRef]
- Akhondzadeh, S.; Tabatabaee, M.; Amini, H.; Ahmadiabhari, S.; Abbasi, S.; Behnam, B. Celecoxib as Adjunctive Therapy in Schizophrenia: A Double-Blind, Randomized and Placebo-Controlled Trial. Schizophr. Res. 2007, 90, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Müller, N.; Krause, D.; Dehning, S.; Musil, R.; Schennach-Wolff, R.; Obermeier, M.; Möller, H.-J.; Klauss, V.; Schwarz, M.J.; Riedel, M. Celecoxib Treatment in an Early Stage of Schizophrenia: Results of a Randomized, Double-Blind, Placebo-Controlled Trial of Celecoxib Augmentation of Amisulpride Treatment. Schizophr. Res. 2010, 121, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Rapaport, M.H.; Delrahim, K.K.; Bresee, C.J.; Maddux, R.E.; Ahmadpour, O.; Dolnak, D. Celecoxib Augmentation of Continuously Ill Patients with Schizophrenia. Biol. Psychiatry 2005, 57, 1594–1596. [Google Scholar] [CrossRef]
- Wehring, H.J.; Elsobky, T.; McEvoy, J.P.; Vyas, G.; Richardson, C.M.; McMahon, R.P.; DiPaula, B.A.; Liu, F.; Sullivan, K.; Buchanan, R.W.; et al. Adjunctive Minocycline in Clozapine-Treated Patients with Schizophrenia: Analyzing the Effects of Minocycline on Clozapine Plasma Levels. Psychiatr. Q. 2018, 89, 73–80. [Google Scholar] [CrossRef]
- Möller, M.; Swanepoel, T.; Harvey, B.H. Neurodevelopmental Animal Models Reveal the Convergent Role of Neurotransmitter Systems, Inflammation, and Oxidative Stress as Biomarkers of Schizophrenia: Implications for Novel Drug Development. ACS Chem. Neurosci. 2015, 6, 987–1016. [Google Scholar] [CrossRef]
- Panizzutti, B.; Skvarc, D.; Lin, S.; Croce, S.; Meehan, A.; Bortolasci, C.C.; Marx, W.; Walker, A.J.; Hasebe, K.; Kavanagh, B.E.; et al. Minocycline as Treatment for Psychiatric and Neurological Conditions: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 5250. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, H.; Wu, R.; Zhu, F.; Kosten, T.R.; Zhang, X.-Y.; Zhao, J. Minocycline Adjunctive Treatment to Risperidone for Negative Symptoms in Schizophrenia: Association with pro-Inflammatory Cytokine Levels. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 85, 69–76. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, B.; Xie, L.; Ruan, Y.; Xu, X.; Zeng, Y.; Messina, L.; Zhao, J.; Fan, X. Changes in Plasma Levels of Nitric Oxide Metabolites and Negative Symptoms after 16-Week Minocycline Treatment in Patients with Schizophrenia. Schizophr. Res. 2018, 199, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Girgis, R.R.; Ciarleglio, A.; Choo, T.; Haynes, G.; Bathon, J.M.; Cremers, S.; Kantrowitz, J.T.; Lieberman, J.A.; Brown, A.S. A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Tocilizumab, an Interleukin-6 Receptor Antibody, for Residual Symptoms in Schizophrenia. Neuropsychopharmacology 2018, 43, 1317–1323. [Google Scholar] [CrossRef]
- Miller, B.J.; Dias, J.K.; Lemos, H.P.; Buckley, P.F. An Open-Label, Pilot Trial of Adjunctive Tocilizumab in Schizophrenia. J. Clin. Psychiatry 2016, 77, 275–276. [Google Scholar] [CrossRef]
