Influences of Psychomotor Behaviors on Learning Swimming Styles in 6–9-Year-Old Children
Abstract
:1. Introduction
Conduits of Psychomotricity and Their Manifestation in Swimming
2. Materials and Methods
2.1. Aim and Hypotheses
2.2. Research Subjects
2.3. Measurement and Evaluation of Variables
2.4. Statistical Analyses
3. Results
3.1. Descriptive Statistical Analysis
3.2. Inferential Statistical Analysis-Hypothesis Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Tests for Measuring and Evaluating Independent Variables
- ⮚
- Coordinating the movements of the upper limbs from the initial position standing slightly apart:
- (1)
- Rotating the arms from the shoulder joint, simultaneously forward;
- (2)
- Rotating the arms from the shoulder joint, simultaneously backwards;
- (3)
- Rotation of the arms from the shoulder joint, simultaneously, the right forward and the left backward;
- (4)
- Rotation of the arms from the shoulder joint, simultaneously, the left forward and the right backward;
- (5)
- Arm shears in the transverse plane with the hands from thigh level above the head and vice versa, the lower limbs are perfectly stretched.
- ⮚
- Coordination of the lower limbs—jumping on the coordination scale:
- (6)
- Successive jumps on both legs;
- (7)
- Successive jumps with the right leg, followed by jumps with the left leg;
- (8)
- Successive alternating jumps (right/left);
- (9)
- Successive jumps on both legs (from near to far; inside and outside the steps of the coordination ladder);
- (10)
- Lateral jumps, successive, from one foot to another.
- ⮚
- General coordination and spatial orientation:
- (11)
- The Matorin test [95], which consisted of a jump on both feet with an attempt to turn 3600 around the longitudinal axis of the body.
Appendix A.2. Tests for Measuring the Dependent Variables
- -
- Assessment of the movement of the upper limbs in the active phase—action of the hand through the water:
- (1)
- The hand enters the water with the thumb;
- (2)
- The hand enters the water in the extension of the head between the shoulder and the sagittal plane;
- (3)
- The hand grabs the water (flexion of the hand on the forearm);
- (4)
- Drawing water, the upper limb flexed at the elbow;
- (5)
- Pushing the water, the palm reaches the thigh;
- (6)
- The hand leaves the water with the little finger.
- -
- Assessment of the movement of the upper limbs in the preparatory phase—the action of the hand through the air:
- (7)
- Rotation of the arm from the shoulder joint, the forearm flexed on the arm, in the aerial way the elbow is higher than the hand.
- -
- Assessment of the movement of the lower limbs in the descending and ascending phase:
- (8)
- The whipping movement of the lower limbs;
- (9)
- Plantar flexion of the foot, the heel leaves the water;
- (10)
- The range of motion between the two lower limbs is correct (35–45 cm).
- -
- Assessment of coordination between upper and lower limbs:
- (11)
- When executing a cycle of movements of the upper limbs, the presence of two cycles of movements of the lower limbs.
- -
- Assessment of lateral breathing (breathing with two arms) and its coordination with the execution technique:
- (12)
- The lateral twisting of the head (cervical area) is doubled by the twisting of the trunk only from the thoracic area (the hips are not involved in this movement), and the upper limb that is in the water must be stretched in the extension of the body;
- (13)
- The head does not lose contact with the water during lateral breathing (without head extension);
- (14)
- The distance between the chin and the chest is the same (both in the lying face-down position and during the lateral twisting movement);
- (15)
- Inhalation is through the mouth, deep and short, in the active phase (through the water) of an upper limb (right or left—at your choice), followed by a short apnea when the hand leaves the water;
- (16)
- Exhalation through the mouth and nose, slow and long, in the active phase (through water) of the other upper limb (opposite to the one we referred to for inspiration);
- (17)
- The direction of movement on the water is linear, without left–right oscillations.
- -
- Assessment of the movement of the upper limbs in the active phase—the action of the hand through the water:
- (1)
- The hand enters the water with the little finger;
- (2)
- The hand enters the water in the extension of the head next to the shoulder;
- (3)
- The hand grabs the water (flexion of the hand on the forearm);
- (4)
- Pulling the water, the upper limb flexed at the elbow (side rowing);
- (5)
- Pushing the water, the palm reaches the thigh;
- (6)
- The hand leaves the water with the thumb.
