Tools and Methods for Diagnosing Developmental Dysgraphia in the Digital Age: A State of the Art
Abstract
:1. Handwriting: Acquisition and Role
2. Handwriting Deficits
3. Handwriting Tools Based on the Product
4. Handwriting Tools Based on the Process
5. Perspectives: Toward a Universal Standardized Test of Dysgraphia?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cutler, L.; Graham, S. Primary grade writing instruction: A national survey. J. Educ. Psychol. 2008, 100, 907–919. [Google Scholar] [CrossRef]
- McMaster, E.; Roberts, T. Handwriting in 2015: A main occupation for primary school–aged children in the classroom? J. Occup. Ther. Schools Early Interv. 2016, 9, 38. [Google Scholar] [CrossRef]
- Jones, D.; Christensen, C.A. Relationship between automaticity in handwriting and students’ ability to generate written text. J. Educ. Psychol. 1999, 91, 44. [Google Scholar] [CrossRef]
- Danna, J.; Longcamp, M.; Nalborczyk, L.; Velay, J.-L.; Commengé, C.; Jover, M. Interaction between orthographic and graphomotor constraints in learning to write. Learn. Instruct. 2022, 80, 101622. [Google Scholar] [CrossRef]
- Pinto, G.; Incognito, O. The relationship between emergent drawing, emergent writing, and visual-motor intergraion in preschool children. Infant Child Dev. 2022, 31, e2284. [Google Scholar] [CrossRef]
- Bonoti, F.; Vlachos, F.; Metallidou, P. Writing and drawing performance of school age children: Is there any relationship? School Psychol. Intl. 2005, 26, 243–255. [Google Scholar] [CrossRef]
- Palmis, S.; Danna, J.; Velay, J.-L.; Longcamp, M. Motor control of handwriting in the developing brain: A review. Cogn. Neuropsychol. 2017, 34, 187–204. [Google Scholar] [CrossRef]
- Chung, P.J.; Patel, D.R.; Nizami, I. Disorder of written expression and dysgraphia: Definition, diagnosis, and management. Transl. Pediatr. 2020, 9 (Suppl. 1), S46–S54. [Google Scholar] [CrossRef]
- Kalenjuk, E.; Laletas, S.; Subban, P.; Wilson, S. A scoping review to map research on children with dysgraphia, their carers, and educators. Austral. J. Learn. Difficult. 2022, 27, 19–63. [Google Scholar] [CrossRef]
- Aiswarya, G.S.; Ponniah, R.J. The modularity of dysgraphia. J. Psycholinguist. Res. 2023, in press. [CrossRef]
- Hamstra-Bletz, L.; Blöte, A.W. A longitudinal study on dysgraphic handwriting in primary school. J. Learn. Disab. 1993, 26, 689–699. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Washington, DC, USA, 2013. [Google Scholar]
- Adi-Japha, E.; Landau, Y.E.; Frenkel, L.; Teicher, M.; Gross-Tsur, V.; Shalev, R.S. ADHD and dysgraphia: Underlying mechanisms. Cortex 2007, 43, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.L.; Prunty, M. Handwriting Difficulties in Developmental Coordination Disorder (DCD). Curr. Dev. Disord. Rep. 2020, 8, 6–14. [Google Scholar] [CrossRef]
- Biotteau, M.; Danna, J.; Baudou, E.; Puyjarinet, F.; Velay, J.-L.; Albaret, J.-M.; Chaix, Y. Developmental coordination disorder and dysgraphia: Signs and symptoms, diagnosis, and rehabilitation. Neuropsy. Dis. Treat. 2019, 15, 1873–1885. [Google Scholar] [CrossRef]
- Capodieci, A.; Lachina, S.; Cornoldi, C. Handwriting difficulties in children with attention deficit hyperactivity disorder (ADHD). Res. Dev. Disab. 2018, 74, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Cohen-Kroitoru, B.; Halevy, A.; Aharoni, S.; Aizenberg, I.; Shuper, A. Handwriting in children with Attention Deficient Hyperactive Disorder: Role of graphology. BMC Pediatr. 2019, 19, 484. [Google Scholar] [CrossRef] [PubMed]
- Di Brina, C.; Caravale, B.; Mirante, N. Handwriting in children with developmental coordination disorder: Is legibility the only indicator of a poor performance? Occup. Ther. Health Care 2021, 36, 353–367. [Google Scholar] [CrossRef]
