Proprioception, Emotion and Social Responsiveness in Children with Developmental Disorders: An Exploratory Study in Autism Spectrum Disorder, Cerebral Palsy and Different Neurodevelopmental Situations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Proprioception Assessment
2.2.2. Emotion and Social Assessment
2.2.3. Statistical Analysis
3. Results
3.1. Participants
3.2. Correlations between Proprioceptive and Socio-Emotional Performance in the Entire Study Population
3.3. Comparison of Proprioception, Emotion Regulation and Social Responsiveness between Groups of Children with Autism Spectrum Disorder, with Cerebral Palsy and Typically Developing Peers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamas, D.; Brkic Jovanovic, N.; Stojkov, S.; Cvijanović, D.; Meinhardt-Injac, B. Emotion recognition and social functioning in individuals with autism spectrum condition and intellectual disability. PLoS ONE 2024, 19, e0300973. [Google Scholar] [CrossRef]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef]
- Paulus, M.P. The breathing conundrum-interoceptive sensitivity and anxiety. Depress. Anxiety 2013, 30, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Shafir, T.; Taylor, S.F.; Atkinson, A.P.; Langenecker, S.A.; Zubieta, J.K. Emotion regulation through execution, observation, and imagery of emotional movements. Brain Cogn. 2013, 82, 219–227. [Google Scholar] [CrossRef]
- Hilber, P. The role of the cerebellar and vestibular networks in anxiety disorders and depression: The internal model hypothesis. Cerebellum 2022, 21, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Balaban, C.D.; Thayer, J.F. Neurological bases for balance-anxiety links. J. Anxiety Disord. 2001, 15, 53–79. [Google Scholar] [CrossRef]
- Finzi, E.; Rosenthal, N.E. Emotional proprioception: Treatment of depression with afferent facial feedback. J. Psychiatr. Res. 2016, 80, 93–96. [Google Scholar] [CrossRef]
- Finzi, E. Botulinum Toxin Treatment for Depression: A New Paradigm for Psychiatry. Toxins 2023, 15, 336. [Google Scholar] [CrossRef]
- Marshall, P.J.; Meltzoff, A.N. Body maps in the infant brain: Implications for neurodevelopmental disabilities. Dev. Med. Child. Neurol. 2020, 62, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Schmidsberger, F.; Löffler-Stastka, H. Empathy is proprioceptive: The bodily fundament of empathy—A philosophical contribution to medical education. BMC Med. Educ. 2018, 18, 69. [Google Scholar] [CrossRef]
- Stins, J.F.; Lobel, A.; Roelofs, K.; Beek, P.J. Social embodiment in directional stepping behavior. Cogn. Process 2014, 15, 245–252. [Google Scholar] [CrossRef]
- Ackerley, R.; Aimonetti, J.M.; Ribot-Ciscar, E. Emotions alter muscle proprioceptive coding of movements in humans. Sci. Rep. 2017, 7, 8465. [Google Scholar] [CrossRef]
- Gardiner, E.; Miller, A.R.; Lach, L.M. Topography of behavior problems among children with neurodevelopmental conditions: Profile differences and overlaps. Child. Care Health Dev. 2020, 46, 149–153. [Google Scholar] [CrossRef]
- Bierens, M.; Hartman, C.A.; Klip, H.; Deckers, S.; Buitelaar, J.; Rommelse, N. Emotion dysregulation as cross-disorder trait in child psychiatry predicting quality of life and required treatment duration. Front. Psychiatr. 2023, 14, 1101226. [Google Scholar] [CrossRef] [PubMed]
