A Novel Biomarker Driving Poor-Prognosis Liver Cancer: Overexpression of the Mitochondrial Calcium Gatekeepers
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patient Characteristics
2.2. Immunohistochemistry Staining and Scoring
2.3. Multi-Omics Analysis
2.4. RNA Extraction and Real-Time PCR
2.5. Statistical Analysis
3. Results
3.1. CREB, MCU, MICU1, and MICU2 Levels Were Greatly Upregulated in HCC Patients
3.2. CREB Transcription Factor Is an Upstream Regulatory in Liver Cancer Cells
3.3. Association of the CREB, MCU, MICU1 and MICU2 Protein Levels with Hepatocellular Tumorigenesis and Clinicopathological Outcomes
3.4. Mitochondrial Gene Expression and Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual, S.; Miralles, C.; Bernabe, J.M.; Irurzun, J.; Planells, M. Surveillance and diagnosis of hepatocellular carcinoma: A systematic review. World J. Clin. Cases 2019, 7, 2269–2286. [Google Scholar] [CrossRef] [PubMed]
- Pathak, T.; Trebak, M. Mitochondrial Ca(2+) signaling. Pharmacol. Ther. 2018, 192, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 566–578. [Google Scholar] [CrossRef]
- Hansford, R.G. Physiological role of mitochondrial Ca2+ transport. J. Bioenerg. Biomembr. 1994, 26, 495–508. [Google Scholar] [CrossRef]
- McCormack, J.G.; Halestrap, A.P.; Denton, R.M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 1990, 70, 391–425. [Google Scholar] [CrossRef]
- Tien Kuo, M.; Savaraj, N. Roles of reactive oxygen species in hepatocarcinogenesis and drug resistance gene expression in liver cancers. Mol. Carcinog. 2006, 45, 701–709. [Google Scholar] [CrossRef]
- Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Delierneux, C.; Kouba, S.; Shanmughapriya, S.; Potier-Cartereau, M.; Trebak, M.; Hempel, N. Mitochondrial Calcium Regulation of Redox Signaling in Cancer. Cells 2020, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Shanmughapriya, S.; Rajan, S.; Hoffman, N.E.; Zhang, X.; Guo, S.; Kolesar, J.E.; Hines, K.J.; Ragheb, J.; Jog, N.R.; Caricchio, R.; et al. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci. Signal 2015, 8, ra23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, K.T.; Zhou, H.J.; Wong, C.M.; Lee, J.M.; Chan, C.P.; Qiang, B.Q.; Yuan, J.G.; Ng, I.O.; Jin, D.Y. The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res. 2005, 33, 1859–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovach, S.J.; Price, J.A.; Shaw, C.M.; Theodorakis, N.G.; McKillop, I.H. Role of cyclic-AMP responsive element binding (CREB) proteins in cell proliferation in a rat model of hepatocellular carcinoma. J. Cell Physiol. 2006, 206, 411–419. [Google Scholar] [CrossRef]
- Brunacci, C.; Piobbico, D.; Bartoli, D.; Castelli, M.; Pieroni, S.; Bellet, M.M.; Viola-Magni, M.; Della Fazia, M.A.; Servillo, G. Identification and characterization of a novel peptide interacting with cAMP-responsive elements binding and cAMP-responsive elements modulator in mouse liver. Liver Int. 2010, 30, 388–395. [Google Scholar] [CrossRef]
