Association of Physiological Performance, Physical Fitness, and Academic Achievement in Secondary School Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedure
2.3. Instruments
2.3.1. Body Composition Assessment
2.3.2. Physiological Performance Tests
2.3.3. Physical Fitness Tests
2.3.4. Academic Achievement
2.4. Statistical Analyses
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozgur, I. Handicapped Children and Education; Karahan Publishing: Adana, Turkey, 2004. [Google Scholar]
- Bacak, G. The Releationship between Examination Average and the Respiration Function Tests on the Students Who Prepare for Student Selection Exam. Master’s Thesis, Ataturk University, Erzurum, Turkey, 2007. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp (accessed on 1 December 2022).
- Howie, S.J.; Pietersen, J.J. Mathematics literacy of final year students: South African realities. Stud. Educ. Eval. 2001, 27, 7–25. [Google Scholar] [CrossRef]
- Suna, H.E.; Gür, B.S.; Gelbal, S.; Özer, M. Science high school students’ socioeconomic background and their preferences regarding their transition into higher education. J. High. Educ. 2020, 10, 356–370. [Google Scholar]
- Suna, H.E.; Ozer, M. The Achievement gap between schools and relationship between achievement and socioeconomic status in Turkey. J. Meas. Eval. Educ. Psychol. 2021, 12, 55–71. [Google Scholar] [CrossRef]
- Wang, D.B. Family background factors and mathematics success: A comparison of Chinese and US students. Int. J. Educ. Res. 2004, 41, 40–54. [Google Scholar] [CrossRef]
- Pishghadam, R.; Faribi, M.; Shadloo, F.; Gholami, M.; Shayesteh, S. Intelligence, emotional intelligence, and emo-sensory intelligence: Which one is a better predictor of university students’ academic success? Front. Psychol. 2022, 13, 995988. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef]
- Esteban-Cornejo, I.; Tejero-Gonzalez, C.M.; Sallis, J.F.; Veiga, O.L. Physical activity and cognition in adolescents: A systematic review. J. Sci. Med. Sport 2015, 18, 534–539. [Google Scholar] [CrossRef]
- Haapala, E.A.; Poikkeus, A.-M.; Tompuri, T.; Kukkonen-Harjula, K.; Leppänen, P.H.T.; Lindi, V.; Lakka, T.A. Associations of motor and cardiovascular performance with academic skills in children. Med. Sci. Sports Exerc. 2014, 46, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Ye, M.; Gu, Q.; Huang, T.; Wang, K.; Chen, Z.; Fan, X. The relationship between physical fitness and academic performance among Chinese college students. J. Am. Coll. Health 2022, 70, 395–403. [Google Scholar] [CrossRef]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Kamijo, K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef]
- Ishihara, T.; Sugasawa, S.; Matsuda, Y.; Mizuno, M. Relationship of tennis play to executive function in children and adolescents. Eur. J. Sport Sci. 2017, 17, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Morita, N.; Nakajima, T.; Okita, K.; Ishihara, T.; Sagawa, M.; Yamatsu, K. Relationships among fitness, obesity, screen time and academic achievement in Japanese adolescents. Physiol. Behav. 2016, 163, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.F.; Bliss, T.V. Plasticity in the human central nervous system. Brain 2006, 129, 1659–1673. [Google Scholar] [CrossRef] [PubMed]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.A. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef]
- Van Praag, H.; Gage, F.H.; Lombroso, P.J. Genetics of childhood disorders: XXXVI. stem cell research, part 1: New neurons in the adult brain. J. Am. Acad. Child. Adolesc. Psychiatry 2002, 41, 354–356. [Google Scholar] [CrossRef]