- Berninger, V.W.; May, M.O. Evidence-based diagnosis and treatment for specific learning disabilities involving impairments in written and/or oral language. J. Learn. Disab. 2011, 44, 167–183. [Google Scholar] [CrossRef]
- Afonso, O.; Suárez-Coalla, P.; Cuetos, F. Writing impairments in Spanish children with developmental dyslexia. J. Learn. Disab. 2020, 53, 109–119. [Google Scholar] [CrossRef]
- Alamargot, D.; Morin, M.-F.; Simard-Dupuis, E. Handwriting delay in dyslexia: Children at the end of primary school still make numerous short pauses when producing letters. J. Learn. Disab. 2020, 53, 163–175. [Google Scholar] [CrossRef]
- Huau, A.; Velay, J.-L.; Jover, M. Graphomotor skills in children with developmental coordination disorder (DCD): Handwriting and learning a new letter. Hum. Mov. Sci. 2015, 42, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.P.; Papadopoulos, N.; Fielding, J.; Tonge, B.; Phillips, J.G.; Rinehart, N.J. Aquantitative comparison of handwriting in children with high-functioning autism andattention deficit hyperactivity disorder. Res. Autism Spectr. Dis. 2013, 7, 1638–1646. [Google Scholar] [CrossRef]
- Jolly, C.; Jover, M.; Danna, J. Dysgraphia differs between children with developmental coordination disorder and/or reading disorder. J. Learn. Disab. 2023, in press.
- Sandler, A.D.; Watson, T.E.; Footo, M.; Levine, M.D.; Coleman, W.L.; Hooper, S.R. Neurodevelopmental study of writing disorders in middle childhood. J. Dev. Behav. Pediatr. 1992, 13, 17–23. [Google Scholar] [CrossRef]
- Sumner, E.; Connelly, V.; Barnett, A.L. Children with dyslexia are slow writers because they pause more often and not because they are slow at handwriting execution. Read. Writ. 2013, 26, 991–1008. [Google Scholar] [CrossRef]
- Prunty, M.; Barnett, A.L. Accuracy and consistency of letter formation in children with developmental coordination disorder. J. Learn. Disab. 2020, 53, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; et al. Contrasting brain patterns of writing-relatedDTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia. NeuroImage Clin. 2015, 8, 408–421. [Google Scholar] [CrossRef]
- Gosse, C.; Van Reybroeck, M. Do children with dyslexia present a handwriting deficit? Impact of word orthographic and graphic complexity on handwriting and spelling performance. Res. Dev. Disab. 2020, 97, 103553. [Google Scholar] [CrossRef]
- Döhla, D.; Willmes, K.; Heim, S. Cognitive Profiles of Developmental Dysgraphia. Front. Psychol. 2018, 9, 2006. [Google Scholar] [CrossRef]
- Berninger, V.; Abbott, R.; Cook, C.R.; Nagy, W. Relationships of attention and executive functions to oral language, reading, and writing skills and systems in middle childhood and early adolescence. J. Learn. Disab. 2017, 50, 434–449. [Google Scholar] [CrossRef]
- Graham, S.; Harris, K.R. The role of self-regulation and transcription skills in writing and writing development. Educ. Psychol. 2000, 35, 3–12. [Google Scholar] [CrossRef]
- Nielsen, S.K.; Kelsch, K.; Miller, K. Occupational therapy interventions for children with attention deficit hyperactivity disorder: A systematic review. Occup. Ther. Mental Health 2017, 33, 70–80. [Google Scholar] [CrossRef]
- Markham, L.R. Influences of handwriting quality on teacher evaluation of written work. Am. Educ. Res. J. 1976, 13, 277–283. [Google Scholar] [CrossRef]
- Engel-Yeger, B.; Nagauker-Yanuv, L.; Rosenblum, S. Handwriting performance, selfreports, and perceived self-efficacy among children with dysgraphia. Am. J. Occup. Ther. 2009, 63, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Fishman, E.J.; Reid, R.; Hebert, M. Writing characteristics of students with attention deficit hyperactive disorder: A meta-analysis. Learn. Disab. Res. Pract. 2016, 31, 75–89. [Google Scholar] [CrossRef]