- Curry, M.C.; Peters, A.A.; Kenny, P.A.; Roberts-Thomson, S.J.; Monteith, G.R. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells. Biochem. Biophys. Res. Commun. 2013, 434, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Ren, T.; Zhang, H.; Wang, J.; Zhu, J.; Jin, M.; Wu, Y.; Guo, X.; Ji, L.; Huang, Q.; Zhang, H.; et al. MCU-dependent mitochondrial Ca(2+) inhibits NAD(+)/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene 2017, 36, 5897–5909. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Du, H.; Le, Y.; Sun, F.; Li, K.; Xu, Y. ILF2 Directly Binds and Stabilizes CREB to Stimulate Malignant Phenotypes of Liver Cancer Cells. Anal. Cell Pathol. 2019, 2019, 1575031. [Google Scholar] [CrossRef] [Green Version]
- Steven, A.; Friedrich, M.; Jank, P.; Heimer, N.; Budczies, J.; Denkert, C.; Seliger, B. What turns CREB on? And off? And why does it matter? Cell Mol. Life Sci. 2020, 77, 4049. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.J.; Yang, S.T.; Chen, R.Y.; Huang, W.; Chayama, K.; Lee, M.H.; Yang, S.J.; Lai, H.S.; Yen, H.Y.; Hsiao, Y.W.; et al. Hepatitis B virus X protein (HBx) enhances centrosomal P4.1-associated protein (CPAP) expression to promote hepatocarcinogenesis. J. Biomed. Sci. 2019, 26, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.J.; Deng, Y.L.; Liang, H.F.; Jaoude, J.C.; Liu, F.Y. Hepatitis B virus X protein promotes CREB-mediated activation of miR-3188 and Notch signaling in hepatocellular carcinoma. Cell Death Differ. 2017, 24, 1577–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Tang, X.; Weng, W.; Qiao, Y.; Lin, J.; Liu, W.; Liu, R.; Ma, L.; Yu, W.; Yu, Y.; et al. The membrane protein melanoma cell adhesion molecule (MCAM) is a novel tumor marker that stimulates tumorigenesis in hepatocellular carcinoma. Oncogene 2015, 34, 5781–5795. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, M.; Wang, Y.; Zhu, J.; Tan, R.; Zhao, J.; Ji, X.; Jin, C.; Jia, Y.; Ren, T.; et al. MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth. Signal Transduct Target Ther. 2020, 5, 59. [Google Scholar] [CrossRef]
- Nemani, N.; Shanmughapriya, S.; Madesh, M. Molecular regulation of MCU: Implications in physiology and disease. Cell Calcium 2018, 74, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Patron, M.; Checchetto, V.; Raffaello, A.; Teardo, E.; Vecellio Reane, D.; Mantoan, M.; Granatiero, V.; Szabo, I.; De Stefani, D.; Rizzuto, R. MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell 2014, 53, 726–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamer, K.J.; Mootha, V.K. MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep. 2014, 15, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Kamer, K.J.; Jiang, W.; Kaushik, V.K.; Mootha, V.K.; Grabarek, Z. Crystal structure of MICU2 and comparison with MICU1 reveal insights into the uniporter gating mechanism. Proc. Natl. Acad. Sci. USA 2019, 116, 3546–3555. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Wang, M.; Wang, J.; Nie, Z.; Wu, G.; Yang, X.; Shen, Y. Dimerization of MICU Proteins Controls Ca(2+) Influx through the Mitochondrial Ca(2+) Uniporter. Cell Rep. 2019, 26, 1203–1212.e4. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, Y.; Park, T.; Kang, J.Y.; Mun, S.A.; Jin, M.; Yang, J.; Eom, S.H. Structure of the MICU1-MICU2 heterodimer provides insights into the gatekeeping threshold shift. IUCrJ 2020, 7 Pt 2, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, T.; Lange, I.; Feske, S. A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem. Biophys. Res. Commun. 2009, 385, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamseldin, H.E.; Alasmari, A.; Salih, M.A.; Samman, M.M.; Mian, S.A.; Alshidi, T.; Ibrahim, N.; Hashem, M.; Faqeih, E.; Al-Mohanna, F.; et al. A null mutation in MICU2 causes abnormal mitochondrial calcium homeostasis and a severe neurodevelopmental disorder. Brain 2017, 140, 2806–2813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csordas, G.; Golenar, T.; Seifert, E.L.; Kamer, K.J.; Sancak, Y.; Perocchi, F.; Moffat, C.; Weaver, D.; Perez, S.F.; Bogorad, R.; et al. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell Metab. 2013, 17, 976–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchi, S.; Giorgi, C.; Galluzzi, L.; Pinton, P. Ca(2+) Fluxes and Cancer. Mol. Cell 2020, 78, 1055–1069. [Google Scholar] [CrossRef]
- Dong, Z.; Shanmughapriya, S.; Tomar, D.; Siddiqui, N.; Lynch, S.; Nemani, N.; Breves, S.L.; Zhang, X.; Tripathi, A.; Palaniappan, P.; et al. Mitochondrial Ca(2+) Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. Mol. Cell 2017, 65, 1014–1028.e7. [Google Scholar] [CrossRef] [Green Version]
- Koval, O.M.; Nguyen, E.K.; Santhana, V.; Fidler, T.P.; Sebag, S.C.; Rasmussen, T.P.; Mittauer, D.J.; Strack, S.; Goswami, P.C.; Abel, E.D.; et al. Loss of MCU prevents mitochondrial fusion in G1-S phase and blocks cell cycle progression and proliferation. Sci. Signal 2019, 12. [Google Scholar] [CrossRef]
- Zhao, H.; Li, T.; Wang, K.; Zhao, F.; Chen, J.; Xu, G.; Zhao, J.; Li, T.; Chen, L.; Li, L.; et al. AMPK-mediated activation of MCU stimulates mitochondrial Ca(2+) entry to promote mitotic progression. Nat. Cell Biol. 2019, 21, 476–486. [Google Scholar] [CrossRef]
CREB Expression | MCU Expression | MICU1 Expression | MICU2 Expression | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Total | Low | High | p-Value | Low | High | p-Value | Low | High | p-Value | Low | High | p-Value |
Case number, n | 354 | 120 | 234 | 251 | 103 | 134 | 220 | 207 | 147 | ||||
Age | 63.2 ± 11.5 | 63.8 ± 11.2 | 62.9 ± 11.6 | 0.50 | 64.5 ± 11.4 | 60.3 ± 11.2 | 0.02 | 63.5 ± 10.8 | 63.1 ± 11.9 | 0.77 | 64.5 ± 11.3 | 61.5 ± 11.5 | 0.02 |
Gender, n | |||||||||||||
Male | 285 | 99 | 186 | 0.57 | 202 | 83 | 1.00 | 110 | 175 | 0.58 | 167 | 118 | 1.00 |
Female | 69 | 21 | 48 | 49 | 20 | 24 | 45 | 40 | 29 | ||||
Child-Pugh score | 5.2 ± 0.7 | 5.3 ± 0.8 | 5.2 ± 0.7 | 0.36 | 5.2 ± 0.7 | 5.3 ± 0.9 | 0.07 | 5.4 ± 0.9 | 5.2 ± 0.6 | <0.01 | 5.2 ± 0.6 | 5.3 ± 0.9 | 0.34 |
Ishak score | 3.8 ± 1.6 | 3.6 ± 1.6 | 3.9 ± 1.6 | 0.20 | 3.8 ± 1.6 | 3.7 ± 1.7 | 0.59 | 3.6 ± 1.7 | 3.9 ± 1.6 | 0.05 | 3.6 ± 1.6 | 4.0 ± 1.6 | 0.02 |
Metavir score | 2.7 ± 1.2 | 2.6 ± 1.2 | 2.8 ± 1.2 | 0.18 | 2.7 ± 1.2 | 2.7 ± 1.2 | 0.68 | 2.6 ± 1.2 | 2.8 ± 1.1 | 0.06 | 2.6 ± 1.2 | 2.9 ± 1.2 | 0.03 |