- Rais, M.; Binder, D.K.; Razak, K.A.; Ethell, I.M. Sensory processing phenotypes in Fragile X Syndrome. ASN Neuro 2018, 10, 1759091418801092. [Google Scholar] [CrossRef] [PubMed]
- Zetler, N.K.; Cermak, S.A.; Engel-Yeger, B.; Gal, E. Somatosensory discrimination in people with autism spectrum disorder: A scoping review. Am. J. Occup. Ther. 2019, 7305205010p1–7305205010p14. [Google Scholar] [CrossRef] [PubMed]
- Puts, N.A.J.; Harris, A.D.; Mikkelsen, M.; Tommerdahl, M.; Edden, R.A.E.; Mostofsky, S.H. Altered tactile sensitivity in children with attention-deficit hyperactivity disorder. J. Neurophysiol. 2017, 118, 2568–2578. [Google Scholar] [CrossRef]
- Papadelis, C.; Butler, E.E.; Rubenstein, M.; Sun, L.; Zollei, L.; Nimec, D.; Snyder, B.; Grant, P.E. Reorganization of the somatosensory cortex in hemiplegic cerebral palsy associated with impaired sensory tracts. NeuroImage Clin. 2017, 17, 198–212. [Google Scholar] [CrossRef]
- Riquelme, I.; Hatem, S.M.; Montoya, P. Abnormal pressure pain, touch sensitivity, proprioception, and manual dexterity in children with autism spectrum disorders. Neural Plast. 2016, 2016, 1723401. [Google Scholar] [CrossRef]
- Riquelme, I.; Montoya, P. Developmental changes in somatosensory processing in cerebral palsy and healthy individuals. Clin. Neurophysiol. 2010, 121, 1314–1320. [Google Scholar] [CrossRef]
- Cristella, G.; Allighieri, M.; Pasquini, G.; Simoni, L.; Antonetti, A.; Beni, C.; Macchi, C.; Ferrari, A.J. Evaluation of sense of position and agency in children with diplegic cerebral palsy: A pilot study. Pediatr. Rehabil. Med. 2022, 15, 181–191. [Google Scholar] [CrossRef]
- Monica, S.; Nayak, A.; Joshua, A.M.; Mithra, P.; Amaravadi, S.K.; Misri, Z.; Unnikrishnan, B. Relationship between trunk position sense and trunk control in children with spastic cerebral palsy: A cross-sectional study. Rehabil. Res. Pract. 2021, 2021, 9758640. [Google Scholar] [CrossRef]
- Jovellar-Isiegas, P.; Resa Collados, I.; Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Cuesta García, C. Sensory processing, functional performance and quality of life in unilateral cerebral palsy children: A cross-sectional study. Int. J. Environ. Res. Public Health 2020, 17, 7116. [Google Scholar] [CrossRef]
- Leprevottte, J.; Papaxanthis, C.; Saltarelli, S.; Quercia, P.; Gaveau, J. Movement detection thersholds reveal proprioceptive impairments in developmental dyslexia. Sci. Rep. 2021, 11, 299. [Google Scholar] [CrossRef]
- Santana, C.A.S.; Dos Santos, M.M.; de Campos, A.C. Interrelationships of touch and proprioception with motor impairments in individuals with cerebral palsy: A systematic review. Percept. Mot. Skills 2022, 129, 570–590. [Google Scholar] [CrossRef] [PubMed]
- Bang, P.; Igelström, K. Modality-specific associations between sensory differences and autistic traits. Autism 2023, 27, 2158–2172. [Google Scholar] [CrossRef]
- Ghanouni, P.; Memari, A.H.; Gharibzadeh, S.; Eghlidi, J.; Moshayedi, P. Effect of social stimuli on postural responses in individuals with autism spectrum disorders. J. Autism Dev. Disord. 2017, 47, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.M.; Balaban, C.D. Visuo-vestibular contributions to anxiety and fear. Neurosci. Biobehav. Rev. 2015, 48, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Stolk-Hornsveld, F.; Crow, J.L.; Hendriks, E.P.; van der Baan, R.; Harmeling-van der Wel, B.C. The Erasmus MC modifications to the (revised) Nottingham Sensory Assessment: A reliable somatosensory assessment measure for patients with intracranial disorders. Clin. Rehabil. 2006, 20, 160–172. [Google Scholar] [CrossRef]
