Skip Content
You are currently on the new version of our website. Access the old version .
ChildrenChildren
  • Review
  • Open Access

22 March 2022

Long-Term Follow-Up of Pediatric CNS Tumor Survivors—A Selection of Relevant Long-Term Issues

,
and
1
Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau AG, 5001 Aarau, Switzerland
2
Department of Oncology, Hematology, Immunology, Stem Cell Transplantation and Somatic Gene Therapy, University Children’s Hospital Zurich—Eleonore Foundation, 8032 Zurich, Switzerland
3
Division of Oncology and Hematology, University Children’s Hospital Basel (UKBB), 4056 Basel, Switzerland
4
Department of Health Sciences and Medicine, University of Lucerne, 6002 Lucerne, Switzerland
This article belongs to the Special Issue Management of Brain Tumors in Children

Abstract

Introduction: Survivors of pediatric central nervous system (CNS) tumors are at high risk for late effects and long-term morbidity. The quality of survival became increasingly important, as advances in diagnostics, multimodal treatment strategies, and supportive care have led to significant increases in long-term survival. Aim: This review aims to provide a global overview of the potential late effects and long-term follow-up care of CNS tumor survivors, directed to trainees and practitioners with less targeted training in pediatric oncology. Late effects in CNS tumor survivors: A specific focus on CNS tumor survivors relies on cognitive and psychosocial late effects, as they may have an impact on education, professional career, independent living, and quality of life. Further important late effects in CNS tumor survivors include endocrine, metabolic, cardiovascular, and cerebrovascular diseases. Conclusions: Comprehensive long-term follow-up care is essential for pediatric CNS tumor survivors to improve their quality of survival and quality of life. An individualized approach, taking all potential late effects into account, and carried out by an interdisciplinary team, is recommended, and should continue into adulthood. Existing recommendations and guidelines on long-term follow-up care guide the multidisciplinary teams.

1. Introduction

Pediatric tumors of the central nervous system (CNS) represent the second most common malignancy in childhood following leukemia, and are the most common solid tumors [1]. Pediatric CNS tumors show the highest cancer-related mortality in children independent of age at diagnosis, and survivors are at high risk for long-term morbidity [1,2,3]. The biological behavior of pediatric CNS tumors is very different depending on the entity. Glioma is the most frequent tumor entity in the pediatric age group and represents 50–60% of all CNS tumors. Its biological spectrum ranges from low-grade gliomas (LGG, WHO Grade I), often behaving like a chronic disease, to high-grade gliomas (HGG, WHO Grade IV), with a rather dismal long-term prognosis in most cases [4]. Medulloblastoma and ependymoma represent the second and third most common tumor entities. The most recent WHO classification of CNS tumors from 2021 comprises these pediatric relevant overarching groups: (1) gliomas, glioneuronal and neuronal tumors; (2) choroid plexus tumors; (3) CNS embryonal tumors; (4) pineal region tumors; (5) germ cell tumors; and (6) tumors of the sellar region [5]. Each group is again divided into several entities with age-specific distributions. Medulloblastoma or atypical teratoid/rhabdoid tumors (ATRT), for example, are much more frequent in infants and young children. On the contrary, germ cell tumors or craniopharyngioma are mainly diagnosed in older children and adolescents [4].
Progress in diagnostic approaches, including neuroimaging and molecular tumor characterization, and more elaborated treatment strategies, including neurosurgery, radiotherapy, and targeted drugs, contributed to an increasing overall survival [6]. Progress in supportive care further contributed to this increase in overall survival. The five-year survival rate of children aged 0–14 years diagnosed with low- and high-grade CNS tumors in the United States increased from ∼55% in the 1970s to 82.5% in those diagnosed in 2004–2016 [1]. The respective five-year survival rate of European children diagnosed with low- and high-grade gliomas, within the same age range, in 2000–2007, and recorded in a cancer registry, was 70% [7]. This number has to be interpreted with caution, as not all European cancer registries collected information on low-grade tumors.
Due to the increasing survival of pediatric CNS tumor patients, emphasis has increasingly been placed on late effects and long-term follow-up care. As a consequence, different national and international long-term follow-up care guidelines have been developed, such as the Children’s Oncology Group (COG) guidelines in the US, the Dutch Childhood Oncology Group (DCOG) in the Netherlands, and the “Therapy based long-term follow-up” guidelines in the UK [8,9,10]. The recommendations in these guidelines span survivors of all tumor entities and are not specifically for CNS tumor survivors. The COG guidelines are categorized by treatment exposure, covering each chemotherapeutic agent, different radiation fields, surgical procedures, and hematopoietic stem cell transplantation separately. The guidelines from the Netherlands and UK are categorized by organ systems at risk (e.g., fertility, hearing). Independent of these structural differences, each guideline answers the questions on who needs screening, which screening test should be used, in which frequency the tests should be performed, and what should be done in case of abnormal screening results. The recommendations for CNS tumor survivors can therefore be found in the sections on chemotherapeutic agents, radiotherapy and (neuro-)surgery. All these guidelines allow one to define organ systems at risk for late effects based on the treatment received. For example, survivors treated with platinum agents are at risk for ototoxicity, fertility issues, renal toxicity, and peripheral sensory neuropathy [8]. The screening tests and intervals recommended for ototoxicity in this example are annual medical history and audiometry, where the frequency is based on current age, and whether additional cranial radiotherapy was applied or not. As some recommendations differ between the different long-term follow-up care guidelines in various degrees, the International Guideline Harmonization Group (IGHG) was launched, aiming to harmonize the different national guidelines and to solve the discrepant fields with evidence from systematic literature searches or the consensus of experts in the respective fields [11]. As the field of late effects is constantly growing, the COG and IGHG recommendations are updated in regular intervals, based on new evidence. In addition, new IGHG recommendations are constantly developed and added on the homepage [11]. All these efforts underline that comprehensive long-term follow-up care is needed for pediatric CNS tumor survivors to increase the quality of survival.