- Coradinho, H.; Melo, F.; Almeida, G.; Veiga, G.; Marmeleira, J.; Teulings, H.-L.; Matias, A.R. Relationship between product and process characteristics of handwriting skills of children in the second grade of elementary school. Children 2023, 10, 445. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, S.; Weiss, P.L.; Parush, S. Product and process evaluation of handwriting difficulties. Educ. Psychol. Rev. 2003, 15, 41–81. [Google Scholar] [CrossRef]
- Asselborn, T.; Chapatte, M.; Dillenbourg, P. Extending the spectrum of dysgraphia: A data driven strategy to estimate handwriting quality. Sci. Rep. 2020, 10, 3140. [Google Scholar] [CrossRef]
- Drotár, P.; Dobeš, M. Dysgraphia detection through machine learning. Sci. Rep. 2020, 10, 21541. [Google Scholar] [CrossRef]
- Guilbert, J.; Alamargot, D.; Morin, M.F. Handwriting on a tablet screen: Role of visual and proprioceptive feedback in the control of movement by children and adults. Hum. Mov. Sci. 2019, 65, 30–41. [Google Scholar] [CrossRef]
- Rosenblum, S.; Dror, G. Identifying developmental dysgraphia characteristics utilizing handwriting classification methods. IEEE Trans. Hum. Mach. Syst. 2017, 47, 293–298. [Google Scholar] [CrossRef]
- Moetesum, M.; Diaz, M.; Masroor, U.; Siddiqi, I.; Vessio, G. A survey of visual and procedural handwriting analysis for neuropsychological assessment. Neural Comput. Appl. 2022, 34, 9561–9578. [Google Scholar] [CrossRef]
- Hamstra-Bletz, E.; de Bie, J.; den Brinker, B.P.L.M. Beknopte Beoordelingsmethode voor Kinderhandschriften/Concise Evaluation Scale for Children’s Handwriting; Swets & Zeitlinger: Lisse, The Netherlands, 1987. [Google Scholar]
- Soppelsa, R.; Albaret, J.-M. BHK Ado; Editions du Centre de Psychologie Appliquée: Paris, France, 2013. [Google Scholar]
- Cornoldi, C.; Ferrara, R.; Re, A.M. BVSCO-3 Batteria per la Valutazione Clinica della SCRITTURA e della Competenza Ortografica–3 [BVSCO-3, Battery for the Assessment of Writing and Spelling Accuracy]; Giunti Psychometrics: Firenze, Italy, 2022. [Google Scholar]
- Phelps, J.; Stempel, L.; Speck, G. The Children’s Handwriting Scale: A new diagnostic tool. J. Educ. Res. 1985, 79, 46–50. [Google Scholar] [CrossRef]
- Phelps, J.; Stempel, L. The Children’s Handwriting Evaluation Scale for manuscript writing. Read. Improv. 1988, 25, 247–254. [Google Scholar]
- Barnett, A.; Henderson, S.; Scheib, B.; Schulz, J. Development and standardization of a new handwriting speed test: The Detailed Assessment of Speed of Handwriting. Teach. Learn. Writ. 2009, 1, 137–157. [Google Scholar]
- Scott, D.H.; Moyes, F.A.; Henderson, S.E. Diagnosis and Remediation of Handwriting Problems; DRAKE Educational Associate: Fairwater, UK, 1985. [Google Scholar]
- Amundson, S.J. Evaluation Tool of Children’s Handwriting; OT KIDS: Homer, AK, USA, 1995. [Google Scholar]
- Pouhet, A. L’évaluation de la vitesse d’écriture manuelle à l’aide d’une dictée de niveau progressif: L’EVEDP. Approches Neuropsychologiques des Apprentissages de l’Enfant 2005, 136–137, 354–363. [Google Scholar]
- Erez, N.; Parush, S. The Hebrew Handwriting Evaluation; School of Occupational Therapy, Faculty of Medicine, Hebrew University of Jerusalem: Jerusalem, Israel, 1999. [Google Scholar]
- Barnett, A.L.; Prunty, M.; Rosenblum, S. Development of the handwriting legibility scale (HLS): A preliminary examination of reliability and validity. Res. Dev. Disab. 2018, 72, 240–247. [Google Scholar] [CrossRef]
