Variants in Maternal Effect Genes and Relaxed Imprinting Control in a Special Placental Mesenchymal Dysplasia Case with Mild Trophoblast Hyperplasia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical History
2.2. STR Analysis
2.3. Analysis of Methylation Status in Parental-Origin-Specific Differentially Methylated Regions
2.4. Mutation Analysis of the NLRP7, NLRP2, and ATRX Genes by Direct Sequencing
2.5. Histological and Immunohistochemical Stains
3. Results
3.1. A Diploid Placenta Classified as PMD with PHM-Like Morphology
3.2. Relaxation of Differential Methylation in Certain Imprinted Loci
3.3. Mutations/Variants of Imprinting Modulating Maternal Effect Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jauniaux, E.; Nicolaides, K.H.; Hustin, J. Perinatal features associated with placental mesenchymal dysplasia. Placenta 1997, 18, 701–706. [Google Scholar] [CrossRef]
- Paradinas, F.J.; Sebire, N.J.; Fisher, R.A.; Rees, H.C.; Foskett, M.; Seckl, M.J.; Newlands, E.S. Pseudo-partial moles: Placental stem vessel hydrops and the association with Beckwith-Wiedemann syndrome and complete moles. Histopathology 2001, 39, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Iitsuka, Y.; Yamazawa, K.; Tanaka, N.; Mitsuhashi, A.; Seki, K.; Sekiya, S. Placental mesenchymal dysplasia initially diagnosed as partial mole. Pathol. Int. 2003, 53, 810–813. [Google Scholar] [CrossRef]
- Ulker, V.; Aslan, H.; Gedikbasi, A.; Yararbas, K.; Yildirim, G.; Yavuz, E. Placental mesenchymal dysplasia: A rare clinicopathologic entity confused with molar pregnancy. J. Obstet. Gynaecol. 2013, 33, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Colpaert, R.M.; Ramseyer, A.M.; Luu, T.; Quick, C.M.; Frye, L.T.; Magann, E.F. Diagnosis and Management of Placental Mesenchymal Disease. A Review of the Literature. Obstet. Gynecol. Surv. 2019, 74, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Moscoso, G.; Jauniaux, E.; Hustin, J. Placental vascular anomaly with diffuse mesenchymal stem villous hyperplasia. A new clinico-pathological entity? Pathol. Res. Pract. 1991, 187, 324–328. [Google Scholar] [CrossRef]
- Pham, T.; Steele, J.; Stayboldt, C.; Chan, L.; Benirschke, K. Placental mesenchymal dysplasia is associated with high rates of intrauterine growth restriction and fetal demise: A report of 11 new cases and a review of the literature. Am. J. Clin. Pathol. 2006, 126, 67–78. [Google Scholar] [CrossRef]
- Ernst, L.M. Placental Mesenchymal Dysplasia. J. Fetal Med. 2015, 2, 127–133. [Google Scholar] [CrossRef]
- Himoto, Y.; Kido, A.; Minamiguchi, S.; Moribata, Y.; Okumura, R.; Mogami, H.; Nagano, T.; Konishi, I.; Togashi, K. Prenatal differential diagnosis of complete hydatidiform mole with a twin live fetus and placental mesenchymal dysplasia by magnetic resonance imaging. J. Obstet. Gynaecol. Res. 2014, 40, 1894–1900. [Google Scholar] [CrossRef]
- Van den Veyver, I.B.; Al-Hussaini, T.K. Biparental hydatidiform moles: A maternal effect mutation affecting imprinting in the offspring. Hum. Reprod. Update 2006, 12, 233–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.C.; Roper, E.C.; Sebire, N.J.; Stanek, J.; Anumba, D.O. Placental mesenchymal dysplasia associated with fetal aneuploidy. Prenat. Diagn. 2005, 25, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Kaiser-Rogers, K.A.; McFadden, D.E.; Livasy, C.A.; Dansereau, J.; Jiang, R.; Knops, J.F.; Lefebvre, L.; Rao, K.W.; Robinson, W.P. Androgenetic/biparental mosaicism causes placental mesenchymal dysplasia. J. Med. Genet. 2006, 43, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heazell, A.E.; Sahasrabudhe, N.; Grossmith, A.K.; Martindale, E.A.; Bhatia, K. A case of intrauterine growth restriction in association with placental mesenchymal dysplasia with abnormal placental lymphatic development. Placenta 2009, 30, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, R.A. Maternal effects and range expansion: A key factor in a dynamic process? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1075–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousseau, T.A.; Fox, C.W. The adaptive significance of maternal effects. Trends Ecol. Evol. 1998, 13, 403–407. [Google Scholar] [CrossRef]