4. Conclusions

Our review underlines that pediatric CNS tumor survivors need lifelong risk-adapted long-term follow-up care. They have, among all childhood cancer survivors, the highest risk for profound late effects [6]. Despite the success in increasing the survival rates of children and adolescents diagnosed with CNS tumors, the concomitant risk for late effects with possible impact in several areas of life is concerning. The physical and psychological late effects often align with a reduction in quality of life [31]. As a result, researchers and pediatric neuro-oncologists constantly aim to reduce the risk of these late effects by introducing novel, targeted therapies, and decreasing toxicity by omitting or reducing doses of radiotherapy and conventional chemotherapy.
To further improve quality of survival, lifelong follow-up care of CNS tumor survivors should be implemented in clinical practice. A bio-psycho-social approach is recommended and should be reflected in an interdisciplinary approach. Currently, the IGHG is constantly developing organ-specific, updated, and evidence-based guidelines, providing guidance on who needs surveillance screening, which tests should be performed, and in which frequencies should be measured [11]. Each pediatric oncology center and physician caring for childhood cancer survivors should be aware of the IGHG or similar guidelines. National guidelines, as mentioned in the introduction, are those from the COG in the US, the DCOG in the Netherlands, and the “Therapy based long-term follow-up” guidelines in the UK [8,9,10]. PanCare, the Pan-European Network for Care of survivors after childhood and adolescent cancer, also provides a set of surveillance recommendations [105]. All these guidelines are risk-adapted, based on the treatment received (surgery, chemotherapy, and radiation therapy), and cover all physical and psychological aspects of follow-up care. In addition, advising survivors and their families individually about potential risk factors and healthy lifestyles is of the utmost importance and should also be implemented in every late effect consultation. For the future, further intervention and prevention studies focusing on late effects need to be implemented.

Author Contributions

Conceptualization, K.S., M.O. and J.W.; writing—original draft preparation M.O. and J.W.; writing—review and editing, K.S. and M.O. All authors have read and agreed to the published version of the manuscript.

Funding

Swiss Cancer Research (HSR-4359-11-2017).