- Pollock, N.; Lockhart, J.; Blowes, B.; Semple, K.; Webster, M.; Farhat, L.; Jacbson, J.; Bradley, J.; Brunetti, S. The McMAster Handwriting Assessment Protocol, 2nd ed.; McMaster University: Hamilton, ON, Canada, 2009. [Google Scholar]
- Reisman, J.E. Development and reliability of the research version of the Minnesota Handwriting Test. Phys. Occup. Ther. Pediatr. 1993, 13, 41–55. [Google Scholar] [CrossRef]
- Reisman, J.E. Minnesota Handwriting Assessment; Harcourt Assessment: San Antonio, TX, USA, 1999. [Google Scholar]
- Mutti, M.; Martin, N.; Sterling, H.; Spalding, N. QNST-3R: Quick Neurological Screening Test, 3rd ed.; Academic Therapy Publications: Novato, CA, USA, 2017. [Google Scholar]
- Weil, M.J.; Cunningham Amundson, S.J. Relationship between visuomotor and handwriting skills of children in kindergarten. Am. J. Occup. Ther. 1994, 48, 982–988. [Google Scholar] [CrossRef]
- Larsen, S.C.; Hammill, D.D. Test of Legible Handwriting: An Ecological Approach to Holistic Assessment; Pro-Ed: Austin, TX, USA, 1989. [Google Scholar]
- Milone, M. THS-R: Test of Handwriting Skills. Revised; Academic Therapy Publications: Novato, CA, USA, 2007. [Google Scholar]
- Chartrel, E.; Vinter, A. The impact of spatio-temporal constraints on cursive letter handwriting in children. Learn. Instruct. 2008, 18, 537–547. [Google Scholar] [CrossRef]
- Fitzpatrick, P.; Vander Hart, N.; Cortesa, C. The influence of instructional variables and task constraints on handwriting performance. J. Educ. Res. 2013, 106, 216–234. [Google Scholar] [CrossRef]
- Charles, M.; Soppelsa, R.; Albaret, J.-M. BHK—Echelle D’évaluation Rapide de L’écriture chez L’enfant; Editions du Centre de Psychologie Appliquée: Paris, France, 2003. [Google Scholar]
- Rosenblum, S. Development, reliability, and validity of the Handwriting Proficiency Screening Questionnaire (HPSQ). Am. J. Occup. Ther. 2008, 62, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, S.; Gafni Lachter, L. Handwriting Proficiency Screening Questionnaire for Childrne (HPSQ-C); Development, reliability, and validity. Am. J. Occup. Ther. 2015, 69, 6903220030-1–6903220030-9. [Google Scholar] [CrossRef]
- Santamaria, M.; Albaret, J.-M. Troubles graphomoteurs chez les enfants d’intelligence supérieure. Evol. Psychomot. 1996, 33, 113–120. [Google Scholar]
- Di Brina, C.; Rossini, G. Test BHK-Scala Sintetica per la Valutazione della Scrittura in età Evolutiva; Erickson: Portland, OR, USA, 2011. [Google Scholar]
- Loizzo, A.; Zaccaria, V.; Caravale, B.; Di Brina, C. Validation of the concise assessment scale for children’s handwriting (BHK) in an Italian population. Children 2023, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Dimauro, G.; Bevilacqua, V.; Colizzi, L.; Di Pierro, D. TestGraphia, a software system for the early diagnosis of dysgraphia. IEEE Access 2020, 8, 19564–19575. [Google Scholar] [CrossRef]
- Isa, I.S.; Rahimi, W.N.S.; Ramlan, S.A.; Sulaiman, S.N. Automated detection of dyslexia symptom based on handwriting image for primary school children. Proced. Comp. Sci. 2019, 163, 440–449. [Google Scholar] [CrossRef]
- Skunda, J.; Nerusil, B.; Polec, J. Method for Dysgraphia Disorder Detection using Convolutional Neural Network. In Proceedings of the 30th International. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Pilzen, Czech Republic, 17–20 May 2022. [Google Scholar]
- Asselborn, T.; Gargot, T.; Kidziński, Ł.; Johal, W.; Cohen, D.; Jolly, C.; Dillenbourg, P. Automated Human-Level Diagnosis of Dysgraphia Using a Consumer Tablet. Npj Dig. Med. 2018, 1, 42. [Google Scholar] [CrossRef]