- Begemann, M.; Rezwan, F.I.; Beygo, J.; Docherty, L.E.; Kolarova, J.; Schroeder, C.; Buiting, K.; Chokkalingam, K.; Degenhardt, F.; Wakeling, E.L.; et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J. Med. Genet. 2018, 55, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, E.; Lim, D.; Pasha, S.; Tee, L.J.; Rahman, F.; Yates, J.R.; Woods, C.G.; Reik, W.; Maher, E.R. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet. 2009, 5, e1000423. [Google Scholar] [CrossRef] [Green Version]
- Soellner, L.; Begemann, M.; Degenhardt, F.; Geipel, A.; Eggermann, T.; Mangold, E. Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. Eur. J. Hum. Genet. 2017, 25, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Coluccio, A.; Thorball, C.W.; Planet, E.; Shi, H.; Offner, S.; Turelli, P.; Imbeault, M.; Ferguson-Smith, A.C.; Trono, D. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 2019, 33, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Kitano, Y.; Ruchelli, E.; Weiner, S.; Adzick, N.S. Hepatic mesenchymal hamartoma associated with mesenchymal stem villous hyperplasia of the placenta. Fetal Diagn. Ther. 2000, 15, 134–138. [Google Scholar] [CrossRef]
- Nelissen, E.C.; van Montfoort, A.P.; Dumoulin, J.C.; Evers, J.L. Epigenetics and the placenta. Hum. Reprod. Update 2011, 17, 397–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, J.M.; Moore, G.E. The importance of imprinting in the human placenta. PLoS Genet. 2010, 6, e1001015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomizawa, S.; Sasaki, H. Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J. Hum. Genet. 2012, 57, 84–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.M.; Dixon, P.H.; Decordova, S.; Hodges, M.D.; Sebire, N.J.; Ozalp, S.; Fallahian, M.; Sensi, A.; Ashrafi, F.; Repiska, V.; et al. Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine-rich region. J. Med. Genet. 2009, 46, 569–575. [Google Scholar] [CrossRef]
- Edwards, C.A.; Ferguson-Smith, A.C. Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol. 2007, 19, 281–289. [Google Scholar] [CrossRef]
- Tremblay, K.D.; Saam, J.R.; Ingram, R.S.; Tilghman, S.M.; Bartolomei, M.S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 1995, 9, 407–413. [Google Scholar] [CrossRef]
- Peters, J.; Williamson, C.M. Control of imprinting at the Gnas cluster. Epigenetics 2007, 2, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Murdoch, S.; Djuric, U.; Mazhar, B.; Seoud, M.; Khan, R.; Kuick, R.; Bagga, R.; Kircheisen, R.; Ao, A.; Ratti, B.; et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat. Genet. 2006, 38, 300–302. [Google Scholar] [CrossRef]
- Weksberg, R.; Teshima, I.; Williams, B.R.; Greenberg, C.R.; Pueschel, S.M.; Chernos, J.E.; Fowlow, S.B.; Hoyme, E.; Anderson, I.J.; Whiteman, D.A.; et al. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum. Mol. Genet. 1993, 2, 549–556. [Google Scholar] [CrossRef]
- Ping, A.J.; Reeve, A.E.; Law, D.J.; Young, M.R.; Boehnke, M.; Feinberg, A.P. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am. J. Hum. Genet. 1989, 44, 720–723. [Google Scholar]
- Maher, E.R.; Reik, W. Beckwith-Wiedemann syndrome: Imprinting in clusters revisited. J. Clin. Investig. 2000, 105, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Reik, W.; Brown, K.W.; Schneid, H.; Le Bouc, Y.; Bickmore, W.; Maher, E.R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum. Mol. Genet. 1995, 4, 2379–2385. [Google Scholar] [CrossRef]