- Goble, D.J. Proprioceptive acuity assessment via joint position matching: From basic science to general practice. Phys. Ther. 2010, 90, 1176–1184. [Google Scholar] [CrossRef]
- Zhang, K.Q.; Li, Y.X.; Lv, N.; Ma, Q.; Zhang, S.J.; Zhao, X.; Wang, K.; Li, L.; Li, L. Proprioceptive acuity assessment in multiple directions across multiple joints in the upper limb. Mot. Control 2023, 27, 860–879. [Google Scholar] [CrossRef]
- Riquelme, I.; Zamorano, A.; Montoya, P. Reduction of pain sensitivity after somatosensory therapy in adults with cerebral palsy. Front. Hum. Neurosci. 2013, 7, 276. [Google Scholar] [CrossRef]
- Riquelme, I.; Hatem, S.M.; Montoya, P. Reduction of pain sensitivity after somatosensory therapy in children with autism spectrum disorders. J. Abnorm. Child. Psychol. 2018, 46, 1731–1740. [Google Scholar] [CrossRef]
- Juul-Kristensen, B.; Lund, H.; Hansen, K.; Christensen, H.; Danneskiold-Samsøe, B.; Bliddal, H. Test-retest reliability of joint position and kinesthetic sense in the elbow of healthy subjects. Physiother. Theory Pract. 2008, 24, 65–72. [Google Scholar] [CrossRef]
- Dukkipati, S.S.; Walker, S.J.; Trevarrow, M.P.; Busboom, M.; Baker, S.E.; Kurz, M.J. Reduced wrist flexor H-reflex excitability is linked with increased wrist proprioceptive error in adults with cerebral palsy. Front. Neurol. 2022, 13, 930303. [Google Scholar] [CrossRef]
- Dunn, W. The Short Sensory Profile; The Psychological Corporation: New York, NY, USA, 2002. [Google Scholar]
- Beaudry-Bellefeuille, I.; Lane, S.J. Cultural adaptation for Spain of the Spanish version of the short sensory profile using cognitive interviews. Austin J. Autism Relat. Dis. 2015, 1, 1004. [Google Scholar] [CrossRef]
- McIntosh, D.N.; Miller, L.J.; Shyu, V.; Dunn, W. Development and Validation of the Short Sensory Profile; Sensory Profile User’s Manual: San Antonio, TX, USA, 1999; pp. 59–73. [Google Scholar]
- Riquelme, I.; Hatem, S.M.; Sabater-Gárriz, Á.; Montoya, P. A multidimensional investigation of the relationship between skin-mediated somatosensory signals, emotion regulation and behavior problems in autistic children. Front. Neurosci. 2023, 17, 1227173. [Google Scholar] [CrossRef]
- Warutkar, V.B.; Kovela, R.K.; Samal, S. Effectiveness of Sensory Integration Therapy on functional mobility in children with spastic diplegic cerebral palsy. Cureus 2023, 15, e45683. [Google Scholar] [CrossRef]
- Morgan, J.K.; Izard, C.E.; King, K.A. Construct validity of the emotion matching task: Preliminary evidence for convergent and criterion validity of a new emotion knowledge measure for young children. Soc. Dev. 2010, 19, 52–70. [Google Scholar] [CrossRef]
- Alonso-Alberca, N.; Vergara, A.I.; Fernández-Berrocal, P.; Johnson, S.R.; Izard, C.E. The adaptation and validation of the emotion matching task for preschool children in Spain. Int. J. Behav. Dev. 2012, 36, 489–494. [Google Scholar] [CrossRef]
- Belmonte-Darraz, S.; Montoro, C.I.; Andrade, N.C.; Montoya, P.; Riquelme, I. Alteration of emotion knowledge and its relationship with emotion regulation and psychopathological behavior in children with cerebral palsy. J. Autism Dev. Disord. 2021, 51, 1238–1248. [Google Scholar] [CrossRef]