- Dankovičová, Z.; Hurtuk, J.; Feciľak, P. Evaluation of Digitalized Handwriting for Dysgraphia Detection Using Random Forest Classification Method. In Proceedings of the 2019 IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 12–14 September 2019; pp. 000149–000154. [Google Scholar] [CrossRef]
- Devillaine, L.; Lambert, R.; Boutet, J.; Aloui, S.; Brault, V.; Jolly, C.; Labyt, E. Analysis of Graphomotor Tests with Machine learning Algorithms for an Early and Universal Pre-Diagnosis of Dysgraphia. Sensors 2021, 21, 7026. [Google Scholar] [CrossRef]
- Deschamps, L.; Devillaine, L.; Gaffet, C.; Lambert, R.; Aloui, S.; Boutet, J.; Brault, V.; Labyt, E.; Jolly, C. Development of a pre-diagnosis tool based on machine learning Algorithms on the BHK test to improve the diagnosis of dysgraphia. Adv. Artif. Intell. Mach. Learn. 2021, 1, 109–128. [Google Scholar] [CrossRef]
- Dui, L.G.; Lunardini, F.; Termine, C.; Matteucci, M.; Stucchi, N.A.; Borghese, N.A.; Ferrante, S. A tablet app for handwriting skill screening at the preliteracy stage: Instrument validation study. JMIR Serious Games 2020, 8, e20126. [Google Scholar] [CrossRef] [PubMed]
- Dui, L.G.; Calogero, E.; Malavolti, M.; Termine, C.; Matteucci, M.; Ferrante, S. Digital tools for handwriting proficiency evaluation in children. In Proceedings of the 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Athens, Greece, 27–30 July 2021; pp. 1–4. [Google Scholar]
- Dui, L.G.; Lomurno, E.; Lunardini, F.; Termine, C.; Campi, A.; Matteucci, M.; Ferrante, S. Identification and characterization of learning weakness from drawing analysis at the pre-literacy stage. Sci. Rep. 2022, 12, 21624. [Google Scholar] [CrossRef] [PubMed]
- Falk, T.H.; Tam, C.; Schellnus, H.; Chau, T. On the development of a computer-based handwriting assessment tool to objectively quantify handwriting proficiency in children. Comp. Meth. Progr. Biomed. 2011, 104, e102–e111. [Google Scholar] [CrossRef]
- Galaz, Z.; Mucha, J.; Zvoncak, V.; Mekyska, J.; Smekal, Z.; Safarova, K.; Ondrackova, A.; Urbanke, T.; Havigerova, J.M.; Bednarova, J.; et al. Advanced parametrization of graphomotor difficulties in school-aged children. IEEE Access 2020, 8, 112883–112897. [Google Scholar] [CrossRef]
- Gargot, T.; Asselborn, T.; Pellerin, H.; Zammouri, I.; Anzalone, S.M.; Casteran, L.; Johal, W.; Dillenbourg, P.; Cohen, D.; Jolly, C. Acquisition of handwriting in children with and without dysgraphia: A computational approach. PLoS ONE 2020, 15, e0237575. [Google Scholar] [CrossRef] [PubMed]
- Herstic, A.Y.; Bansil, S.; Plotkin, M.; Zabel, T.A.; Mostofsky, S.H. Validity of an automated handwriting assessment in occupational therapy settings. J. Occup. Ther. Schools Early Interv. 2022, 16, 28–38. [Google Scholar] [CrossRef]
- Kedar, S.V. Identifying Learning Disability Through Digital Handwriting Analysis. Turk. J. Comp. Math. Educ. (TURCOMAT) 2021, 12, 46–56. [Google Scholar] [CrossRef]
- Kunhoth, J.; Al Maadeed, S.; Saleh, M.; Akbari, Y. Exploration and analysis of On-Surface and In-Air handwriting attributes to improve dysgraphia disorder diagnosis in children based on machine learning methods. Biomed. Sign. Process. Control 2023, 83, 104715. [Google Scholar] [CrossRef]
- Mekyska, J.; Faundez-Zanuy, M.; Mzourek, Z.; Galaz, Z.; Smekal, Z.; Rosenblum, S. Identification and rating of developmental dysgraphia by handwriting analysis. IEEE Trans. Hum. Mach. Syst. 2016, 47, 235–248. [Google Scholar] [CrossRef]