- Trudeau, F.; Shephard, R.J. Physical education, school physical activity, school sports and academic performance. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.J.; Dowsett, C.J.; Claessens, A.; Magnuson, K.; Huston, A.C.; Klebanov, P.; Japel, C. School readiness and later achievement. Dev. Psychol. 2007, 43, 1428. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Morita, N.; Nakajima, T.; Okita, K.; Yamatsu, K.; Sagawa, M. Direct and indirect relationships of physical fitness, weight status, and learning duration to academic performance in Japanese schoolchildren. Eur. J. Sport Sci. 2018, 18, 286–294. [Google Scholar] [CrossRef]
- Chomitz, V.R.; Slining, M.M.; McGowan, R.J.; Mitchell, S.E.; Dawson, G.F.; Hacker, K.A. Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. J. Sch. Health 2009, 79, 30–37. [Google Scholar] [CrossRef]
- Kwak, L.; Kremers, S.P.J.; Bergman, P.; Ruiz, J.R.; Rizzo, N.S.; Sjöström, M. Associations between physical activity, fitness, and academic achievement. J. Pediatr. 2009, 155, 914–918. [Google Scholar] [CrossRef]
- Van Dusen, D.P.; Kelder, S.H.; Kohl, H.W.; Ranjit, N.; Perry, C.L. Associations of physical fitness and academic performance among schoolchildren. J. Sch. Health 2011, 81, 733–740. [Google Scholar] [CrossRef]
- Wittberg, R.A.; Northrup, K.L.; Cottrell, L.A. Children’s aerobic fitness and academic achievement: A longitudinal examination of students during their fifth and seventh grade years. Am. J. Public Health 2012, 102, 2303–2307. [Google Scholar] [CrossRef] [PubMed]
- Castelli, D.M.; Hillman, C.H.; Buck, S.M.; Erwin, H.E. Physical fitness and academic achievement in third-and fifth-grade students. J. Sport Exerc. Psychol. 2007, 29, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Eveland-Sayers, B.M.; Farley, R.S.; Fuller, D.K.; Morgan, D.W.; Caputo, J.L. Physical fitness and academic achievement in elementary school children. J. Phys. Act. Health 2009, 6, 99–104. [Google Scholar] [CrossRef] [PubMed]
- London, R.A.; Castrechini, S.A. Longitudinal examination of the link between youth physical fitness and academic achievement. J. Sch. Health 2011, 81, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Grissom, J.B. Physical fitness and academic achievement. J. Exerc. Physiol. Online 2005, 8, 11–25. [Google Scholar]
- Dwyer, T.; Sallis, J.F.; Blizzard, L.; Lazarus, R.; Dean, K. Relation of academic performance to physical activity and fitness in children. Pediatr. Exerc. Sci. 2001, 13, 225–237. [Google Scholar] [CrossRef]
- Keeley, T.J.H.; Fox, K.R. The impact of physical activity and fitness on academic achievement and cognitive performance in children. Int. Rev. Sport Exerc. Psychol. 2009, 2, 198–214. [Google Scholar] [CrossRef]
- Berendes, A.; Meyer, T.; Hulpke-Wette, M.; Herrmann-Lingen, C. Association of elevated blood pressure with low distress and good quality of life: Results from the nationwide representative german health interview and examination survey for children and adolescents. Psychosom. Med. 2013, 75, 422–428. [Google Scholar] [CrossRef]
- Elias, M.F.; Goodell, A.L.; Dore, G.A. Hypertension and cognitive functioning: A perspective in historical context. Hypertension 2012, 60, 260–268. [Google Scholar] [CrossRef]
- Lande, M.B.; Kupferman, J.C.; Adams, H.R. Neurocognitive alterations in hypertensive children and adolescents. J. Clin. Hypertens. 2012, 14, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.R.; Nelson, J.K.; Silverman, S. Research Methods in Physical Activity, 7th ed.; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Cingi, H. Sampling Theory, 2nd ed.; Hacettepe University Press: Ankara, Turkey, 1994. [Google Scholar]