- Strube, W.; Aksar, A.; Bauer, I.; Barbosa, S.; Benros, M.; Blankenstein, C.; Campana, M.; Davidovic, L.; Glaichenhaus, N.; Falkai, P.; et al. Effects of Add-on Celecoxib Treatment on Patients with Schizophrenia Spectrum Disorders and Inflammatory Cytokine Profile Trial (TargetFlame): Study Design and Methodology of a Multicentre Randomized, Placebo-Controlled Trial. J. Neural Transm. 2023, 130, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, R.; Christensen, R.H.B.; Pedersen, E.M.J.; Nordentoft, M.; Hjorthøj, C.; Köhler-Forsberg, O.; Benros, M.E. Efficacy and Safety of Anti-Inflammatory Agents in Treatment of Psychotic Disorders–A Comprehensive Systematic Review and Meta-Analysis. Brain Behav. Immun. 2020, 90, 364–380. [Google Scholar] [CrossRef] [PubMed]
Cytokine | Search String Used | Search Period | Number of Results | Original Studies Included |
---|---|---|---|---|
IL-6 | “IL-6 schizophrenia” | 2018–2025 | 440 | 35 |
TNF-α | “TNF schizophrenia” | 2023–2025 | 106 | 21 |
IL-1β | “IL-1β schizophrenia” | 2022–2025 | 127 | 15 |
IL-2 | “IL-2 schizophrenia” | 2018–2025 | 87 | 17 |
IFN-γ | “IFN-γ schizophrenia” | 2018–2025 | 98 | 19 |
IL-17 | “IL-17 schizophrenia” | 2018–2025 | 66 | 19 |
IL-4 | “IL-4 schizophrenia” | 2018–2025 | 98 | 23 |
IL-10 | “IL-10 schizophrenia” | 2018–2025 | 159 | 34 |
IL-13 | “IL-13 schizophrenia” | 2018–2025 | 18 | 6 |
TGF-β | “TGF-β schizophrenia” | 2018–2025 | 45 | 7 |
Cytokine | Positive Symptoms | Negative Symptoms | Cognitive Abilities | |
---|---|---|---|---|
Pro-Inflammatory | IL-6 | ↑ [128] | ↑ (chronic SCZ) [37] ↓ (EOS) [129] | ↓ [34,128,130] 0 [37] |
TNF-α | ↑ [54] 0 [60] | ↓ [66] 0 [60] | contradictory results: ↑/0/↓ [57,61,63,64] | |
IL-1β | ↑ [85] 0 [43] | 0 [43] | ↓ [86] 0 [43] | |
IL-2 | ↑ [60,98] | 0 [23] | ↓ real-world functioning [131] | |
IFN-γ | ↓ [109] 0 [115] | ↑ [108,116] 0 [115] | ↑ [108,109] | |
IL-17 | ↑ [123] 0 [132] | 0 [122,132] | ↑ [125] | |
Anti-Inflammatory | IL-4 | ↓ [133,134] 0 [60] | ↑ [135] 0 [60,134] | ↑ [133,136,137] |
IL-10 | ↑ [60] 0 [123,133,138] | contradictory results: ↑ [60,115,139,140] 0 [123,133,138] ↓ [141] | 0 [133,138] | |
IL-13 | 0 [115] | 0 [115] | ↑ [133] | |
TGF-β | ↑ [142] | no studies available | no studies available |
Group | Cytokine | Short-Term Treatment (Up To 10 Weeks) | Medium- To Long-Term Treatment (≥6 Months) | Exemplary Drugs And Clinical Or Metabolic Notes |
---|---|---|---|---|
Pro-Inflammatory | IL-6 | Levels ↓ with escitalopram, associated with improvement in negative and cognitive PANSS symptoms [48]. Levels ↑ with olanzapine, correlated with IR and adipose inflammation. Haloperidol did not ↑ IL-6 in adipose tissue [49]. | Levels ↓ with risperidone, olanzapine, aripiprazole, and quetiapine, associated with improved working memory and verbal learning [47]. | Short-term reduction may support cognitive improvement, whereas drug-specific increases (e.g., olanzapine) are linked to metabolic risk. |
TNF-α | Levels ↑ after paliperidone (alone or with sertraline) and after olanzapine [60,65]. Aripiprazole decreased TNF-α [67]. | – | Aripiprazole also ↓ leptin and improved body weight, BMI, and body fat percentage. | |
IL-1β | Levels remained elevated after four weeks of atypical antipsychotic therapy [53]. | Levels remained Ns after twelve months of aripiprazole or olanzapine, regardless of sex [88]. | IL-1β levels appear resistant to both short- and long-term pharmacological intervention. | |