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology 2020, 22, iv1–iv96. [Google Scholar] [CrossRef] [PubMed]
  2. Armstrong, G.T.; Liu, Q.; Yasui, Y.; Huang, S.; Ness, K.K.; Leisenring, W.; Hudson, M.M.; Donaldson, S.S.; King, A.A.; Stovall, M.; et al. Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2009, 101, 946–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Gupta, P.; Jalali, R. Long-term Survivors of Childhood Brain Tumors: Impact on General Health and Quality of Life. Curr. Neurol. Neurosci. Rep. 2017, 17, 99. [Google Scholar] [CrossRef] [PubMed]
  4. Udaka, Y.T.; Packer, R.J. Pediatric Brain Tumors. Neurol. Clin. 2018, 36, 533–556. [Google Scholar] [CrossRef] [PubMed]
  5. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
  6. Roddy, E.; Mueller, S. Late Effects of Treatment of Pediatric Central Nervous System Tumors. J. Child Neurol. 2016, 31, 237–254. [Google Scholar] [CrossRef]
  7. Gatta, G.; Botta, L.; Rossi, S.; Aareleid, T.; Bielska-Lasota, M.; Clavel, J.; Dimitrova, N.; Jakab, Z.; Kaatsch, P.; Lacour, B.; et al. Childhood cancer survival in Europe 1999–2007: Results of EUROCARE-5—A population-based study. Lancet Oncol. 2014, 15, 35–47. [Google Scholar] [CrossRef]
  8. Childrens Oncology Group. Long Term Follow-Up Guidelines Version 5.0. 2018. Available online: http://www.survivorshipguidelines.org/pdf/2018/COG_LTFU_Guidelines_v5.pdf (accessed on 11 September 2021).
  9. SKION DCOGD. Guidelines for Follow-up in Survivors of Childhood Cancer 5 Years after Diagnosis. 2010. Available online: https://www.skion.nl/voor-patienten-en-ouders/late-effecten/533/richtlijn-follow-up-na-kinderkanker/ (accessed on 8 May 2018).
  10. United Kingdom Children’s Cancer Study Group. Therapy Based Long Term Follow-Up—Practice Statement. 2005. Available online: https://www.cclg.org.uk/write/MediaUploads/Member%20area/Treatment%20guidelines/LTFU-full.pdf?msclkid=d42dc5eca5e911eca6e3d01561e04273 (accessed on 16 April 2021).
  11. International Guideline Harmonization Group for Late Effects of Childhood Cancer. Available online: http://www.ighg.org/ (accessed on 11 September 2021).
  12. Souweidane, M.M. The evolving role of surgery in the management of pediatric brain tumors. J. Child Neurol. 2009, 24, 1366–1374. [Google Scholar] [CrossRef]
  13. Zebian, B.; Vergani, F.; Lavrador, J.P.; Mukherjee, S.; Kitchen, W.J.; Stagno, V.; Chamilos, C.; Pettorini, B.; Mallucci, C. Recent technological advances in pediatric brain tumor surgery. CNS Oncol. 2017, 6, 71–82. [Google Scholar] [CrossRef] [PubMed]
  14. Thomas, H.; Timmermann, B. Paediatric proton therapy. Br. J. Radiol. 2020, 93, 20190601. [Google Scholar] [CrossRef] [PubMed]
  15. Child, A.E.; Warren, E.A.; Grosshans, D.R.; Paulino, A.C.; Okcu, M.F.; Ris, M.D.; Mahajan, A.; Orobio, J.; Cirino, P.T.; Minard, C.G.; et al. Long-term cognitive and academic outcomes among pediatric brain tumor survivors treated with proton versus photon radiotherapy. Pediatr. Blood Cancer 2021, 68, e29125. [Google Scholar] [CrossRef] [PubMed]