- Bosy-Westphal, A.; Later, W.; Hitze, B.; Sato, T.; Kossel, E.; Glüer, C.-C.; Heller, M.; Muller, M.J. Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obes. Facts 2008, 1, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Tekdemir, I.; Akın, G.; Bektaş, Y.; Gültekin, T.; Emre Erol, A.E. Anthropometry and Sport; Alter Publications: Ankara, Turkey, 2013. [Google Scholar]
- Erturk, C.; Can, I.; Bayrakdaroglu, S. Investigating the effects of some physiological and motoric characteristics on shooting performance of air rifle athletes. J. Sport Sci. Res. 2022, 7, 281–293. [Google Scholar]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005, 111, 697–716. [Google Scholar] [CrossRef] [PubMed]
- Devore, P.; Hagerman, P. A pregame soccer warm-up. Strength Cond. J. 2006, 28, 14–18. [Google Scholar] [CrossRef]
- Fletcher, I.M. The effect of different dynamic stretch velocities on jump performance. Eur. J. Appl. Physiol. 2010, 109, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Turki, O.; Chaouachi, A.; Behm, D.G.; Chtara, H.; Chtara, M.; Bishop, D.; Chamari, K.; Amri, M. The effect of warm-ups incorporating different volumes of dynamic stretching on 10-and 20-m sprint performance in highly trained male athletes. J. Strength Cond. Res. 2012, 26, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Harman, E.; Garhammer, J.; Pandorf, C. Administration, scoring and interpretation of selected tests. In Essentials of Strength and Conditioning; Baechle, T.R., Earle, R.W., Eds.; Human Kinetics: Champaign, IL, USA, 2000; pp. 249–292. [Google Scholar]
- McSwegin, P.J.; Plowman, S.A.; Wolff, G.M.; Guttenberg, G.L. The validity of a one-mile walk test for high school age individuals. Meas. Phys. Educ. Exerc. Sci. 1998, 2, 47–63. [Google Scholar] [CrossRef]
- George, J.D.; Vehrs, P.R.; Allsen, P.E.; Fellingham, G.W.; Fisher, A.G. VO2max estimation from a submaximal 1-mile track jog for fit college-age individuals. Med. Sci. Sports Exerc. 1993, 25, 401–406. [Google Scholar] [CrossRef]
- McMahon, J.J.; Murphy, S.; Rej, S.J.; Comfort, P. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players. Int. J. Sports Physiol. Perform. 2017, 12, 803–811. [Google Scholar] [CrossRef]
- Lake, J.P.; Mundy, P.D.; Comfort, P.; Suchomel, T.J. Do the peak and mean force methods of assessing vertical jump force asymmetry agree? Sports Biomech. 2020, 19, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Berton, R.; Lixandrão, M.E.; Pinto e Silva, C.M.; Tricoli, V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: A meta-analysis. J. Sports Sci. 2018, 36, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Driller, M.; Tavares, F.; McMaster, D.; O’Donnell, S. Assessing a smartphone application to measure counter-movement jumps in recreational athletes. Int. J. Sports Sci. Coach. 2017, 12, 661–664. [Google Scholar] [CrossRef]
- Nygaard Falch, H.; Guldteig Rædergård, H.; Van den Tillaar, R. Relationship of performance measures and muscle activity between a 180 change of direction task and different countermovement jumps. Sports 2020, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.L.; Bowers, R.W.; Foss, M.L. Translation: Mesut Cerit. In The Physiological Basis of Physical Education and Sport; Spor Publishing: Ankara, Turkey, 2012. [Google Scholar]
- Available online: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=19942&MevzuatTur=7&MevzuatTertip=5 (accessed on 11 November 2022).