- Constancia, M.; Hemberger, M.; Hughes, J.; Dean, W.; Ferguson-Smith, A.; Fundele, R.; Stewart, F.; Kelsey, G.; Fowden, A.; Sibley, C.; et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002, 417, 945–948. [Google Scholar] [CrossRef]
- Eggenschwiler, J.; Ludwig, T.; Fisher, P.; Leighton, P.A.; Tilghman, S.M.; Efstratiadis, A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev. 1997, 11, 3128–3142. [Google Scholar] [CrossRef] [Green Version]
- Parveen, Z.; Tongson-Ignacio, J.E.; Fraser, C.R.; Killeen, J.L.; Thompson, K.S. Placental mesenchymal dysplasia. Arch. Pathol. Lab. Med. 2007, 131, 131–137. [Google Scholar] [CrossRef]
- Smilinich, N.J.; Day, C.D.; Fitzpatrick, G.V.; Caldwell, G.M.; Lossie, A.C.; Cooper, P.R.; Smallwood, A.C.; Joyce, J.A.; Schofield, P.N.; Reik, W.; et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc. Natl. Acad. Sci. USA 1999, 96, 8064–8069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, R.A.; Hodges, M.D.; Rees, H.C.; Sebire, N.J.; Seckl, M.J.; Newlands, E.S.; Genest, D.R.; Castrillon, D.H. The maternally transcribed gene p57(KIP2) (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum. Mol. Genet. 2002, 11, 3267–3272. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Meyer, N.; Day, C.D.; Khatod, K.; Maher, E.R.; Cooper, W.; Reik, W.; Junien, C.; Graham, G.; Algar, E.; Der Kaloustian, V.M.; et al. Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome. J. Med. Genet. 2003, 40, 797–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakheja, D.; Margraf, L.R.; Tomlinson, G.E.; Schneider, N.R. Hepatic mesenchymal hamartoma with translocation involving chromosome band 19q13.4: A recurrent abnormality. Cancer Genet. Cytogenet. 2004, 153, 60–63. [Google Scholar] [CrossRef]
- Reed, R.C.; Kapur, R.P. Hepatic mesenchymal hamartoma: A disorder of imprinting. Pediatr. Dev. Pathol. 2008, 11, 264–265. [Google Scholar] [CrossRef]
- Zhao, J.; Ohsumi, T.K.; Kung, J.T.; Ogawa, Y.; Grau, D.J.; Sarma, K.; Song, J.J.; Kingston, R.E.; Borowsky, M.; Lee, J.T. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 2010, 40, 939–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFadden, D.E.; Kalousek, D.K. Two different phenotypes of fetuses with chromosomal triploidy: Correlation with parental origin of the extra haploid set. Am. J. Med. Genet. 1991, 38, 535–538. [Google Scholar] [CrossRef]
- McFadden, D.E.; Langlois, S. Parental and meiotic origin of triploidy in the embryonic and fetal periods. Clin. Genet. 2000, 58, 192–200. [Google Scholar] [CrossRef]
- Vejerslev, L.O.; Sunde, L.; Hansen, B.F.; Larsen, J.K.; Christensen, I.J.; Larsen, G. Hydatidiform mole and fetus with normal karyotype: Support of a separate entity. Obstet. Gynecol. 1991, 77, 868–874. [Google Scholar]
- Sunde, L.; Vejerslev, L.O.; Jensen, M.P.; Pedersen, S.; Hertz, J.M.; Bolund, L. Genetic analysis of repeated, biparental, diploid, hydatidiform moles. Cancer Genet. Cytogenet. 1993, 66, 16–22. [Google Scholar] [CrossRef]
- Deveault, C.; Qian, J.H.; Chebaro, W.; Ao, A.; Gilbert, L.; Mehio, A.; Khan, R.; Tan, S.L.; Wischmeijer, A.; Coullin, P.; et al. NLRP7 mutations in women with diploid androgenetic and triploid moles: A proposed mechanism for mole formation. Hum. Mol. Genet. 2009, 18, 888–897. [Google Scholar] [CrossRef] [Green Version]
- Nwosu, E.C.; Ferriman, E.; McCormack, M.J.; Williams, J.H.; Gosden, C.M. Partial hydatidiform mole and hypertension associated with a live fetus--variable presentation in two cases. Hum. Reprod. 1995, 10, 2459–2462. [Google Scholar] [CrossRef] [PubMed]
- Nugent, C.E.; Punch, M.R.; Barr, M., Jr.; LeBlanc, L.; Johnson, M.P.; Evans, M.I. Persistence of partial molar placenta and severe preeclampsia after selective termination in a twin pregnancy. Obstet. Gynecol. 1996, 87, 829–831. [Google Scholar]