- -
- Assessment of the movement of the upper limbs in the preparatory phase—the action of the hand through the air:
- (7)
- Rotation of the upper limb from the shoulder joint, perfectly stretched from the elbow and hand joints; this movement is doubled by the internal rotation (in the longitudinal axis) of the upper limb near the shoulder so that the hand enters the water with the little finger.
- -
- Assessment of the movement of the lower limbs in the descending and ascending phase:
- (8)
- Whipping movement of lower limbs;
- (9)
- Plantar flexion of the foot, the phalanges of the toes leave the water;
- (10)
- The amplitude of the movement between the two lower limbs is correct (35–45 cm);
- (11)
- The head (cervical area) does not lose contact with the water;
- (12)
- The head is in a slight flexion with respect to the trunk, the distance between the chin and the chest is the same (over the entire travel distance).
- -
- Assessment of coordination between upper and lower limbs:
- (13)
- When performing a cycle of upper limb movements, the presence of two lower limb movement cycles.
- -
- Assessment of breathing and its coordination with the execution technique:
- (14)
- Inhalation is through the mouth, deep and short, in the first third of the airway of an upper limb (right or left-at your choice), followed by a short apnea until the limb enters the water;
- (15)
- Exhalation through the mouth and nose, slow and long, in the active phase (through water) of the same upper limb (to which we referred for inspiration);
- (16)
- The direction of movement on the water is linear, without left–right oscillations.
References
- Gordon, W.A. Structura şi Dezvoltarea Personalităţii; Didactică şi Pedagogică: Bucharest, Romania, 1991. [Google Scholar]
- Oliveira, G. Psicomotricidade: Educação e Reeducação num enfoque Psicopedagógico, 5th ed.; Vozes: Sao Paolo, Brazil, 2001. [Google Scholar]
- Borges, M.F.; Rubio, J.A.S. A Educacao Psicomotora como instrumento no Processo de Aprendizagem. Rev. Eletronica Saberes Educ. 2013, 4, 1–12. [Google Scholar]
- Rabelo, K.I.L.; Aquino, G.B. Relacao entre psicomotricidade e desenvolvimento infantil: Um relato de experiencia. Rev. Cient. Faminas 2014, 10, 109–123. [Google Scholar]
- Viscione, I.; D’elia, F.; Vastola, R.; Sibilio, M. Psychomotor assisment in Teaching and Educational research. Athens J. Educ. 2017, 4, 169–178. [Google Scholar] [CrossRef]
- Wallon, H. Evoluţia Psihologică a Copilului; Pro Humanitate: Bucharest, Romania, 1975. [Google Scholar]
- Sas, L.G.; Farina, E.F.; Ferreiro, M.C.; Fernandez, J.E.R.; Couto, J.M.P. Improvement of self-esteem and emotional intelligence through psychomotricity and social skills workshops. Sportis Sci. J. 2017, 3, 187–205. [Google Scholar]
- Shingjergji, A. Psycho-motor education of the pre-school children—A possibility for qualitative training. Int. Lett. Soc. Humanist. Sci. 2014, 6, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Albu, A.; Albu, C. Psihomotricitate; Spiru Haret: Iași, Romania, 1999. [Google Scholar]
- Popescu, O.; Popescu, V. Aspects on the motor and psychomotor learning at children with intellectual disabilities. Discobolul 2015, 11, 39–42. [Google Scholar]