  16. Kahalley, L.S.; Douglas Ris, M.; Mahajan, A.; Fatih Okcu, M.; Chintagumpala, M.; Paulino, A.C.; Whitehead, W.E.; Minard, C.G.; Stancel, H.H.; Orobio, J.; et al. Prospective, longitudinal comparison of neurocognitive change in pediatric brain tumor patients treated with proton radiotherapy versus surgery only. Neuro-Oncology 2019, 21, 809–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Rutkowski, S.; Bode, U.; Deinlein, F.; Ottensmeier, H.; Warmuth-Metz, M.; Soerensen, N.; Graf, N.; Emser, A.; Pietsch, T.; Wolff, J.E.A.; et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 2005, 352, 978–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Kool, M.; Korshunov, A.; Remke, M.; Jones, D.T.; Schlanstein, M.; Northcott, P.A.; Cho, Y.-J.; Koster, J.; Schouten-van Meeteren, A.; Van Vuurden, D.; et al. Molecular subgroups of medulloblastoma: An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012, 123, 473–484. [Google Scholar] [CrossRef] [Green Version]
  19. Pajtler, K.W.; Witt, H.; Sill, M.; Jones, D.T.; Hovestadt, V.; Kratochwil, F.; Wani, K.; Tatevossian, R.; Punchihewa, C.; Johann, P.; et al. Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell. 2015, 27, 728–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Neumann, J.E.; Spohn, M.; Obrecht, D.; Mynarek, M.; Thomas, C.; Hasselblatt, M.; Dorostkar, M.M.; Wefers, A.K.; Frank, S.; Monoranu, C.-M.; et al. Molecular characterization of histopathological ependymoma variants. Acta Neuropathol. 2020, 139, 305–318. [Google Scholar] [CrossRef]
  21. Northcott, P.A.; Robinson, G.W.; Kratz, C.P.; Mabbott, D.J.; Pomeroy, S.L.; Clifford, S.C.; Rutkowski, S.; Ellison, D.W.; Malkin, D.; Taylor, M.D.; et al. Medulloblastoma. Nat. Rev. Dis. Primers 2019, 5, 11. [Google Scholar] [CrossRef] [PubMed]
  22. Venneti, S.; Huse, J.T. The evolving molecular genetics of low-grade glioma. Adv. Anat. Pathol. 2015, 22, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Fouladi, M.; Pfister, S.M. MEK and RAF inhibitors: Time for a paradigm shift in the treatment of pediatric low-grade gliomas? Neuro-Oncology 2017, 19, 741–743. [Google Scholar] [CrossRef]
  24. Sun, Y.; Alberta, J.A.; Pilarz, C.; Calligaris, D.; Chadwick, E.J.; Ramkissoon, S.H.; Ramkissoon, L.A.; Garcia, V.M.; Mazzola, E.; Goumnerova, L.; et al. A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro-Oncology 2017, 19, 774–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Pérez, J.P.M.; Muchart, J.; López, V.S.-M.; Capella, M.S.; Salvador, N.; Jaume, S.P.; Martínez, O.C.; La Madrid, A.M. Targeted therapy for pediatric low-grade glioma. Childs Nerv. Syst. 2021, 37, 2511–2520. [Google Scholar] [CrossRef] [PubMed]
  26. Hargrave, D.R.; Bouffet, E.; Tabori, U.; Broniscer, A.; Cohen, K.J.; Hansford, J.R.; Geoerger, B.; Hingorani, P.; Dunkel, I.J.; Russo, M.W.; et al. Efficacy and Safety of Dabrafenib in Pediatric Patients with BRAF V600 Mutation-Positive Relapsed or Refractory Low-Grade Glioma: Results from a Phase I/IIa Study. Clin. Cancer Res. 2019, 25, 7303–7311. [Google Scholar] [CrossRef] [PubMed]
  27. Selt, F.; Van Tilburg, C.M.; Bison, B.; Sievers, P.; Harting, I.; Ecker, J.; Pajtler, K.W.; Sahm, F.; Bahr, A.; Simon, M.; et al. Response to trametinib treatment in progressive pediatric low-grade glioma patients. J. Neurooncol. 2020, 149, 499–510. [Google Scholar] [CrossRef] [PubMed]
  28. Plant-Fox, A.S.; O’Halloran, K.; Goldman, S. Pediatric brain tumors: The era of molecular diagnostics, targeted and immune-based therapeutics, and a focus on long term neurologic sequelae. Curr. Probl. Cancer 2021, 45, 100777. [Google Scholar] [CrossRef] [PubMed]
  29. Mount, C.; Majzner, R.G.; Sundaresh, S.; Arnold, E.P.; Kadapakkam, M.; Haile, S.; Labanieh, L.; Hulleman, E.; Woo, P.J.; Rietberg, S.P.; et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M(+) diffuse midline gliomas. Nat. Med. 2018, 24, 572–579. [Google Scholar] [CrossRef] [PubMed]