- Hsieh, C.C.; Hsieh, T.T.; Hsueh, C.; Kuo, D.M.; Lo, L.M.; Hung, T.H. Delivery of a severely anaemic fetus after partial molar pregnancy: Clinical and ultrasonographic findings. Hum. Reprod. 1999, 14, 1122–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhingra, K.K.; Gupta, P.; Saroha, V.; Akhila, L.; Khurana, N. Partial hydatidiform mole with a full-term infant. Indian J. Pathol. Microbiol. 2009, 52, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E. Partial moles: From postnatal to prenatal diagnosis. Placenta 1999, 20, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.; Geerts, L.T.; de Jong, G.; Wainwright, H. Mesenchymal dysplasia in a monochorionic diamniotic twin pregnancy with review of the differential diagnosis of cystic changes in the placenta. J. Ultrasound Med. 2007, 26, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Guven, E.S.; Ozturk, N.; Deveci, S.; Hizli, D.; Kandemir, O.; Dilbaz, S. Partial molar pregnancy and coexisting fetus with diploid karyotype. J. Matern Fetal Neonatal Med. 2007, 20, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Ferrer, M.L.; Ferri, B.; Almansa, M.T.; Carbonel, P.; Lopez-Exposito, I.; Minguela, A.; Abad, L.; Parrilla, J.J. Partial mole with a diploid fetus: Case study and literature review. Fetal Diagn. Ther. 2009, 25, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Drummond, S.; Fritz, E. Management of a partial molar pregnancy: A case study report. J. Perinat. Neonatal Nurs. 2009, 23, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lembet, A.; Zorlu, C.G.; Yalcin, H.R.; Seckin, B.; Ekici, E. Partial hydatidiform mole with diploid karyotype in a live fetus. Int. J. Gynaecol. Obstet. 2000, 69, 149–152. [Google Scholar] [CrossRef]
- McFadden, D.E.; Pantzar, J.T. Placental pathology of triploidy. Hum. Pathol. 1996, 27, 1018–1020. [Google Scholar] [CrossRef]
- Jalil, S.S.; Mahran, M.A.; Sule, M. Placental mesenchymal dysplasia-can it be predicted prenatally? A case report. Prenat. Diagn. 2009, 29, 713–714. [Google Scholar] [CrossRef]
- Berkowitz, R.S.; Goldstein, D.P. Clinical practice. Molar pregnancy. N. Engl. J. Med. 2009, 360, 1639–1645. [Google Scholar] [CrossRef]
- Tortoledo, M.; Galindo, A.; Ibarrola, C. Placental mesenchymal dysplasia associated with hepatic and pulmonary hamartoma. Fetal Pediatr. Pathol. 2010, 29, 261–270. [Google Scholar] [CrossRef]
- Cajaiba, M.M.; Sarita-Reyes, C.; Zambrano, E.; Reyes-Mugica, M. Mesenchymal hamartoma of the liver associated with features of Beckwith-Wiedemann syndrome and high serum alpha-fetoprotein levels. Pediatr. Dev. Pathol. 2007, 10, 233–238. [Google Scholar] [CrossRef]
- Slim, R.; Wallace, E.P. NLRP7 and the Genetics of Hydatidiform Moles: Recent Advances and New Challenges. Front. Immunol. 2013, 4, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messaed, C.; Chebaro, W.; Di Roberto, R.B.; Rittore, C.; Cheung, A.; Arseneau, J.; Schneider, A.; Chen, M.F.; Bernishke, K.; Surti, U.; et al. NLRP7 in the spectrum of reproductive wastage: Rare non-synonymous variants confer genetic susceptibility to recurrent reproductive wastage. J. Med. Genet. 2011, 48, 540–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messaed, C.; Akoury, E.; Djuric, U.; Zeng, J.; Saleh, M.; Gilbert, L.; Seoud, M.; Qureshi, S.; Slim, R. NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J. Biol. Chem. 2011, 286, 43313–43323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, H.; Okae, H.; Toh, H.; Chiba, H.; Hiura, H.; Shirane, K.; Sato, T.; Suyama, M.; Yaegashi, N.; Sasaki, H.; et al. Allele-Specific Methylome and Transcriptome Analysis Reveals Widespread Imprinting in the Human Placenta. Am. J. Hum. Genet. 2016, 99, 1045–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, C.W.; Penaherrera, M.S.; Saadeh, H.; Andrews, S.; McFadden, D.E.; Kelsey, G.; Robinson, W.P. Pervasive polymorphic imprinted methylation in the human placenta. Genome Res. 2016, 26, 756–767. [Google Scholar] [CrossRef]