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics; Allyn and Bacon: Boston, MA, USA, 2013. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS; Sage Publication: London, UK, 2005. [Google Scholar]
- Firat, S. A current view of childhood hypertension. Akdeniz Med. J. 2021, 7, 463–473. [Google Scholar] [CrossRef]
- Waldstein, S.R.; Jennings, J.R.; Ryan, C.M.; Muldoon, M.F.; Shapiro, A.P.; Polefrone, J.M.; Fazzari, T.V.; Manuck, S.B. Hypertension and neuropsychological performance in men: Interactive effects of age. Health Psychol. 1996, 15, 102–109. [Google Scholar] [CrossRef]
- Walker, K.A.; Power, M.C.; Gottesman, R.F. Defining the relationship between hypertension, cognitive decline, and dementia: A review. Curr. Hypertens. Rep. 2017, 19, 24. [Google Scholar] [CrossRef]
- Gottesman, R.F.; Schneider, A.L.; Albert, M.; Alonso, A.; Bandeen-Roche, K.; Coker, L.; Coresh, J.; Knopman, D.; Power, M.C.; Rawlings, A.; et al. Midlife hypertension and 20-year cognitive change: The atherosclerosis risk in communities neurocognitive study. JAMA Neurol. 2014, 71, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.M.; Sink, K.M. Hypertension and its role in cognitive function: Current evidence and challenges for the future. Am. J. Hypertens. 2016, 29, 149–157. [Google Scholar] [CrossRef]
- Friedman, J.I.; Tang, C.Y.; de Haas, H.J.; Changchien, L.; Goliasch, G.; Dabas, P.; Wang, V.; Fayad, Z.A.; Fuster, V.; Narula, J. Brain imaging changes associated with risk factors for cardiovascular and cerebrovascular disease in asymptomatic patients. JACC Cardiovasc. Imaging 2014, 7, 1039–1053. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Ferrie, J.E.; Lynch, J.W.; Marmot, M. The role of cognitive ability (intelligence) in explaining the association between socioeconomic position and health: Evidence from the Whitehall II prospective cohort study. Am. J. Epidemiol. 2005, 161, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Tzourio, C.; Laurent, S.; Debette, S. Is hypertension associated with an accelerated aging of the brain? Hypertension 2014, 63, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Matejek, Č.; Planinšec, J. The relationship between academic achievement and physical fitness in preadolescent Children. Croat. J. Educ. Hrvat. Časopis Za Odgoj. I Obraz. 2022, 24, 97–126. [Google Scholar]
- Matsudaira, I.; Kawashima, R.; Taki, Y. Structural brain development in healthy children and adolescents. Brain Nerve 2017, 69, 539–545. [Google Scholar] [CrossRef]
- Uchiyama, T.; Nakayama, T.; Kuru, S. Muscle development in healthy children evaluated by bioelectrical impedance analysis. Brain Dev. 2017, 39, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Bartee, R.T.; Heelan, K.A.; Dority, B.L. Longitudinal evaluation of aerobic fitness and academic achievement among schoolchildren. J. Sch. Health 2018, 88, 644–650. [Google Scholar] [CrossRef]
- Raine, L.B.; Biggan, J.R.; Baym, C.L.; Saliba, B.J.; Cohen, N.J.; Hillman, C.H. Adolescent changes in aerobic fitness are related to changes in academic achievement. Pediatr. Exerc. Sci. 2018, 30, 106–114. [Google Scholar] [CrossRef]
- Santana, C.C.A.; Azevedo, L.B.; Cattuzzo, M.T.; Hill, J.O.; Andrade, L.P.; Prado, W.L. Physical fitness and academic performance in youth: A systematic review. Scand. J. Med. Sci. Sports 2017, 27, 579–603. [Google Scholar] [CrossRef]
- Torrijos-Niño, C.; Martínez-Vizcaíno, V.; Pardo-Guijarro, M.J.; García-Prieto, J.C.; Arias-Palencia, N.M.; Sánchez-López, M. Physical fitness, obesity, and academic achievement in schoolchildren. J. Pediatr. 2014, 165, 104–109. [Google Scholar] [CrossRef]