- Shields, A.; Cicchetti, D. Emotion regulation among schoolage children: The development and validation of a new criterion Q-sort scale. Dev. Psychol. 1997, 33, 906–916. [Google Scholar] [CrossRef]
- Constantino, J.N.; Gruber, C.P. Social Responsiveness Scale; Manual; Western Psychological Services: Los Angeles, LA, USA, 2005. [Google Scholar]
- Constantino, J.N.; Davis, S.A.; Todd, R.D.; Schindler, M.K.; Gross, M.M.; Brophy, S.L.; Metzger, L.M.; Shoushtari, C.S.; Splinter, R.; Reich, W.J. Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Autism Dev. Disord. 2003, 33, 427–433. [Google Scholar] [CrossRef]
- Hus, V.; Bishop, S.; Gotham, K.; Huerta, M.; Lord, C. Factors influencing scores on the social responsiveness scale. J. Child. Psychol. Psychiatry 2013, 54, 216–224. [Google Scholar] [CrossRef]
- Kose, S.; Turer, F.; Inal Kaleli, I.; Calik Senturk, H.N.; Ozuysal Uyar, D.H.; Bildik, T. The relationship between social skills and sensory profile, emotion regulation and empathizing/systemizing in adolescents on the autism spectrum. J. Autism Dev. Disord. 2023. [Google Scholar] [CrossRef]
- Thye, M.D.; Bednarz, H.M.; Herringshaw, A.J.; Sartin, E.B.; Rajesh, K.K. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev. Cogn. Neurosci. 2018, 29, 151–167. [Google Scholar] [CrossRef]
- Hilton, C.L.; Harper, J.D.; Kueker, R.H.; Lang, A.R.; Abbacchi, A.M.; Todorov, A.; LaVesser, P.D. Sensory responsiveness as a predictor of social severity in children with high functioning autism spectrum disorders. J. Autism Dev. Disord. 2010, 40, 937–945. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, X.; Blain, S.D.; Jia, L.; Qiu, J. Interoceptive attention facilitates emotion regulation strategy use. Int. J. Clin. Health Psychol. 2023, 23, 100336. [Google Scholar] [CrossRef]
- Weng, H.Y.; Feldman, J.L.; Leggio, L.; Napadow, V.; Park, J.; Price, C.J. Interventions and manipulations of interoception. Trends Neurosci. 2021, 44, 52–62. [Google Scholar] [CrossRef]
- Fiori, F.; Aglioti, S.M.; David, N. Interactions between body and social awareness in yoga. J. Altern. Complement. Med. 2017, 23, 227–233. [Google Scholar] [CrossRef]
- Wood, H.; Rusbridge, S.; Lei, J.; Lomax, C.; Elliston, J.; Russell, A. Exploring the cognitive model of social anxiety in autistic young people-The central role of bodily symptoms. J. Autism Dev. Dis. 2022, 52, 5500–5514. [Google Scholar] [CrossRef]
- Ben Hassen, N.; Molins, F.; Garrote-Petisco, D.; Serrano, M.A. Emotional regulation deficits in autism spectrum disorder: The role of alexithymia and interoception. Res. Dev. Dis. 2023, 132, 104378. [Google Scholar] [CrossRef]
- Demchenko, I.; Desai, N.; Iwasa, S.N.; Gholamali Nezhad, F.; Zariffa, J.; Kennedy, S.H.; Rule, N.O.; Cohn, J.F.; Popovic, M.R.; Mulsant, B.H.; et al. Manipulating facial musculature with functional electrical stimulation as an intervention for major depressive disorder: A focused search of literature for a proposal. J. Neuroeng. Rehabil. 2023, 20, 64. [Google Scholar] [CrossRef]
- Shafir, T. Using movement to regulate emotion: Neurophysiological findings and their application in psychotherapy. Front. Psychol. 2016, 7, 1451. [Google Scholar] [CrossRef]
- Michael, J.; Park, S. Anomalous bodily experiences and perceived social isolation in schizophrenia: An extension of the Social Deafferentation Hypothesis. Schizophr. Res. 2016, 176, 392–397. [Google Scholar] [CrossRef]