  30. Limond, J.; Thomas, S.; Bull, K.; Calaminus, G.; Lemiere, J.; Traunwieser, T.; van Santen, H.M.; Weiler, L.; Spoudeas, H.; Chevignard, M. Quality of survival assessment in European childhood brain tumour trials, for children below the age of 5 years. Eur. J. Paediatr. Neurol. 2020, 25, 59–67. [Google Scholar] [CrossRef] [PubMed]
  31. Tallen, G.; Resch, A.; Calaminus, G.; Wiener, A.; Leiss, U.; Pletschko, T.; Friedrich, C.; Langer, T.; Grabow, D.; Driever, P.H.; et al. Strategies to improve the quality of survival for childhood brain tumour survivors. Eur. J. Paediatr. Neurol. 2015, 19, 619–639. [Google Scholar] [CrossRef]
  32. Brinkman, T.M.; Recklitis, C.J.; Michel, G.; Grootenhuis, M.A.; Klosky, J.L. Psychological Symptoms, Social Outcomes, Socioeconomic Attainment, and Health Behaviors Among Survivors of Childhood Cancer: Current State of the Literature. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2190–2197. [Google Scholar] [CrossRef] [PubMed]
  33. Christen, S.; Roser, K.; Mulder, R.L.; Ilic, A.; Lie, H.C.; Loonen, J.J.; Mellblom, A.V.; Kremer, L.C.M.; Hudson, M.M.; Constine, L.S.; et al. Recommendations for the surveillance of cancer-related fatigue in childhood, adolescent, and young adult cancer survivors: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. J. Cancer Surviv. Res. Pract. 2020, 14, 923–938. [Google Scholar] [CrossRef] [PubMed]
  34. Nemeth, O.; Hermann, P.; Kivovics, P.; Garami, M. Long-term effects of chemotherapy on dental status of children cancer survivors. Pediatr. Hematol. Oncol. 2013, 30, 208–215. [Google Scholar] [CrossRef] [PubMed]
  35. Mulder, R.L.; Font-Gonzalez, A.; Hudson, M.M.; van Santen, H.M.; Loeffen, E.A.H.; Burns, K.C.; Quinn, G.P.; Broeder, E.V.D.-D.; Byrne, J.; Haupt, R.; et al. Fertility preservation for male patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021, 22, e57–e67. [Google Scholar] [CrossRef]
  36. Mulder, R.L.; Font-Gonzalez, A.; Hudson, M.M.; van Santen, H.M.; Loeffen, E.A.H.; Burns, K.C.; Quinn, G.P.; Broeder, E.V.D.-D.; Byrne, J.; Haupt, R.; et al. Fertility preservation for female patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021, 22, e45–e56. [Google Scholar] [CrossRef]
  37. Clemens, E.; van den Heuvel-Eibrink, M.M.; Mulder, R.L.; Kremer, L.C.M.; Hudson, M.M.; Skinner, R.; Constine, L.S.; Bass, J.K.; Kuehni, C.E.; Langer, T.; et al. Recommendations for ototoxicity surveillance for childhood, adolescent, and young adult cancer survivors: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCare Consortium. Lancet Oncol. 2019, 20, e29–e41. [Google Scholar] [CrossRef]
  38. Kooijmans, E.C.; Bökenkamp, A.; Tjahjadi, N.S.; Tettero, J.M.; van Dulmen-den, E.B.; Van Der Pal, H.J.; Veening, M.A. Early and late adverse renal effects after potentially nephrotoxic treatment for childhood cancer. Cochrane Database Syst. Rev. 2019, 3, Cd008944. [Google Scholar] [CrossRef] [PubMed]
  39. Han, J.W.; Kim, H.S.; Hahn, S.M.; Jin, S.L.; Shin, Y.J.; Kim, S.H.; Lee, Y.S.; Lee, J.; Lyu, C.J. Poor bone health at the end of puberty in childhood cancer survivors. Pediatr. Blood Cancer 2015, 62, 1838–1843. [Google Scholar] [CrossRef] [PubMed]
  40. Jacola, L.M.; Partanen, M.; Lemiere, J.; Hudson, M.M.; Thomas, S. Assessment and Monitoring of Neurocognitive Function in Pediatric Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