- Mekyska, J.; Galaz, Z.; Safarova, K.; Zvoncak, V.; Mucha, J.; Smekal, Z.; Ondrackova, A.; Urbanek, T.; Havigerova, J.M.; Bednarova, J.; et al. Computerised assessment of graphomotor difficulties in a cohort of school-aged children. In Proceedings of the 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Dublin, Ireland, 28–30 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rosenblum, S.; Dvorkin, A.Y.; Weiss, P.L. Automatic segmentation as a tool for examining the handwriting process of children with dysgraphic and proficient handwriting. Hum. Mov. Sci. 2006, 25, 608–621. [Google Scholar] [CrossRef]
- Sihwi, S.W.; Fikri, K.; Aziz, A. Dysgraphia identification from handwriting with Support Vector Machine method. J. Physics Conf. Series 2019, 1201, 012050. [Google Scholar] [CrossRef]
- Zvoncak, V.; Mekyska, J.; Safarova, K.; Smekal, Z.; Brezany, P. New approach of dysgraphic handwriting analysis based on the tunable Q-factor wavelet transform. In Proceedings of the 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 289–294. [Google Scholar]
- Zvoncak, V.; Mucha, J.; Galaz, Z.; Mekyska, J.; Safarova, K.; Faundez-Zanuy, M. Fractional order derivatives evaluation in computerized assessment of handwriting difficulties in school-aged children. In Proceedings of the 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Dublin, Ireland, 28–30 October 2019; pp. 1–6. [Google Scholar]
- Lopez, C.; Vaivre-Douret, L. Exploratory investigation of handwriting disorders in school-aged children from first to fifth grade. Children 2023, 10, 1512. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, L.; Gaffet, C.; Aloui, S.; Boutet, J.; Brault, V.; Labyt, E. Methodological issues in the creation of a diagnosis tool for dysgraphia. NPJ Dig. Med. 2019, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.; Boutet, J.; Labyt, E.; Jolly, C. Analysis of Eye Movements in Children with Developmental Coordination Disorder During a Handwriting Copy Task. In Proceedings of the International Graphonomics Conference, Evora, Portugal, 16–19 October 2023; Springer Nature: Cham, Switzerland, 2023; pp. 36–44. [Google Scholar]
- Lopez, C.; Cannafarina, A.; Vaivre-Douret, L. Validity of kinematics measures to assess handwriting development and disorders with a graphomotor task. Eur. Psych. 2021, 64, S212. [Google Scholar] [CrossRef]
- Bublin, M.; Werner, F.; Kerschbaumer, A.; Korak, G.; Geyer, S.; Rettinger, L.; Schönthaler, E.; Schmid-Kietreiber, M. Handwriting evaluation using deep-leraning with SensoGrip. Sensors 2023, 23, 5215. [Google Scholar] [CrossRef]
- Lopez, C.; Vaivre-Douret, L. Concurrent and predictive validity of a cycloid loops copy task to assess handwriting disorders in children. Children 2023, 10, 305. [Google Scholar] [CrossRef]
- Safarova, K.; Mekyska, J.; Zvoncak, V. Developmental dysgraphia: A new approach to diagnosis. Int. J. Assess. Eval. 2021, 28, 143–160. [Google Scholar] [CrossRef]
Tool Name | Reference | Age/Class | Duration of Test | Language | Task(s) | Subdomains |
---|---|---|---|---|---|---|
BHK: Brave Handwriting Kinder | [44] | 1st to 5th grade | 5 mn | Multi-language | Copy | Quality Speed |
BHK Ado: Rapid Writing Evaluation Scale for Adolescents (Echelle d’Evaluation Rapide de l’Ecriture Chez l’Adolescent) | [45] | 6th to 9th grade | 5 mn | French | Copy | Quality Speed |
BVSCO-3: Test for the Evaluation of Writing and Orthographic Ability, 3rd ed. | [46] | 6–14 y | Variable | Multi-language | Copy Dictation Spontaneous production | Speed % of errors |
CHES: Children’s Handwriting Evaluation Scale | [47] | 3rd to 8th grade | 2 mn | English | Copy | Quality Fluency |
CHES-M: Children’s Handwriting Evaluation Scale—Manuscript Writing | [48] | 1st to 2nd grade | 2 mn | English | Copy | Quality Fluency |
DASH: Detailed Assessment of Speed of Handwriting | [49] | 9–16 y | 14 mn | English | Alphabet copy at normal and high speed Spontaneous production | Speed |
