Label-Free Assay of Protein Kinase A Activity and Inhibition Using a Peptide-Based Electrochemical Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of the Peptide-Based Sensor
2.3. Electrochemical Measurements
2.4. Preparation of HeLa Cell Lysates
3. Results and Discussion
3.1. Fabrication and Feasibility of the Biosensor
3.2. Analytical Performance toward PKA Activity and Inhibition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tarrant, M.K.; Cole, P.A. The Chemical Biology of Protein Phosphorylation. Annu. Rev. Biochem. 2009, 78, 797–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions. Mol. Cancer 2018, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Bouhaddou, M.; Memon, D.; Meyer, B.; White, K.M.; Rezelj, V.V.; Marrero, M.C.; Polacco, B.J.; Melnyk, J.E.; Ulferts, S.; Kaake, R.M.; et al. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020, 182, 685–712. [Google Scholar] [CrossRef]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Muzio, L.L. The Crucial Role of Protein Phosphorylation in Cell Signaling and its Use as Targeted Therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastie, C.J.; Mclauchlan, H.J.; Cohen, P. Assay of Protein Kinases Using Radiolabeled ATP: A Protocol. Nat. Protoc. 2006, 1, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Chen, C.; Han, B.; Wang, E. Enzyme Colorimetric Assay Using Unmodified Silver Nanoparticles. Anal. Chem. 2008, 80, 7051–7055. [Google Scholar] [CrossRef]
- Deng, Z.; Ye, M.; Bian, Y.; Liu, Z.; Liu, F.; Wang, C.; Qin, H.; Zou, H. Multiplex Isotope Dimethyl Labeling of Substrate Peptides for High Throughput Kinase Activity Assay via Quantitative MALDI MS. Chem. Commun. 2014, 50, 13960–13962. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Bai, J.; Liu, Z.; Gao, S.; Han, Y.; Yan, H. Application of a Titanium-Based Metal-Organic Framework to Protein Kinase Activity Detection and Inhibitor Screening. Anal. Chim. Acta 2020, 1128, 99–106. [Google Scholar] [CrossRef]
- Ren, W.; Liu, C.; Lian, S.; Li, Z. Flow Cytometry-Assisted Mix-and-Read Assay for Ultrasensitive Detection of Protein Kinase Activity by Use of Zr4+-Functionalized Mesoporous SiO2 Microspheres. Anal. Chem. 2013, 85, 10956–10961. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Liu, D.; Wang, Z. Sensitive Detection of Protein Kinase A Activity in Cell Lysates by Peptide Microarray-Based Assay. Anal. Chem. 2013, 85, 7033–7037. [Google Scholar] [CrossRef]
- Luo, Q.-X.; Li, Y.; Liang, R.-P.; Cao, S.-P.; Jin, H.-J.; Qiu, J.-D. Gold Nanoclusters Enhanced Electrochemiluminescence of g-C3N4 for Protein Kinase Activity Analysis and Inhibition. J. Electroanal. Chem. 2020, 856, 113706. [Google Scholar] [CrossRef]
- Tan, D.; Li, F.; Zhou, B. Electrochemical Assay Methods for Protein Kinase Activity. Int. J. Electrochem. Sci. 2019, 14, 5707–5725. [Google Scholar] [CrossRef]
- Nemčeková, K.; Labuda, J. Advanced Materials-Integrated Electrochemical Sensors as Promising Medical Diagnostics Tools: A Review. Mater. Sci. Eng. C 2021, 120, 111751. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Torrente-Rodríguez, R.M.; Wang, M.; Gao, W. The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Adv. Funct. Mater. 2020, 30, 1906713. [Google Scholar] [CrossRef]
- Fernández-La-Villa, A.; Pozo-Ayuso, D.F.; Castaño-Álvarez, M. Microfluidics and Electrochemistry: An Emerging Tandem for Next-Generation Analytical Microsystems. Curr. Opin. Electrochem. 2019, 15, 175–185. [Google Scholar] [CrossRef]