- Hiura, H.; Hattori, H.; Kobayashi, N.; Okae, H.; Chiba, H.; Miyauchi, N.; Kitamura, A.; Kikuchi, H.; Yoshida, H.; Arima, T. Genome-wide microRNA expression profiling in placentae from frozen-thawed blastocyst transfer. Clin. Epigenetics 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Nelissen, E.C.M.; Dumoulin, J.C.M.; Daunay, A.; Evers, J.L.H.; Tost, J.; van Montfoort, A.P.A. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions. Hum. Reprod. 2013, 28, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, S.; Ramalho, C.; Marques, C.J.; Doria, S. Altered expression of epigenetic regulators and imprinted genes in human placenta and fetal tissues from second trimester spontaneous pregnancy losses. Epigenetics 2019, 14, 1234–1244. [Google Scholar] [CrossRef]
- Judson, H.; Hayward, B.E.; Sheridan, E.; Bonthron, D.T. A global disorder of imprinting in the human female germ line. Nature 2002, 416, 539–542. [Google Scholar] [CrossRef] [Green Version]
- El-Maarri, O.; Seoud, M.; Coullin, P.; Herbiniaux, U.; Oldenburg, J.; Rouleau, G.; Slim, R. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum. Mol. Genet. 2003, 12, 1405–1413. [Google Scholar] [CrossRef] [Green Version]
- Kou, Y.C.; Shao, L.; Peng, H.H.; Rosetta, R.; del Gaudio, D.; Wagner, A.F.; Al-Hussaini, T.K.; Van den Veyver, I.B. A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol. Hum. Reprod. 2008, 14, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plagge, A.; Isles, A.R.; Gordon, E.; Humby, T.; Dean, W.; Gritsch, S.; Fischer-Colbrie, R.; Wilkinson, L.S.; Kelsey, G. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol. Cell Biol. 2005, 25, 3019–3026. [Google Scholar] [CrossRef] [Green Version]
- Voon, H.P.; Hughes, J.R.; Rode, C.; De La Rosa-Velazquez, I.A.; Jenuwein, T.; Feil, R.; Higgs, D.R.; Gibbons, R.J. ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes. Cell Rep. 2015, 11, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Garrick, D.; Sharpe, J.A.; Arkell, R.; Dobbie, L.; Smith, A.J.; Wood, W.G.; Higgs, D.R.; Gibbons, R.J. Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet. 2006, 2, e58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.P.; Coan, P.; da Rocha, S.T.; Seitz, H.; Cavaille, J.; Teng, P.W.; Takada, S.; Ferguson-Smith, A.C. Differential regulation of imprinting in the murine embryo and placenta by the Dlk1-Dio3 imprinting control region. Development 2007, 134, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliushch, G.; Schneider, E.; Weise, D.; El Hajj, N.; Tresch, A.; Seidmann, L.; Coerdt, W.; Muller, A.M.; Zechner, U.; Haaf, T. Extreme methylation values of imprinted genes in human abortions and stillbirths. Am. J. Pathol. 2010, 176, 1084–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
STR Loci | Position | Paternal | Maternal | Cystic Tissue | Living Baby | Possible Parental Origin | Rule out AG? |
---|---|---|---|---|---|---|---|
D3S1358 | 3p | 15/18 | 15/17 | 15/17 | 15/17 | Not informative | Yes |
vWA | 12p12-pter | 17/18 | 16/19 | 17/19 | 17/19 | Biparental | Yes |
FGA | 4q28 | 23/27 | 19/20 | 20/23 | 20/23 | Biparental | Yes |
D8S1179 | 8 | 13/13 | 16/17 | 13/17 | 13/17 | Biparental | Yes |
D21S11 | 21 | 30/31.2 | 30/30.2 | 30/30.2 | 30/30.2 | Not informative | Yes |
D18S51 | 18q21.3 | 15/17 | 15/17 | 15/17 | 15/17 | Not informative | No |
D5S818 | 5q21-31 | 10/11 | 11/13 | 11/11 | 11/11 | Biparental | Yes |
D13S317 | 13q22-31 | 8/8 | 11/12 | 8/11 | 8/11 | Biparental | Yes |
D7S820 | 7q | 9/11 | 8/10 | 8/11 | 8/11 | Biparental | Yes |
TH01 | 11p15.5 | 7/7 | 6/6 | 6/7 | 6/7 | Biparental | Yes |