  41. Pietilä, S.; Lenko, H.L.; Oja, S.; Koivisto, A.-M.; Pietilä, T.; Mäkipernaa, A. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors. J. Child Neurol. 2016, 31, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Grisold, W.; Cavaletti, G.; Windebank, A.J. Peripheral neuropathies from chemotherapeutics and targeted agents: Diagnosis, treatment, and prevention. Neuro-Oncology 2012, 14 (Suppl. 4), iv45–iv54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Bowers, D.C.; Verbruggen, L.C.; Kremer, L.C.M.; Hudson, M.M.; Skinner, R.; Constine, L.S.; Sabin, N.D.; Bhangoo, R.; Haupt, R.; Hawkins, M.M.; et al. Surveillance for subsequent neoplasms of the CNS for childhood, adolescent, and young adult cancer survivors: A systematic review and recommendations from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021, 22, e196–e206. [Google Scholar] [CrossRef]
  44. Clement, S.; Kremer, L.; Verburg, F.; Simmons, J.; Goldfarb, M.; Peeters, R.; Alexander, E.; Bardi, E.; Brignardello, E.; Constine, L.; et al. Balancing the benefits and harms of thyroid cancer surveillance in survivors of Childhood, adolescent and young adult cancer: Recommendations from the international Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Cancer Treat. Rev. 2018, 63, 28–39. [Google Scholar]
  45. Larson, J.J.; Ball, W.S.; Bove, K.E.; Crone, K.R.; Tew, J.M., Jr. Formation of intracerebral cavernous malformations after radiation treatment for central nervous system neoplasia in children. J. Neurosurg. 1998, 88, 51–56. [Google Scholar] [CrossRef]
  46. Ullrich, N.J.; Robertson, R.; Kinnamon, D.D.; Scott, R.M.; Kieran, M.W.; Turner, C.D.; Chi, S.N.; Goumnerova, L.; Proctor, M.; Tarbell, N.J.; et al. Moyamoya following cranial irradiation for primary brain tumors in children. Neurology 2007, 68, 932–938. [Google Scholar] [CrossRef] [PubMed]
  47. Campen, C.J.; Kranick, S.M.; Kasner, S.E.; Kessler, S.K.; Zimmerman, R.A.; Lustig, R.; Phillips, P.C.; Storm, P.B.; Smith, S.E.; Ichord, R.; et al. Cranial irradiation increases risk of stroke in pediatric brain tumor survivors. Stroke 2012, 43, 3035–3040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  48. Rose, S.R.; Horne, V.E.; Howell, J.; Lawson, S.A.; Rutter, M.M.; Trotman, G.E.; Corathers, S.D. Late endocrine effects of childhood cancer. Nat. Rev. Endocrinol. 2016, 12, 319–336. [Google Scholar] [CrossRef] [PubMed]
  49. Gurney, J.G.; Kadan-Lottick, N.S.; Packer, R.J.; Neglia, J.P.; Sklar, C.A.; Punyko, J.A.; Stovall, M.; Yasui, Y.; Nicholson, S.; Wolden, S.; et al. Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor Study. Cancer 2003, 97, 663–673. [Google Scholar] [CrossRef]
  50. Darzy, K.H.; Shalet, S.M. Hypopituitarism following Radiotherapy Revisited. Endocr. Dev. 2009, 15, 1–24. [Google Scholar] [PubMed]
  51. Nandagopal, R.; Laverdière, C.; Mulrooney, D.; Hudson, M.M.; Meacham, L. Endocrine late effects of childhood cancer therapy: A report from the Children’s Oncology Group. Horm. Res. 2008, 69, 65–74. [Google Scholar] [CrossRef] [PubMed]
  52. Pietilä, S.; Mäkipernaa, A.; Sievänen, H.; Koivisto, A.-M.; Wigren, T.; Lenko, H.L. Obesity and metabolic changes are common in young childhood brain tumor survivors. Pediatr. Blood Cancer 2009, 52, 853–859. [Google Scholar] [CrossRef]
  53. Le Rhun, E.; Perry, J.R. Vascular complications in glioma patients. Handb. Clin. Neurol. 2016, 134, 251–266. [Google Scholar]