- Zanin, J.P.; Pandya, M.A.; Espinoza, D.; Friedman, W.J.; Shiflett, M.W. Excess cerebellar granule neurons induced by the absence of p75NTR during development elicit social behavior deficits in mice. Front. Mol. Neurosci. 2023, 16, 1147597. [Google Scholar] [CrossRef]
- Mundy, P. Annotation: The neural basis of social impairments in autism: The role of the dorsal medial-frontal cortex and anterior cingulate system. J. Child. Psychol. Psychiatry 2003, 44, 93–809. [Google Scholar] [CrossRef]
- Tran, H.T.; Li, Y.C.; Lin, H.Y.; Lee, S.D.; Wang, P.J. Sensory processing impairments in children with developmental coordination disorder. Children 2022, 9, 1443. [Google Scholar] [CrossRef]
- McClelland, V.M.; Fischer, P.; Foddai, E.; Dall’Orso, S.; Burdet, E.; Brown, P.; Lin, J.P. EEG measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy. NeuroImage Clin. 2021, 30, 102569. [Google Scholar] [CrossRef]
- Hidaka, S.; Chen, N.; Ishii, N.; Iketani, R.; Suzuki, K.; Longo, M.R.; Wada, M. No differences in implicit hand maps among different degrees of autistic traits. Autism Res. 2023, 16, 1750–1764. [Google Scholar] [CrossRef]
- Chrysagis, N.; Koumantakis, G.A.; Grammatopoulou, E.; Skorkilis, E. Active joint position sense in children with unilateral cerebral palsy. Cureus 2021, 13, e18075. [Google Scholar] [CrossRef]
- Zarkou, A.; Lee, S.C.K.; Prosser, L.; Hwang, S.; Franklin, C.; Jeka, J. Foot and ankle somatosensory deficits in children with cerebral palsy: A pilot study. J. Pediatr. Rehabil. Med. 2021, 14, 247–255. [Google Scholar] [CrossRef]
- Trevarrow, M.P.; Bergwell, H.E.; Groff, B.R.; Wiesman, A.I.; Wilson, T.W.; Kurz, M.J. Youth with cerebral palsy display abnormal somatosensory cortical activity during a haptic exploration task. Neuroscience 2023, 515, 53–61. [Google Scholar] [CrossRef]
- Démas, J.; Bourguignon, M.; De Tiège, X.; Wens, V.; Coquelet, N.; Rovai, A.; Bouvier, S.; Bailly, R.; Brochard, S.; Dinomais, M.; et al. Assessing spino-cortical proprioceptive processing in childhood unilateral cerebral palsy with corticokinematic coherence. Neurophysiol. Clin. 2022, 52, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Armitano-Lago, C.; Bennett, H.J.; Haegele, J.A. Lower limb proprioception and strength differences between adolescents with autism spectrum disorders and neurotypical controls. Percept. Mot. Skills 2021, 128, 2132–2147. [Google Scholar] [CrossRef]
- Su, W.C.; Culotta, M.; Mueller, J.; Tsuzuki, D.; Bhat, A. fNIRS-Based differences in cortical activation during tool use, pantomimed actions, and meaningless actions between children with and without Autism Spectrum Disorder (ASD). Brain Sci. 2023, 13, 876. [Google Scholar] [CrossRef]
- Lidstone, D.E.; Mostofsky, S.H. Moving toward understanding autism: Visual-motor integration, imitation, and social skill development. Pediatr. Neurol. 2021, 122, 98–105. [Google Scholar] [CrossRef]
- Hense, M.; Badde, S.; Köhne, S.; Dziobek, I.; Röder, B. Visual and proprioceptive influences on tactile spatial processing in adults with autism spectrum disorders. Autism Res. 2019, 12, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Abass, M.Y.; Shendy, W.; Samir, H.; Sweif, R.E.; Ahmed, M.A.; Awad, A. Assessment of shoulder proprioception in patients with chronic mechanical cervical pain: A comparative study. J. Back Musculoskelet. Rehabil. 2023, 36, 1285–1293. [Google Scholar] [CrossRef]