TPOX | 2p23-2per | 8/8 | 8/11 | 8/8 | 8/8 | Not informative | No |
CSF1PO | 5q33.3-34 | 11/13 | 10/12 | 10/13 | 10/13 | Biparental | Yes |
D2S1338 | 2q35-37.1 | 19/19 | 19/24 | 19/19 | 19/19 | Not informative | No |
D19S433 | 19q12-13.1 | 15.2/15.2 | 15/15 | 15/15.2 | 15/15.2 | Biparental | Yes |
PMD | PHM | Our Case | |
---|---|---|---|
Karyotype and cellular mosaicism | Almost always diploid, often due to chimerism of androgenetic cells in the placenta [39], except for some rare cases of balanced biparental population [40], trisomy 13 [11,41] or other aneuploidy [11]. | Mostly due to diandric triploidy [42,43]; some rare familial cases with diploid biparental origin [44,45,46]. | 46, XX Biparental, no signs of chimerism with either androgenetic or triploid cells. |
Coexisting with a healthy fetus | Yes (in most cases); sometimes with congenital hemangiomas, vascular hamartomas, and hepatic mesenchymal Hamartomas [20,23,40]. | Occasional. Two types: I. Twin pregnancy with one fetus and another partial mole [47,48]; II. Singleton fetus with partial mole [49,50]. | Healthy baby except for a cystic lesion in the liver representing a hamartoma. |
In association with IUGR, IGFD or neonatal death. | Yes [7] | Yes [51,52,53,54,55,56] | No |
Distinct placental phenotype | There are aneurysmal dilated vessels on the fetal surfaces of the placentas and dilated stem villi filled with clear gelatinous material in the subchorionic region and the absence of trophoblastic hyperplasia [35]. | Existence of a range of villi from normal to cystic with focal trophoblastic hyperplasia [57]. | Dilated blood vessels with fibrin deposits and myxedematous with stromal fibrosis in enlarged villi and focal presence of trophoblastic hyperplasia with scalloped villous outline. |
beta-hCG level | Normal or increased [1,52,58] | Greatly increased [55,59] or greatly decreased [52] | Elevated |
mutations/variants for maternal effect genes | Not clear | Yes [24] | Yes |
Potential altered dosages of imprinted gene expression | Yes, for all the cells of androgenetic origin and for the cases associated with BWS (15%) [13,35]. | Yes, for all cases: triploidy and familial biparental diploid cases. | Relaxation of GNAS and DLK1-DIO3 loci methylation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-C.; Chang, K.-C.; Chang, J.-Y.; Tsai, Y.-S.; Yang, Y.-J.; Chang, W.-C.; Mo, C.-F.; Yu, P.-H.; Chiang, C.-T.; Lin, S.-P.; et al. Variants in Maternal Effect Genes and Relaxed Imprinting Control in a Special Placental Mesenchymal Dysplasia Case with Mild Trophoblast Hyperplasia. Biomedicines 2021, 9, 544. https://doi.org/10.3390/biomedicines9050544
Huang T-C, Chang K-C, Chang J-Y, Tsai Y-S, Yang Y-J, Chang W-C, Mo C-F, Yu P-H, Chiang C-T, Lin S-P, et al. Variants in Maternal Effect Genes and Relaxed Imprinting Control in a Special Placental Mesenchymal Dysplasia Case with Mild Trophoblast Hyperplasia. Biomedicines. 2021; 9(5):544. https://doi.org/10.3390/biomedicines9050544
Chicago/Turabian StyleHuang, Tien-Chi, Kung-Chao Chang, Jen-Yun Chang, Yi-Shan Tsai, Yao-Jong Yang, Wei-Chun Chang, Chu-Fan Mo, Pei-Hsiu Yu, Chun-Ting Chiang, Shau-Ping Lin, and et al. 2021. "Variants in Maternal Effect Genes and Relaxed Imprinting Control in a Special Placental Mesenchymal Dysplasia Case with Mild Trophoblast Hyperplasia" Biomedicines 9, no. 5: 544. https://doi.org/10.3390/biomedicines9050544
APA StyleHuang, T. -C., Chang, K. -C., Chang, J. -Y., Tsai, Y. -S., Yang, Y. -J., Chang, W. -C., Mo, C. -F., Yu, P. -H., Chiang, C. -T., Lin, S. -P., & Kuo, P. -L. (2021). Variants in Maternal Effect Genes and Relaxed Imprinting Control in a Special Placental Mesenchymal Dysplasia Case with Mild Trophoblast Hyperplasia. Biomedicines, 9(5), 544. https://doi.org/10.3390/biomedicines9050544