Hepatitis B, n | 191 | 62 | 129 | 0.42 | 130 | 61 | 0.34 | 72 | 119 | 1.00 | 110 | 81 | 0.91 |
Hepatitis C, n | 111 | 41 | 70 | 0.47 | 87 | 24 | 0.04 | 37 | 74 | 0.34 | 65 | 46 | 0.90 |
Survive, n | 291 | 89 | 202 | <0.01 | 213 | 78 | 0.05 | 97 | 194 | <0.01 | 176 | 115 | 0.12 |
Recurrence, n | 65 | 27 | 38 | 0.19 | 42 | 23 | 0.23 | 32 | 33 | 0.05 | 176 | 115 | 0.12 |
Survival days | 796.8 ± 422.6 | 846.8 ± 447.7 | 771.2 ± 407.8 | 0.11 | 816.9 ± 420.5 | 747.8 ± 425.8 | 0.16 | 731.8 ± 395.6 | 836.4 ± 434.4 | 0.02 | 819.6 ± 408.1 | 764.7 ± 441.7 | 0.23 |
Clinical stage, n | |||||||||||||
Stage I, II | 298 | 103 | 195 | 0.65 | 224 | 74 | <0.01 | 106 | 192 | 0.05 | 183 | 115 | 0.01 |
Stage III, IV | 56 | 17 | 39 | 27 | 29 | 28 | 28 | 24 | 32 | ||||
Differentiation, n | |||||||||||||
Well/Moderate | 160 | 59 | 101 | 0.31 | 129 | 31 | <0.01 | 62 | 98 | 0.83 | 107 | 53 | <0.01 |
Poor/Undifferentiation | 193 | 61 | 132 | 121 | 72 | 72 | 121 | 99 | 94 | ||||
Surgery, n | |||||||||||||
Segmental resection | |||||||||||||
One segment | 93 | 25 | 68 | 0.10 | 72 | 21 | 0.11 | 30 | 63 | 0.21 | 55 | 38 | 0.90 |
Two segments | 130 | 53 | 77 | 0.05 | 100 | 30 | 0.07 | 46 | 84 | 0.50 | 82 | 48 | 0.22 |
Three segments | 56 | 19 | 37 | 1.00 | 38 | 18 | 0.63 | 21 | 35 | 1.00 | 32 | 24 | 0.88 |
Left lobectomy (LL) | 9 | 2 | 7 | 0.72 | 4 | 5 | 0.13 | 1 | 8 | 0.16 | 3 | 6 | 0.17 |
Right lobectomy (RL) | 20 | 4 | 16 | 0.23 | 14 | 6 | 1.00 | 8 | 12 | 0.82 | 12 | 8 | 1.00 |
Extended LL | 28 | 11 | 17 | 0.54 | 14 | 14 | 0.02 | 18 | 10 | <0.01 | 16 | 12 | 1.00 |
Extended RL | 11 | 5 | 6 | 0.52 | 6 | 5 | 0.31 | 7 | 4 | 0.11 | 5 | 6 | 0.54 |
Others | 7 | 1 | 6 | 0.43 | 3 | 4 | 0.20 | 3 | 4 | 1.00 | 2 | 5 | 0.13 |
Medicine, n | |||||||||||||
Hepatitis | 137 | 42 | 95 | 0.36 | 92 | 45 | 0.23 | 52 | 85 | 1.00 | 79 | 58 | 0.83 |
Molecular Markers | p-Value | |||
---|---|---|---|---|
CREB | MCU | MICU1 | MICU2 | |
CREB | -- | 0.165 ** | 0.263 ** | 0.222 ** |
MCU | -- | -- | 0.183 ** | 0.520 ** |
MICU1 | -- | -- | -- | 0.386 ** |
MICU2 | -- | -- | -- | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-J.; Lin, H.-Y.; Ko, C.-J.; Lai, J.-C.; Chu, P.-Y. A Novel Biomarker Driving Poor-Prognosis Liver Cancer: Overexpression of the Mitochondrial Calcium Gatekeepers. Biomedicines 2020, 8, 451. https://doi.org/10.3390/biomedicines8110451
Li C-J, Lin H-Y, Ko C-J, Lai J-C, Chu P-Y. A Novel Biomarker Driving Poor-Prognosis Liver Cancer: Overexpression of the Mitochondrial Calcium Gatekeepers. Biomedicines. 2020; 8(11):451. https://doi.org/10.3390/biomedicines8110451
Chicago/Turabian StyleLi, Chia-Jung, Hung-Yu Lin, Chih-Jan Ko, Ji-Ching Lai, and Pei-Yi Chu. 2020. "A Novel Biomarker Driving Poor-Prognosis Liver Cancer: Overexpression of the Mitochondrial Calcium Gatekeepers" Biomedicines 8, no. 11: 451. https://doi.org/10.3390/biomedicines8110451
APA StyleLi, C.-J., Lin, H.-Y., Ko, C.-J., Lai, J.-C., & Chu, P.-Y. (2020). A Novel Biomarker Driving Poor-Prognosis Liver Cancer: Overexpression of the Mitochondrial Calcium Gatekeepers. Biomedicines, 8(11), 451. https://doi.org/10.3390/biomedicines8110451