DRHP: Diagnosis and Remediation of Handwriting Problems | [50] | From 3rd grade | Variable | English | Spontaneous production from images observation | Quality |
ETCH-M: Evaluation Tool of Children’s Handwriting—Manuscript | [51] | 1st to 2nd grade | 15–20 mn | English | Copy Dictation Spontaneous production Handwriting from memory | Quality Speed |
EVEDP: Evaluation de la Vitesse d’Ecriture—Dictée Progressive | [52] | 2nd to 5th grade | Variable | French | Dictation | Speed |
HHE: Hebrew Handwriting Evaluation | [53] | 6–18 y | 5 min | Hebrew | Alphabet Copy Dictation Spontaneous production | Quality Speed |
HLS: Handwriting Legibility Scale | [54] | 9–14 y | 10 mn | English | Spontaneous production | Quality |
MMHAP: Mac Master Handwriting Assessment Protocol | [55] | Preschool to 6th grade | Variable | English | Copy Dictation Spontaneous production Handwriting from memory | Quality Speed |
MHA: Minnesota Handwriting Assessment | [56,57] | 1st to 2nd grade | 2.5 mn | English | Alphabet Copy | Quality Speed |
QNST-3 Revised: Quick Neurological Screening Test, 3rd ed. Revised | [58] | 5–80 y | 30 mn | English | Copy | Quality |
SCRIPT: Scale of Children’s Readiness in Printing | [59] | N.A. | 3–8 mn | English | Copy | Quality |
TOLH: Test of Legible Handwriting | [60] | 2nd to 12th grade | Variable | English | Spontaneous production Text composition at school | Quality |
THS-R | [61] | 6–18 y | N.A. | English | Alphabet Copy | Quality |
Test Name [Ref] | Number of Participants | Country of Validation | Validity | Inter-Rater Reliability | Test–Retest Reliability | Internal Consistency |
---|---|---|---|---|---|---|
BHK [11,44] | 121 | Netherlands | Content and construct | .71 to .89 | .74 to .86 | N.A. |
BHK—French Adaptation [64] | 837 | France | Content and construct | .68 to .90 | .80 to .92 | N.A. |
BHK Ado [45] | 471 | France | Construct | .24 to .66 | N.A. | N.A. |
BHK—Italian adaptation [68,69] | 562 | Italy | Content and construct | .82 to .93 for speed .42 to .63 for quality | N.A. | N.A. |
CHES-M [48] | 643 | USA | N.A. | .85 to .93 | N.A. | N.A. |
DASH [49] | 1163 | Netherlands | Content and construct | .85 to .99 | .50 to .92 .81 | .88 to .94 |
DRHP [50] | 300 | UK | Construct | .61 to .65 | N.A. | N.A. |
ETCH-M [51] | N.A. | N.A. | N.A. | .75 to .92 | .63 to .77 | N.A. |
HHE [53] | N.A. | Israël | Content and construct | .75 to .79 | N.A. | N.A. |
HPSQ [65] | 230 | Israël | Content and construct | .92 | .84 | .90 |
MHA [56,57] | N.A. | USA | Content and construct | .87 to .98 | .58 to .94 | N.A. |
THS-R [61] | N.A. | USA | Construct | N.A. | .82 | N.A. |
TOLH [60] | 1723 | USA | Content and construct | .95 | .90 | .86 |
Ref | Age/Class | Characteristics of Participants | Task(s) | Language | Approach | Performances |
---|---|---|---|---|---|---|
[70] | 7–10 y | Dysgraphic | BHK (5 lines) | Italian | Algorithms for document analysis | Sensitivity: 83% Specificity: 98% Precision: 96% |
[71] | 7–12 y | Dyslexic | Letter and digit writing | Malaysian | Machine learning (ANN) | Sensitivity: 73% |
[72] | 8–15 y | Typically developing and dysgraphic | Letters, syllables, words, pseudowords, and sentences | Slovak | Machine learning (CNN, RF, SVM, AdaBoost) | Precision: 79.7% |
Reference | Age/Class | n | Tasks | Language/Alphabet | Approach | Criteria Analyzed | Performances |
---|---|---|---|---|---|---|---|
[73] | 6–10 y | 242 TD 56 DG | Copy of a text (BHK) | French | RF | Static Kinematic Pressure Pen tilt | SE: 96.6% SP: 99.2% P: 97.98% |
[39] | 5–12 y | 390 TD 58 DG | Letters, words, sentences | French | PCA + K-means clustering | Static Kinematic | SE: 91% SP: 90% |