- Harms, M.J.; Schlessman, J.L.; Sue, G.R.; Garcia-Moreno, B. Arginine Residues at Internal Positions in a Protein are Always Charged. Proc. Natl. Acad. Sci. USA 2011, 108, 18954–18959. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Wang, Z.; Miao, Z.; Liu, Y. Dye-Sensitized and Localized Surface Plasmon Resonance Enhanced Visible-Light Photoelectrochemical Biosensors for Highly Sensitive Analysis of Protein Kinase Activity. Anal. Chem. 2016, 88, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, Y.; Wang, T.; Li, J. Highly Sensitive Electrogenerated Chemiluminescence Biosensor in Profiling Protein Kinase Activity and Inhibition Using Gold Nanoparticle as Signal Transduction Probes. Anal. Chem. 2010, 82, 9566–9572. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yan, Z.; Sun, N.; Liu, Y. Multiple Signal Amplification Electrogenerated Chemiluminescence Biosensors for Sensitive Protein Kinase Activity Analysis and Inhibition. Biosens. Bioelectron. 2015, 68, 771–776. [Google Scholar] [CrossRef]
- Shen, C.; Xia, X.; Hu, S.; Yang, M.; Wang, J. Silver Nanoclusters-Based Fluorescence Assay of Protein Kinase Activity and Inhibition. Anal. Chem. 2015, 87, 693–698. [Google Scholar] [CrossRef]
- Wang, M.; Wang, L.; Liu, Q.; Su, X. A Fluorescence Sensor for Protein Kinase Activity Detection Based on Gold Nanoparticles/Copper Nanoclusters System. Sens. Actuators B Chem. 2018, 256, 691–698. [Google Scholar] [CrossRef]
- Liu, Q.; Na, W.; Wang, L.; Su, X. Gold Nanocluster-Based Fluorescent Assay for Label-Free Detection of Protein Kinase and its Inhibitors. Microchim. Acta 2017, 184, 3381–3387. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, X.; Liu, W.; Liu, X.; Nie, Z.; Qing, M.; Nie, L.; Yao, S. Graphene Oxide–Peptide Nanocomplex as a Versatile Flu-orescence Probe of Protein Kinase Activity Based on Phosphorylation Protection against Carboxypeptidase Digestion. Anal. Chem. 2013, 85, 5746–5754. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, X.; Su, X. A Label-Free and Sensitive Fluorescent Assay for One Step Detection of Protein Kinase Activity and Inhibition. Anal. Chim. Acta 2016, 935, 224–230. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, X.; Liu, X.; Li, H.; Nie, Z.; Qing, M.; Huang, Y.; Yao, S. A Gold Nanoparticles Colorimetric Assay for Label-Free Detection of Protein Kinase Activity Based on Phosphorylation Protection Against Exopeptidase Cleavage. Biosens. Bioelectron. 2014, 53, 295–300. [Google Scholar] [CrossRef]
Method | Linear Range (U/mL) | LOD (U/mL) | Refs. |
---|---|---|---|
Electrochemiluminescence | 0.05–100 | 0.17 | [11] |
Electrochemiluminescence | 0.07–32 | 0.07 | [18] |
Electrochemiluminescence | 0.1–10 | 0.09 | [19] |
Fluorimetry | 1–2000 | 0.47 | [20] |
Fluorimetry | 0.1–6 | 0.038 | [21] |
Fluorimetry | 0.05–1.6 | 0.02 | [22] |
Fluorimetry | 0.1–1 | 0.03 | [23] |
Fluorimetry | 0.1–2000 | 0.039 | [24] |
Colorimetry | 0–1.0 | 0.232 | [25] |
Electrochemistry | 0.1–10 | 0.056 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.; Lee, C.-S.; Kim, T.H. Label-Free Assay of Protein Kinase A Activity and Inhibition Using a Peptide-Based Electrochemical Sensor. Biomedicines 2021, 9, 423. https://doi.org/10.3390/biomedicines9040423
Cho H, Lee C-S, Kim TH. Label-Free Assay of Protein Kinase A Activity and Inhibition Using a Peptide-Based Electrochemical Sensor. Biomedicines. 2021; 9(4):423. https://doi.org/10.3390/biomedicines9040423
Chicago/Turabian StyleCho, Hyunju, Chang-Seuk Lee, and Tae Hyun Kim. 2021. "Label-Free Assay of Protein Kinase A Activity and Inhibition Using a Peptide-Based Electrochemical Sensor" Biomedicines 9, no. 4: 423. https://doi.org/10.3390/biomedicines9040423
APA StyleCho, H., Lee, C.-S., & Kim, T. H. (2021). Label-Free Assay of Protein Kinase A Activity and Inhibition Using a Peptide-Based Electrochemical Sensor. Biomedicines, 9(4), 423. https://doi.org/10.3390/biomedicines9040423