- Barbosa, T.M.; Bragada, J.A.; Reis, V.M.; Marinho, D.A.; Carvalho, C.; Silva, A.J. Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. J. Sci. Med. Sport 2010, 13, 262–269. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Escalante, Y.; Rodríguez, F.A. A multivariate analysis of performance in young swimmers. Pediatr. Exerc. Sci. 2010, 22, 135–151. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Costa, M.; Marinho, D.A.; Coelho, J.; Moreira, M.; Silva, A.J. Modeling the links between young swimmers’ performance: Energetic and biomechanic profiles. Pediatr. Exerc. Sci. 2010, 22, 379–391. [Google Scholar] [CrossRef]
- Geladas, N.D.; Nassis, G.P.; Pavlicevic, S. Somatic and physical traits affecting sprint swimming performance in young swimmers. Int. J. Sports Med. 2005, 26, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Longitudinal development of physical and performance parameters during biological maturation of young male swimmers. Percept. Mot. Skills 2009, 108, 297–307. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Physical development and swimming performance during biological maturation in young female swimmers. Coll. Antropol. 2009, 33, 117–122. [Google Scholar]
- Silva, A.J.; Costa, A.M.; Oliveira, P.M.; Reis, V.M.; Saavedra, J.; Perl, J.; Rouboa, A.; Marinho, D.A. The use of neural network technology to model swimming performance. J. Sports Sci. Med. 2007, 6, 117–125. [Google Scholar]
- Rogulj, N.; Papić, V.; Cavala, M. Evaluation models of some morphological characteristics for talent scouting in sport. Coll. Antropol. 2009, 33, 105–110. [Google Scholar]
- Hohmann, A.; Seidel, I. Talent prognosis in young swimmers. Biomechanics and Medicine in Swimming XI; Kjendlie, P.L., Stallman, R.K., Cabri, J., Eds.; Norwegian School of Sport Sciences: Oslo, Norway, 2010; pp. 262–264. [Google Scholar]
- Garcia, A.C. The play and the psychomotricity, Monograph. Ph.D. Thesis, Universidade Cândido Mendes, Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Lafon, R. Vocabulaire de Psychopedagogie et de Psychiatrie Infantile; PUF: Paris, France, 1969. [Google Scholar]
- Mendoza, V. Dessarollo Infantil. La Teoria de Wallon; Asociacion Oaxaquena de Psichologia A.C.: Oaxaca, Mexico, 2007. [Google Scholar]
- Cro, M.; Andreucci, L.; Pereira, A.; Pinho, A.; Chova, L.; Belenguer, D.; Martinez, A. Psychomotricty, health and well-being in childhood education. In Proceedings of the Edulearn11: 3rd International Conference on Education and New Learning Technologies, Barcelona, Spain, 4–6 July 2011; pp. 4716–4722. [Google Scholar]
- Merida-Serrano, R.; Olivares-Garcia, M.D.; Gonzalez-Alfaya, M.E. Discovering the world through the body in the childhood. The importance of materials in the child psychomotricity. Retos 2018, 34, 329–336. [Google Scholar] [CrossRef]
- de Vignemont, F. Body schema and body imagePros and cons. Neuropsychologia 2010, 48, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, H.J.; Abelairas-Gomez, C.; Arufe-Giráldez, V.; Pazos-Couto, J.M.; Barcala-Furelos, R. Influence of a physical education plan on psychomotor development profiles of preschool children. J. Hum. Sport Exerc. 2015, 10, 126–140. [Google Scholar] [CrossRef] [Green Version]
- De Meur, A.; Staes, L. Psyhomotricité. Ėducation et Rééducation, Niveaux Maternel et Primaire; Ed. De Boeck: Brussels, Belgium, 1988. [Google Scholar]
- Matsumiya, K. Multiple representations of the body schema for the same body part. Proc. Natl. Acad. Sci. USA 2022, 119, e2112318119. [Google Scholar] [CrossRef] [PubMed]
- Haggard, P.; Wolpert, D. Disorders of body scheme. In Higher-Order Motor Disorders; Freund, H.J., Jeannerod, M., Hallett, M., Leiguarda, R., Eds.; Oxford Unviersity Press: Oxford, UK, 2004; pp. 1–7. [Google Scholar]