IL-2 | Levels ↓ with risperidone, olanzapine, and haloperidol. Clozapine showed Ns change [90]. | Levels remained Ns after fifty-two weeks of aripiprazole or olanzapine [88]. Levels ↑ after five years despite clinical improvement [92]. | Findings suggest a biphasic effect: early ↓, medium-term stabilization, and long-term rebound. | |
IFN-γ | Levels ↓ after treatment with risperidone, olanzapine, or aripiprazole [97], associated with improvement of negative symptoms and functioning [116]. | Levels remained Ns after twelve months of amisulpride, aripiprazole, or olanzapine [88]. | Short-term ↓ may reflect acute-phase response, whereas long-term findings are inconsistent. | |
IL-17 | Levels showed a trend toward ↓ after ten weeks of risperidone monotherapy, but changes were Ns [97,118]. | Levels ↓ after six months of therapy [116]. | IL-17 may serve as a marker of the acute phase, normalizing with longer pharmacotherapy. | |
Anti-Inflammatory | IL-4 | Levels remained Ns after four weeks of risperidone treatment [92]. | Levels ↓ after one year in patients with predominant depressive symptoms [148]. Sex-dependent differences were observed after fifty-two weeks (increase in women, decrease in men) [88]. Levels remained Ns after five years of risperidone treatment [92]. | Findings highlight the importance of considering sex differences and depressive symptom profile in interpreting IL-4 responses. |
IL-10 | Levels ↑ with olanzapine and clozapine. Levels further increased after six weeks of olanzapine [60,138,161]. | – | Antipsychotic therapy, especially olanzapine and clozapine, is associated with up-regulation of IL-10. | |
IL-13 | – | – | No significant association with treatment response [115]. | |
TGF-β | Levels remained Ns after twelve weeks of clozapine [168]. | Levels ↓ after four to six months of olanzapine and risperidone [116,168]. | Dysregulation of the TGF-β pathway under SGAs may contribute to obesity and MetS. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oracz, A.J.; Zwierz, M.; Naumowicz, M.; Modzelewski, S.; Suprunowicz, M.; Waszkiewicz, N. Linking Metabolic Disorders and Immune System Phenomena in Schizophrenia: The Role of Adipose Tissue and Inflammation. Biomedicines 2025, 13, 2308. https://doi.org/10.3390/biomedicines13092308
Oracz AJ, Zwierz M, Naumowicz M, Modzelewski S, Suprunowicz M, Waszkiewicz N. Linking Metabolic Disorders and Immune System Phenomena in Schizophrenia: The Role of Adipose Tissue and Inflammation. Biomedicines. 2025; 13(9):2308. https://doi.org/10.3390/biomedicines13092308
Chicago/Turabian StyleOracz, Aleksandra Julia, Mateusz Zwierz, Maciej Naumowicz, Stefan Modzelewski, Maria Suprunowicz, and Napoleon Waszkiewicz. 2025. "Linking Metabolic Disorders and Immune System Phenomena in Schizophrenia: The Role of Adipose Tissue and Inflammation" Biomedicines 13, no. 9: 2308. https://doi.org/10.3390/biomedicines13092308
APA StyleOracz, A. J., Zwierz, M., Naumowicz, M., Modzelewski, S., Suprunowicz, M., & Waszkiewicz, N. (2025). Linking Metabolic Disorders and Immune System Phenomena in Schizophrenia: The Role of Adipose Tissue and Inflammation. Biomedicines, 13(9), 2308. https://doi.org/10.3390/biomedicines13092308