- Meier, M.L.; Vrana, A.; Schweinhardt, P. Low back pain: The potential contribution of supraspinal motor control and proprioception. Neuroscientist 2019, 25, 583–596. [Google Scholar] [CrossRef]
- Uppal, N.; Foxe, J.J.; Butler, J.S.; Acluche, F.; Molholm, S. The neural dynamics of somatosensory processing and adaptation across childhood: A high-density electrical mapping study. J. Neurophysiol. 2016, 115, 1605–1619. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Candelas, C.; Flegenheimer, C.; McDermott, J.M.; Harvey, E. Emotional understanding, reactivity, and regulation in young children with ADHD symptoms. J. Abnorm. Child. Psychol. 2017, 45, 1297–1310. [Google Scholar] [CrossRef] [PubMed]
- Izard, C.E.; Fine, S.; Mostow, A.; Trentacosta, C.; Campbell, J. Emotion processes in normal and abnormal development and preventive intervention. Dev. Psychopathol. 2002, 14, 761–787. [Google Scholar] [CrossRef] [PubMed]
- Timler, G.R. Reading emotion cues: Social communication difficulties in pediatric populations. Semin. Speech Lang. 2003, 24, 121–130. [Google Scholar] [CrossRef]
- Ma, W.; Mao, J.; Xie, Y.; Li, S.; Wang, M. Examining the effects of Theory of Mind and social skills training on social competence in adolescents with autism. Behav. Sci. 2023, 13, 860. [Google Scholar] [CrossRef]
Variable (n) | Children with ASD (n = 42) | Children with CP (n = 34) | TDP (n = 50) |
---|---|---|---|
Chronic pain | 7 | 17 | 3 |
Cognitive function | |||
Normal cognition | 34 | 20 | 50 |
Mild impairment | 4 | 8 | 0 |
Moderate impairment | 4 | 6 | 0 |
Severe impairment | 0 | 0 | 0 |
Language function | |||
Fluid language | 27 | 22 | 50 |
Some sentences or echolalia | 4 | 0 | 0 |
Some words | 5 | 4 | 0 |
Non-verbal | 6 | 8 | 0 |
Type of ASD | - | - | |
Level 1 | 25 | ||
Level 2 | 17 | ||
Type of CP | |||
Bilateral spastic | - | 24 | - |
Diskinetic | - | 7 | - |
Ataxic | - | 3 | - |
Gross motor function classification system | |||
Level I | 42 | 2 | 50 |
Level II | 0 | 6 | 0 |
Level III | 0 | 10 | 0 |
Level IV | 0 | 6 | 0 |
Level V | 0 | 10 | 0 |
Manual ability function classification system | |||
Level I | 42 | 6 | 50 |
Level II | 0 | 6 | 0 |
Level III | 0 | 6 | 0 |
Level IV | 0 | 6 | 0 |
Level V | 0 | 10 | 0 |
Children with ASD (n = 42) | Children with CP (n = 34) | TDPs (n = 50) | Statistical Effects | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | p Value/Effect Size | |
Proprioception task (Nottingham Sensory Assessment) | 7.94 (0.24) | 6.14 (2.48) * | 8.00 (0.00) | ASD-TDP: p = 0.720/d = 0.34 CP-TDP: p < 0.001/d = 1.03 ASD-CP: p < 0.001/d = 0.98 |
Joint Position Error (° of error) | 23.39 (25.40) | 27.32 (29.91) | 17.95 (15.82) | ASD-TDP: p = 0.684/d = 0.26 CP-TDP: p < 0.231/d = 0.39 ASD-CP: p < 0.439/d = 0.14 |
Proprioceptive reactive behavior (Short Sensory Profile) | 12.98 (2.91) | 10.73 (3.29) * | 12.08 (3.46) | ASD-TDP: p = 0.124/d = 0.27 CP-TDP: p = 0.054/d = 0.40 ASD-CP: p = 0.002/d = 0.73 |
Children with ASD | Children with CP | TDP | Statistical Effects | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | p Value/Effect Size | |
Emotion knowledge task | ||||
EMT1 (emotion matching) | 10.27 (1.66) | 8.00 (2.73) *** | 10.34 (1.33) | ASD–TDPs: p = 0.872/d = 0.53 CP–TDPs: p < 0.001/d = 1.29 ASD–CP: p < 0.001/d = 1.04 |