- Bell, F. Principles of Mechanics and Biomechanics; Stanley Thornes: Cheltenham, UK, 1998. [Google Scholar]
- Berg, K.; Wood-Dauphinee, S.; Williams, J.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Braune, W.; Fischer, O. On the Centre of Gravity of the Human Body; Springer: Berlin/Heidelberg, Germany, 1985; Volume 1, pp. 59–60. [Google Scholar] [CrossRef]
- Hall, S.J. Basic Biomechanics, 8th ed.; McGraw-Hill Education: New York, NY, USA, 1991. [Google Scholar]
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin. Rehab. 2000, 14, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Zatsiorsky, V.M.; Duarte, M. Instant equilibrium point and its migration in standing tasks: Rambling and trembling components of the stabilogram. Motor Control 1999, 3, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Daneshjoo, A.; Mokhtar, A.H.; Rahnama, N.; Yusof, A. The Effects of Comprehensive Warm-Up Programs on Proprioception, Static and Dynamic Balance on Male Soccer Players. PLoS ONE 2012, 7, e51568. [Google Scholar] [CrossRef]
- King, M.B.; Judge, J.O.; Wolfson, L. Functional base of support decreases with age. J. Gerontol. 1994, 49, 258–263. [Google Scholar] [CrossRef]
- McGuine, T.A.; Greene, J.J.; Best, T.; Leverson, G. Balance as a predictor of ankle injuries in high school basketball players. Clin. J. Sport. Med. 2000, 10, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Hrysomallis, C. Relationship between balance ability, training and sports injury risk. Sports Med. 2007, 37, 547–556. [Google Scholar] [CrossRef]
- Hrysomallis, C.; McLaughlin, P.; Goodman, C. Relationship between static and dynamic balance tests among elite Australian Footballers. J. Sci. Med. Sport 2006, 9, 288–291. [Google Scholar] [CrossRef]
- Maurer, C.; Mergner, T.; Peterka, R.J. Multisensory control of human upright stance. Exp. Brain Res. 2006, 171, 231–250. [Google Scholar] [CrossRef]
- Paillard, T. Plasticity of the postural function to sport and/or motor experience. Neurosci. Biobehav. Rev. 2017, 72, 129–152. [Google Scholar] [CrossRef]
- Adlerton, A.K.; Moritz, U.; Moe-Nilssen, R. Forceplate and accelerometer measures for evaluating the effect of muscle fatigue on postural control during one-legged stance. Physiother. Res. Int. 2003, 8, 187–199. [Google Scholar] [CrossRef]
- Hrysomallis, C. Balance ability and athletic performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Yanai, T.; Wilson, B.D. How does buoyancy influence front-crawl performance? Exploring the assumptions. Sports Technol. 2008, 1, 89–99. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Costa, M.J.; Morais, J.E.; Moreira, M.M.; Silva, A.J.; Marinho, D.A. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic Profiles? J. Hum. Kinet. 2012, 32, 21–32. [Google Scholar] [CrossRef]
- McLean, S.P.; Hinrichs, R.N. Buoyancy, Gender, and Swimming Performance. J. Appl. Biomech. 2000, 16, 248–263. [Google Scholar] [CrossRef]
- Corbin, C.B.; Pangrazi, R.P.; Franks, B.D. Definitions: Health, fitness, and physical activity. Pres. Counc. Phys. Fit. Sports Res. Dig. 2000, 3, 1–11. [Google Scholar]
- Bruton, M.; O’Dwyer, N. Synergies in coordination: A comprehensive overview of neural, computational, and behavioral approaches. J. Neurophysiol. 2018, 120, 2761–2774. [Google Scholar] [CrossRef] [Green Version]
- Kimura, A.; Yokozawa, T.; Ozaki, H. Clarifying the Biomechanical Concept of Coordination Through Comparison with Coordination in Motor Control. Front. Sports Act. Living 2021, 3. [Google Scholar] [CrossRef]