- Suchert, V.; Hanewinkel, R.; Isensee, B. Longitudinal relationships of fitness, physical activity, and weight status with academic achievement in adolescents. J. Sch. Health 2016, 86, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Fox, K.R.; Ku, P.W.; Taun, C.Y. Fitness change and subsequent academic performance in adolescents. J. Sch. Health 2013, 83, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Bueno, C.; Hillman, C.H.; Cavero-Redondo, I.; Sanchez-Lopez, M.; Pozuelo-Carrascosa, D.P.; Martinez-Vizcaino, V. Aerobic fitness and academic achievement: A systematic review and meta-analysis. J. Sports Sci. 2020, 38, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Kyan, A.; Takakura, M.; Miyagi, M. Does physical fitness affect academic achievement among Japanese adolescents? A hybrid approach for decomposing within-person and between-persons effects. Int. J. Environ. Res. Public Health 2018, 15, 1901. [Google Scholar] [CrossRef]
- Sigmundsson, H.; Englund, K.; Haga, M. Associations of physical fitness and motor competence with reading skills in 9-and 12-year-old children: A longitudinal study. SAGE Open 2017, 7, 2158244017712769. [Google Scholar] [CrossRef]
13 Years | 14 Years | Total | Anthropometric Features | ± SD | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
Boys | 142 | 46.7 | 20 | 6.6 | 162 | 53.3 | Height (cm) | 158.05 ± 5.12 |
Girls | 126 | 41.5 | 16 | 5.2 | 142 | 46.7 | Body mass (kg) | 52.95 ± 4.25 |
Total | 268 | 88.2 | 36 | 11.8 | 304 | 100 | BMI (kg·m−2) | 14.98 ± 4.16 |
Variables | Academic Achievement Levels | ± SD | 95% Confidence Interval | p-Value | |
---|---|---|---|---|---|
Lower | Upper | ||||
SBP (mmHg) | Poor | 116.1 ± 15.1 | 113.0 | 119.2 | 0.06 |
Average | 118.4 ± 17.0 | 115.3 | 121.5 | ||
Good | 117.5 ± 14.5 | 114.5 | 120.5 | ||
DBP (mmHg) | Poor | 66.7 ± 9.36 | 64.8 | 68.6 | 0.04 |
Average | 70.9 ± 7.9 | 69.4 | 72.3 | ||
Good | 71.5 ± 10.6 | 69.3 | 73.7 | ||
RHR (bpm) | Poor | 86.1 ± 14.5 | 83.2 | 89.1 | 0.48 |
Average | 88.2 ± 12.3 | 85.9 | 90.4 | ||
Good | 88.3 ± 15.4 | 85.1 | 91.5 | ||
VJ (cm) | Poor | 31.8 ± 8.1 | 30.1 | 33.5 | 0.68 |
Average | 30.9 ± 8.1 | 29.4 | 32.4 | ||
Good | 31.8 ± 9.2 | 29.9 | 33.7 | ||
SP (s) | Poor | 4.3 ± 0.4 | 4.2 | 4.4 | 0.24 |
Average | 4.4 ± 0.4 | 4.3 | 4.5 | ||
Good | 4.4 ± 0.4 | 4.3 | 4.5 | ||
VO2Max (mL/kg/min) | Poor | 47.1 ± 8.5 | 45.4 | 48.9 | 0.05 |
Average | 42.6 ± 9.0 | 40.9 | 44.2 | ||
Good | 42.4 ± 8.9 | 40.5 | 44.3 | ||
AC (kg m/s) | Poor | 65.1 ± 15.7 | 61.9 | 68.3 | 0.33 |
Average | 68.2 ± 16.9 | 65.0 | 71.3 | ||
Good | 67.9 ± 15.9 | 64.6 | 71.2 |
Academic Achievement | |||
---|---|---|---|
Total (n = 304) | Boys (n = 162) | Girls (n = 142) | |
SBP | 0.095 | 0.087 | 0.061 |
DBP | 0.261 ** | 0.265 ** | 0.129 |
RHR | 0.099 | −0.006 | 0.152 |
VJ | −0.018 | 0.166 * | 0.105 |
SP | 0.078 | −0.111 | −0.126 |
VO2Max | −0.282 ** | −0.082 | −0.017 |
AC | 0.102 | 0.265 ** | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canli, U.; Aldhahi, M.I.; Küçük, H. Association of Physiological Performance, Physical Fitness, and Academic Achievement in Secondary School Students. Children 2024, 11, 396. https://doi.org/10.3390/children11040396
Canli U, Aldhahi MI, Küçük H. Association of Physiological Performance, Physical Fitness, and Academic Achievement in Secondary School Students. Children. 2024; 11(4):396. https://doi.org/10.3390/children11040396
Chicago/Turabian StyleCanli, Umut, Monira I. Aldhahi, and Hamza Küçük. 2024. "Association of Physiological Performance, Physical Fitness, and Academic Achievement in Secondary School Students" Children 11, no. 4: 396. https://doi.org/10.3390/children11040396
APA StyleCanli, U., Aldhahi, M. I., & Küçük, H. (2024). Association of Physiological Performance, Physical Fitness, and Academic Achievement in Secondary School Students. Children, 11(4), 396. https://doi.org/10.3390/children11040396