[74] | 10–13 y | 39 TD 39 DG | Letters, words, sentences | Slovak | SVM | Kinematic | SE: 75.5% |
[75] | 7–11 y | 262 TD 63 DG | Copy of graphic shapes | N.A. | SVM, RF, MLP, extra trees, AdaBoost, Gaussian Naive Bayes | Kinematic | SE: 75.1% (RF) SP: 72.1% (MLP) P: 73% (extra trees), 73.4% (RF) |
[76] | 7–11 y | 458 TD 122 DG | Copy of a text (BHK) | French | SVM | Kinematic Spatial | SE: 91% SP: 81% P: 86% |
[40] | 8–15 y | 63 TD 57 DG | Letters, syllables, words, pseudowords, sentences with speed constraints | Slovak | AdaBoost, RF, SVM | Kinematic | SE: 79.7% SP: 76.7% P: 80% |
[77] | 5–8 y | 76 TD 28 DG | Copy of words (8y), graphic shapes (5 and 8 y) | Italian | Statistical comparisons between groups | Kinematic Pressure | N.A. |
[78] | 7–8 y | 52 TD | Subtest of the BVSCO-2 (digits, sequences of small and large loops, words) | Italian | Statistical comparisons | Kinematic | N.A. |
[79] | 5 y | 241 “at-risk of DG” | Copy of graphic shapes | N.A. | One-dimensional CNN | Kinematic | SE: 75% SP: 77% P: 76% |
[80] | 6–7 y | 26 TD 9 DG | MHA | English | Statistical comparisons | Static Kinematic | N.A. |
[81] | 8–12 y | 26 TD | Copy of graphic shapes | Czech | Q factor wavelet transform + statistical comparisons | Static Kinematic | P: 84% |
27 DG | |||||||
[82] | 7–10 y | 218 TD 62 DG | Copy of a text (BHK) | French | Statistical comparisons between groups (linear regression), clustering | Static Kinematic Pressure Pen tilt | N.A. |
[83] | 6–11 y | 5 TD 9 ADHD | Dictation of letters and digits MHA | English | Statistical correlations between manual and digital data | Static Kinematic | N.A. |
[84] | 7–12 y | 60 | Copy of words, sentences, and graphic shapes | Latin | RF, decision tree, SVM | Kinematic | SE: 92.8% P: 92.6% |
[85] | 8–15 y | 63 TD 57 DG | Letters, words, sentences | Slovak | KNN, SVM, RF, AdaBoost | Kinematic (on-surface and in-air) | SE: 78.5% P: 80.8% |
[86] | 8 y | 27 TD | Letters | Hebrew | RF, linear discriminant analysis | Kinematic | SE: 96% |
27 DG | |||||||
[87] | 8–9 y | 61 TD 15 DG | Copy of patterns and figures | Czech | XG-Boost | Kinematic | SE: 90% |
[88] | 8–9 y | 14 TD 14 DG | Copy of a text | Hebrew | Statistical comparisons between groups | Static Kinematic | N.A. |
[42] | 8–9 y | 50 TD 49 DG | Copy of letters and sentences | Hebrew | SVM | Static Kinematic | SE: 90% SP: 90% P : 89.9% |
[89] | 8–11 y | 32 TD | Spontaneous writing (sentences), drawings | Indonesian | SVM and RBF Kernel | Kinematic | P: 82.5% |
[90] | 8–9 y | 33 TD 32 DG | Copy of a text | Czech | Tunable Q-factor wavelet transform, RF and SVM classifiers | Kinematic | SE: 88.7% SP: 83% P: 84.7% |
[91] | 8–9 y | 30 TD 25 DG | Spontaneous writing of letters | Czech | Correlation between the kinematic features and the HPSQ-C | Kinematic | N.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danna, J.; Puyjarinet, F.; Jolly, C. Tools and Methods for Diagnosing Developmental Dysgraphia in the Digital Age: A State of the Art. Children 2023, 10, 1925. https://doi.org/10.3390/children10121925
Danna J, Puyjarinet F, Jolly C. Tools and Methods for Diagnosing Developmental Dysgraphia in the Digital Age: A State of the Art. Children. 2023; 10(12):1925. https://doi.org/10.3390/children10121925
Chicago/Turabian StyleDanna, Jérémy, Frédéric Puyjarinet, and Caroline Jolly. 2023. "Tools and Methods for Diagnosing Developmental Dysgraphia in the Digital Age: A State of the Art" Children 10, no. 12: 1925. https://doi.org/10.3390/children10121925
APA StyleDanna, J., Puyjarinet, F., & Jolly, C. (2023). Tools and Methods for Diagnosing Developmental Dysgraphia in the Digital Age: A State of the Art. Children, 10(12), 1925. https://doi.org/10.3390/children10121925