- Wannier, T.; Bastiaanse, C.; Colombo, G.; Dietz, V. Arm to leg coordination in humans during walking, creeping and swimming activities. Exp. Brain Res. 2001, 141, 375–379. [Google Scholar] [CrossRef]
- Donker, S.F.; Beek, P.J.; Wagenaar, R.C.; Mulder, T. Coordination Between Arm and Leg Movements During Locomotion. J. Mot. Behav. 2001, 33, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Seifert, L.; Vantorre, J.; Lemaitre, F.; Chollet, D.; Toussaint, H.M.; Vilas-Boas, J.P. Different Profiles of the Aerial Start Phase in Front Crawl. J. Strength. Cond. 2010, 24, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Deschodt, V.J.; Arsac, L.M.; Rouard, A.H. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Chollet, D.; Chalies, S.; Chatard, J.C. A new index of coordination for the crawl: Description and usefulness. Int. J. Sports Med. 2000, 21, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Yanai, T. Stroke frequency in front crawl: Its mechanical link to the fluid forces required in non-propulsive directions. Jurnalul Biomec. 2003, 36, 53–62. [Google Scholar] [CrossRef]
- Schneider, W.J.; McGrew, K.S. The Cattell-Horn-Carroll model of intelligence. In Contemporary Intellectual Assessment: Theories, Tests, and Issues; Flanagan, D.P., Harrison, P.L., Eds.; The Guilford Press: New York, NY, USA, 2012; pp. 99–144. [Google Scholar]
- Martin, J.A.; Ramsay, J.; Hughes, C.; Peters, D.M.; Edwards, M.G. Age and grip strength predict hand dexterity in adults. PLoS ONE 2015, 10, e0117598. [Google Scholar] [CrossRef] [Green Version]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Binet, A.; Vaschide, N. Expériences de force musculaire et de fond chez les jeunes garçons. L’année Psychol. 1897, 4, 15–63. [Google Scholar] [CrossRef]
- Capol, M.; Walther, L. Contribution à l’étude de l’habileté manuelle. L’année Psychol. 1953, 53, 35–58. [Google Scholar] [CrossRef]
- Fauche, S. Les paradigmes de la psychomotricité. Rev. Française Pédagogie 1994, 107, 97–107. [Google Scholar] [CrossRef]
- Radu, D.I.; Ulici, G. Evaluarea şi Educarea Psihomotricităţii; Fundația Humanitas: Bucharest, Romania, 2002. [Google Scholar]
- Junaid, K.A.; Fellowes, S. Gender Differences in the Attainment of Motor Skills on the Movement Assessment Battery for Children. Phys. Occup. Ther. Pediatr. 2006, 26, 5–11. [Google Scholar] [CrossRef]
- Jaime, M.; Longard, J.; Moore, C. Developmental changes in the visual-proprioceptive integration threshold of children. J. Exp. Child. Psychol. 2014, 125, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rosa, H.R. Teste Goodenough-Harris e Indicadores Maturacionais de Koppitz para o Desenho da Figura Humana: Estudo Normativo para Crianças de São Paulo. Ph.D. Thesis, Instituto de Psicologia, University of São Paulo, São Paulo, Brazil, 2006. [Google Scholar] [CrossRef]
- Gherghuț, A. Sinteze de Psihopedagogie Specială. Ghid pentru Concursuri și Examene de Obținere a Gradelor Didactice; Polirom: Iași, Romania, 2013. [Google Scholar]
- Rosa, H.R.; Boccato Alves, I.C. Estudo normativo do Teste Goodenough-Harris em crianças na cidade de São Paulo. Bol. Acad. Paul. Psicol. 2014, 34, 336–351. [Google Scholar]
- Șunei, M.C.; Petracovschi, S.; Bota, E.; Almajan-Guță, B.; Nagel, A. Relationship between Body Schema and Scholar Maturity: A Study from the National College of Banat in Timisoara, Romania. Children 2022, 9, 1369. [Google Scholar] [CrossRef] [PubMed]