EMT2 (situational knowledge) | 9.39 (2.19) | 6.79 (2.66) *** | 10.12 (1.29) | ASD–TDPs: p = 0.229/d = 0.45 CP–TDPs: p < 0.001/d = 1.89 ASD–CP: p < 0.001/d = 1.08 |
EMT3 (expressive knowledge) | 10.77 (1.03) | 9.31 (1.78) ** | 11.27 (0.87) | ASD–TDPs: p = 0.054/d = 0.54 CP–TDPs: p < 0.001/d = 1.67 ASD–CP: p = 017/d = 1.07 |
EMT4 (receptive knowledge) | 10.44 (1.45) | 8.42 (2.89) *** | 10.70 (1.05) | ASD–TDPs: p = 0.588/d = 0.21 CP–TDPs: p < 0.001/d = 1.28 ASD–CP: p = 0.006/d = 0.92 |
Emotion regulation checklist | ||||
Emotion regulation | 3.13 (0.66) | 3.27 (0.52) | 3.20 (0.74) | ASD–TDPs: p = 0.488/d = 0.13 CP–TDPs: p = 0.968/d = 0.10 ASD–CP: p = 0.609/d = 0.22 |
Emotion lability/negativity | 1.72 (0.66) | 2.05 (0.69) | 1.80 (0.59) | ASD–TDPs: p = 0.395/d = 0.10 CP–TDPs: p = 0.320/d = 0.40 ASD–CP: p = 0.096/d = 0.49 |
Social responsiveness scale | ||||
Social motivation | 17.22 (6.00) *** | 13.67 (5.58) | 10.95 (5.40) | ASD–TDPs: p < 0.001/d = 1.10 CP–TDPs: p = 0.055/d = 0.50 ASD–CP: p = 0.079/d = 0.62 |
Social awareness | 12.72 (3.10) | 11.09 (3.89) | 11.53 (2.65) | ASD–TDPs: p = 0.355/d = 0.42 CP–TDPs: p = 0.798/d = 0.14 ASD–CP: p = 0.588/d = 0.48 |
Social cognition | 19.50 (5.13) ** | 17.10 (5.17) | 14.26 (3.11) | ASD–TDPs: p = 0.002/d = 1.24 CP–TDPs: p = 0.110/d = 0.66 ASD–CP: p = 0.125/d = 0.47 |
Social communication | 35.22 (10.03) ** | 24.14 (10.14) | 21.21 (6.42) | ASD–TDPs: p < 0.001/d = 1.42 CP–TDPs: p = 0.415/d = 0.34 ASD–CP: p = 0.001/d = 1.10 |
Mannerism | 23.27 (6.92) *** | 13.67 (5.58) * | 6.32 (5.76) | ASD–TDPs: p = 0.016/d = 2.60 CP–TDPs: p < 0.001/d = 1.04 ASD–CP: p = 0.006/d = 1.48 |
Total score | 107.67 (27.85) *** | 80.05 (26.96) | 64.26 (20.22) | ASD–TDPs: p < 0.001/d = 1.79 CP–TDPs: p = 0.055/d = 0.66 ASD–CP: p < 0.009/d = 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riquelme, I.; Hatem, S.M.; Sabater-Gárriz, Á.; Martín-Jiménez, E.; Montoya, P. Proprioception, Emotion and Social Responsiveness in Children with Developmental Disorders: An Exploratory Study in Autism Spectrum Disorder, Cerebral Palsy and Different Neurodevelopmental Situations. Children 2024, 11, 719. https://doi.org/10.3390/children11060719
Riquelme I, Hatem SM, Sabater-Gárriz Á, Martín-Jiménez E, Montoya P. Proprioception, Emotion and Social Responsiveness in Children with Developmental Disorders: An Exploratory Study in Autism Spectrum Disorder, Cerebral Palsy and Different Neurodevelopmental Situations. Children. 2024; 11(6):719. https://doi.org/10.3390/children11060719
Chicago/Turabian StyleRiquelme, Inmaculada, Samar M. Hatem, Álvaro Sabater-Gárriz, Elisabeth Martín-Jiménez, and Pedro Montoya. 2024. "Proprioception, Emotion and Social Responsiveness in Children with Developmental Disorders: An Exploratory Study in Autism Spectrum Disorder, Cerebral Palsy and Different Neurodevelopmental Situations" Children 11, no. 6: 719. https://doi.org/10.3390/children11060719
APA StyleRiquelme, I., Hatem, S. M., Sabater-Gárriz, Á., Martín-Jiménez, E., & Montoya, P. (2024). Proprioception, Emotion and Social Responsiveness in Children with Developmental Disorders: An Exploratory Study in Autism Spectrum Disorder, Cerebral Palsy and Different Neurodevelopmental Situations. Children, 11(6), 719. https://doi.org/10.3390/children11060719