- León, M.P.; González-Martí, I.; Contreras-Jordán, O.R. What Do Children Think of Their Perceived and Ideal Bodies? Understandings of Body Image at Early Ages: A Mixed Study. Int. J. Environ. Res. Public. Health 2021, 18, 4871. [Google Scholar] [CrossRef] [PubMed]
- Schedler, S.; Kiss, R.; Muehlbauer, T. Age and sex differences in human balance performance from 6-18 years of age: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0214434. [Google Scholar] [CrossRef]
- Schedler, S.; Tenelsen, F.; Wich, L.; Muehlbauer, T. Effects of balance training on balance performance in youth: Role of training difficulty. BMC Sports Sci. Med. Rehabil. 2020, 12, 71. [Google Scholar] [CrossRef]
- Lenroot, R.K.; Giedd, J.N. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 2006, 30, 718–729. [Google Scholar] [CrossRef]
- Koolschijn, P.C.; Crone, E.A. Sex differences and structural brain maturation from childhood to early adulthood. Dev. Cogn. Neurosci. 2013, 5, 106–118. [Google Scholar] [CrossRef]
- Barela, J.A.; Jeka, J.J.; Clark, J.E. Postural control in children. Coupling to dynamic somatosensory information. Exp. Brain Res. 2003, 150, 434–442. [Google Scholar] [CrossRef]
- Bair, W.N.; Kiemel, T.; Jeka, J.J.; Clark, J.E. Development of multisensory reweighting for posture control in children. Exp. Brain Res. 2007, 183, 435–446. [Google Scholar] [CrossRef] [Green Version]
- McLean, S.P.; Hinrichs, R.N. Sex differences in the centre of buoyancy location of competitive swimmers. J. Sports Sci. 2008, 16, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, G.; Giustino, V.; Tabacchi, G.; Lanza, M.; Schena, F.; Biino, V.; Giuriato, M.; Gallotta, M.C.; Guidetti, L.; Baldari, C.; et al. Interrelationship Between Age, Gender, and Weight Status on Motor Coordination in Italian Children and Early Adolescents Aged 6–13 Years Old. Front. Pediatr. 2021, 9, 738294. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.L.; Rose, J.D. Motor skills of typically developing adolescents: Awkwardness or improvement? Phys. Occup. Ther. Pediatr. 2000, 20, 19–42. [Google Scholar] [CrossRef] [PubMed]
- D’Hondt, E.; Deforche, B.; Vaeyens, R.; Vandorpe, B.; Vandendriessche, J.; Pion, J.; Philippaerts, R.; de Bourdeaudhuij, I.; Lenoir, M. Gross motor coordination in relation to weight status and age in 5- to 12-year-old boys and girls: A cross-sectional study. Int. J. Pediatr. Obes. 2011, 6, e556–e564. [Google Scholar] [CrossRef] [PubMed]
- Vandorpe, B.; Vandendriessche, J.; Lefevre, J.; Pion, J.; Vaeyens, R.; Matthys, S.; Philippaerts, R.; Lenoir, M. The KörperkoordinationsTest für Kinder: Reference values and suitability for 6-12-year-old children in Flanders. Scand. J. Med. Sci. Sports 2011, 21, 378–388. [Google Scholar] [CrossRef]
- Lopes, V.P.; Stodden, D.F.; Bianchi, M.M.; Maia, J.A.R.; Rodrigues, L.P. Correlation between BMI and motor coordination in children. J. Sci. Med. Sport 2012, 15, 38–43. [Google Scholar] [CrossRef]
- Veldman, S.L.C.; Santos, R.; Jones, R.A.; Sousa-Sa, E.; Okely, A.D. Associations between gross motor skills and cognitive development in toddlers. Early Hum. Dev. 2019, 132, 39–44. [Google Scholar] [CrossRef]
- Hammami, R.; Granacher, U.; Makhlouf, I.; Behm, D.G.; Chaouachi, A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J. Strength Cond. Res. 2016, 12, 3278–3289. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, C.W.; Kim, Y.I.L.; Kim, K.B.; Lee, S.S.; Shin, K.O. Alterations of muscular strength and left and right limb balance in weightlifters after an 8-week balance training program. J. Phys. Ther. Sci. 2013, 25, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Karami, B.; Ali, M.; Farzaneh, Y.; Homayoun, G.; Parmoon, A. Neuromuscular training as the basis for developing the level of the static and dynamic balance in selected students of physical. Int. J. Sport. Sci. Fit. 2014, 4, 20–38. [Google Scholar]
- Dobrijević, S.; Moskovljević, L.; Dabović, M. The influence of proprioceptive training on young rhythmic gymnasts’ balance. Facta Univ. 2016, 14, 247–255. [Google Scholar]
- Yanai, T. Buoyancy is the primary source of generating bodyroll in front-crawl swimming. J. Biomech. 2004, 37, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Marinho, D.A.; Barbosa, T.M.; Klendlie, P.L.; Vilas-Boas, J.P.; Alves, F.B.; Rouboa, A.I.; Silva, A.J. Swimming Simulation. In Computational Fluid Dynamics for Sport Simulation; Peter, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 33–61. [Google Scholar]
- Marinho, D.A.; Barbosa, T.M.; Costa, M.J.; Figueiredo, C.; Reis, V.M.; Silva, A.J.; Marques, M.C. Can 8-weeks of Training Affect Active Drag in Young Swimmers? J. Sports Sci. Med. 2010, 9, 71–78. [Google Scholar] [PubMed]
- Pendergast, D.R.; Capelli, C.; Craig, A.B.; di Prampero, P.E.; Minetti, A.E.; Mollendorf, J.; Termin, I.I.; Zamparo, P. Biophysics in swimming. Rev. Port. Cien. Desp. 2006, 6 (Suppl. 2), 185–189. [Google Scholar]
- Costa, A.M.; Silva, A.J.; Louro, H.; Reis, V.M.; Garrido, N.D.; Marques, M.C.; Marinho, D.A. Can the curriculum be used to estimate critical velocity in young competitive swimmers? J. Sports Sci. Med. 2009, 8, 17–23. [Google Scholar] [PubMed]
- Popescu, G. Performance, Reference Systems and Strategies for Balance Training in Syndrome Down Subjects Beginning Gymnastics. Procedia Soc. Behav. Sci. 2014, 117, 553–558. [Google Scholar] [CrossRef] [Green Version]
Age | Total Subjects | |||
---|---|---|---|---|
Male | Female | |||
No | % | No | % | |
6–6.11 years | 10 | 52.6 | 9 | 47.4 |
7–7.11 years | 11 | 8 | ||
8–8.11 years | 10 | 9 | ||
9–9.11 years | 9 | 10 | ||
Total | 40 | 36 | ||
76 (100%) |
Variables/Tests | Subjects | Male | Female | ||||||
---|---|---|---|---|---|---|---|---|---|
M | SD | ES | M | SD | ES | M | SD | ES | |
Manual dexterity—Tapping test | 74.08 | ±10.09 | ±1.15 | 73.38 | ±10.21 | ±1.61 | 74.86 | ±10.03 | ±1.67 |
Body schema—Goodenough test | 19.20 | ±3.57 | ±0.41 | 18.65 | ±3.59 | ±0.56 | 19.81 | ±3.48 | ±0.58 |
Static balance—Flamingo test | 11.84 | ±2.08 | ±0.23 | 11.20 | ±2.12 | ±0.33 | 12.54 | ±1.82 | ±0.30 |
Body balance on water (buoyancy)—the horizontal buoyancy test | 18.48 | ±2.10 | ±0.24 | 17.79 | ±1.74 | ±0.27 | 19.24 | ±2.23 | ±0.37 |
General coordination—10 tests + Matorin test | 12.09 | ±2.11 | ±0.24 | 11.58 | ±2.38 | ±0.377 | 12.67 | ±1.62 | ±0.27 |
Front crawl style execution technique | 20.82 | ±2.08 | ±0.24 | 20.25 | ±2.14 | ±0.33 | 21.44 | ±1.85 | ±0.31 |
Backstroke style execution technique | 20.96 | ±1.69 | ±0.19 | 20.25 | ±1.64 | ±0.26 | 21.75 | ±1.39 | ±0.23 |
Variables/Tests | 6–6.11 Years | 7–7.11 Years | 8–8.11 Years | 9–9.11 Years | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | ES | M | SD | ES | M | SD | ES | M | SD | ES | |
Manual dexterity—Tapping test | 62.63 | ±7.14 | ±1.63 | 72.63 | ±3.05 | ±0.70 | 78.68 | ±5.22 | ±1.20 | 82.37 | ±10.05 | ±2.30 |
Body schema—Goodenough test | 14.47 | ±1.26 | ±0.29 | 18.32 | ±0.88 | ±0.20 | 20.42 | ±1.07 | ±0.24 | 23.58 | ±1.83 | ±0.42 |
Static balance—Flamingo test | 9.53 | ±1.04 | ±0.24 | 10.89 | ±1.40 | ±0.32 | 12.86 | ±1.21 | ±0.27 | 14.06 | ±0.85 | ±0.19 |
Body balance on water (buoyancy)—the horizontal buoyancy test | 16.05 | ±0.64 | ±0.14 | 17.79 | ±1.03 | ±.23 | 19.14 | ±1.26 | ±0.29 | 20.92 | ±1.38 | ±0.31 |
General coordination—10 tests + Matorin test | 9.42 | ±1.34 | ±0.30 | 11.63 | ±1.06 | ±0.24 | 13.11 | ±1.04 | ±0.24 | 14.21 | ±1.03 | ±0.23 |
Front crawl style execution technique | 18.37 | ±1.21 | ±0.27 | 20.16 | ±1.06 | ±0.24 | 21.63 | ±1.01 | ±0.23 | 23.11 | ±1.24 | ±0.28 |
Backstroke style execution technique | 19.26 | ±1.19 | ±0.27 | 20.37 | ±1.11 | ±0.25 | 21.42 | ±1.01 | ±0.23 | 22.79 | ±1.03 | ±0.23 |
Research Variables | Kolmogorov–Smirnov | Shapiro–Wilk | Distribution | ||||
---|---|---|---|---|---|---|---|
K-S | df | Sig. | S-W | df | Sig. | ||
Manual dexterity | 0.146 | 76 | 0.000 | 0.926 | 76 | 0.000 | not normal |
Body schema | 0.096 | 76 | 0.078 | 0.979 | 76 | 0.248 | normal |
Static balance | 0.104 | 76 | 0.040 | 0.964 | 76 | 0.031 | not normal |
Body balance on the water (buoyancy) | 0.092 | 76 | 0.176 | 0.968 | 76 | 0.054 | normal |
General coordination | 0.127 | 76 | 0.004 | 0.958 | 76 | 0.013 | not normal |
Front crawl style technique | 0.101 | 76 | 0.053 | 0.974 | 76 | 0.118 | normal |
Backstroke style technique | 0.123 | 76 | 0.006 | 0.956 | 76 | 0.010 | not normal |
Independent Variables | Dependent Variable | Coefficient of Correlation | Coefficient of Determination | Association Level | Sig. |
---|---|---|---|---|---|
Manual dexterity | Technical execution of front crawl style | rs = 0.63 | r2 = 0.40 | moderate | p = 0.001 |
Body schema | r = 0.80 | r2 = 0.64 | strong | ||
Static balance | rs = 0.82 | r2 = 0.67 | strong | ||
Body balance on the water (buoyancy) | r = 0.78 | r2 = 0.61 | strong | ||
General coordination | rs = 0.81 | r2 = 0.65 | strong |
Independent Variables | Dependent Variable | Coefficient of Correlation | Coefficient of Determination | Level of Association | Sig. |
---|---|---|---|---|---|
Manual dexterity | Technical execution of backstroke style | rs = 0.57 | r2 = 0.32 | moderate | p = 0.001 |
Body schema | rs = 0.77 | r2 = 0.59 | strong | ||
Static balance | rs = 0.81 | r2 = 0.65 | strong | ||
Body balance on the water (buoyancy) | rs = 0.85 | r2 = 0.72 | strong | ||
General coordination | rs = 0.78 | r2 = 0.61 | strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrea, R.-G.; Moraru, C.-E.; Popovici, I.-M.; Știrbu, I.-C.; Radu, L.-E.; Chirazi, M.; Rus, C.-M.; Oprean, A.; Rusu, O. Influences of Psychomotor Behaviors on Learning Swimming Styles in 6–9-Year-Old Children. Children 2023, 10, 1339. https://doi.org/10.3390/children10081339
Petrea R-G, Moraru C-E, Popovici I-M, Știrbu I-C, Radu L-E, Chirazi M, Rus C-M, Oprean A, Rusu O. Influences of Psychomotor Behaviors on Learning Swimming Styles in 6–9-Year-Old Children. Children. 2023; 10(8):1339. https://doi.org/10.3390/children10081339
Chicago/Turabian StylePetrea, Renato-Gabriel, Cristina-Elena Moraru, Ileana-Monica Popovici, Ilie-Cătălin Știrbu, Liliana-Elisabeta Radu, Marin Chirazi, Cristian-Mihail Rus, Alexandru Oprean, and Oana Rusu. 2023. "Influences of Psychomotor Behaviors on Learning Swimming Styles in 6–9-Year-Old Children" Children 10, no. 8: 1339. https://doi.org/10.3390/children10081339
APA StylePetrea, R.-G., Moraru, C.-E., Popovici, I.-M., Știrbu, I.-C., Radu, L.-E., Chirazi, M., Rus, C.-M., Oprean, A., & Rusu, O. (2023). Influences of Psychomotor Behaviors on Learning Swimming Styles in 6–9-Year-Old Children. Children, 10(8), 1339. https://doi.org/10.3390/children10081339