  54. Armenian, S.H.; Hudson, M.M.; Mulder, R.L.; Chen, M.H.; Constine, L.S.; Dwyer, M.; Nathan, P.C.; Tissing, W.J.E.; Shankar, S.; Sieswerda, E.; et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015, 16, e123–e136. [Google Scholar] [CrossRef] [Green Version]
  55. Song, A.; Fish, J.D. Caring for survivors of childhood cancer: It takes a village. Curr. Opin. Pediatr. 2018, 30, 864–873. [Google Scholar] [CrossRef] [PubMed]
  56. Otth, M.; Denzler, S.; Koenig, C.; Koehler, H.; Scheinemann, K. Transition from pediatric to adult follow-up care in childhood cancer survivors-a systematic review. J. Cancer Surviv. Res. Pract. 2020, 15, 151–162. [Google Scholar] [CrossRef] [PubMed]
  57. Roddy, E.; Sear, K.; Felton, E.; Tamrazi, B.; Gauvain, K.; Torkildson, J.; Del Buono, B.; Samuel, D.; Haas-Kogan, D.A.; Chen, J.; et al. Presence of cerebral microbleeds is associated with worse executive function in pediatric brain tumor survivors. Neuro-Oncology 2016, 18, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
  58. Robinson, K.E.; Kuttesch, J.F.; Champion, J.E.; Andreotti, C.F.; Hipp, D.W.; Bettis, A.; Barnwell, A.; Compas, B.E. A quantitative meta-analysis of neurocognitive sequelae in survivors of pediatric brain tumors. Pediatr. Blood Cancer 2010, 55, 525–531. [Google Scholar] [CrossRef] [PubMed]
  59. Lassaletta, A.; Bouffet, E.; Mabbott, N.; Kulkarni, A.V. Functional and neuropsychological late outcomes in posterior fossa tumors in children. Childs Nerv. Syst. 2015, 31, 1877–1890. [Google Scholar] [CrossRef] [PubMed]
  60. Fay-McClymont, T.B.; Ploetz, D.M.; Mabbott, D.; Walsh, K.; Smith, A.; Chi, S.N.; Wells, E.; Madden, J.; Margol, A.; Finlay, J.; et al. Long-term neuropsychological follow-up of young children with medulloblastoma treated with sequential high-dose chemotherapy and irradiation sparing approach. J. Neurooncol. 2017, 133, 119–128. [Google Scholar] [CrossRef] [PubMed]
  61. Kline, C.N.; Mueller, S. Neurocognitive Outcomes in Children with Brain Tumors. Semin. Neurol. 2020, 40, 315–321. [Google Scholar] [CrossRef]
  62. Palmer, S.L.; Armstrong, C.; Onar-Thomas, A.; Wu, S.; Wallace, D.; Bonner, M.J.; Schreiber, J.; Swain, M.; Chapieski, L.; Mabbott, D.; et al. Processing speed, attention, and working memory after treatment for medulloblastoma: An international, prospective, and longitudinal study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 3494–3500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Chieffo, D.; Tamburrini, G.; Frassanito, P.; Arcangeli, V.; Caldarelli, M.; Di Rocco, C. Preoperative neurocognitive evaluation as a predictor of brain tumor grading in pediatric patients with supratentorial hemispheric tumors. Childs Nerv. Syst. 2016, 32, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
  64. Palmer, S.L.; Hassall, T.; Evankovich, K.; Mabbott, D.J.; Bonner, M.; DeLuca, C.; Cohn, R.; Fisher, M.J.; Morris, E.B.; Broniscer, A.; et al. Neurocognitive outcome 12 months following cerebellar mutism syndrome in pediatric patients with medulloblastoma. Neuro-Oncology 2010, 12, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
  65. Morris, E.B.; Phillips, N.S.; Laningham, F.H.; Patay, Z.; Gajjar, A.; Wallace, D.; Boop, F.; Sanford, R.; Ness, K.K.; Ogg, R.J. Proximal dentatothalamocortical tract involvement in posterior fossa syndrome. Brain 2009, 132, 3087–3095. [Google Scholar] [CrossRef] [PubMed]
  66. Schreiber, E.J.; Palmer, S.L.; Conklin, H.M.; Mabbott, D.J.; Swain, A.M.; Bonner, M.J.; Chapieski, M.L.; Huang, L.; Zhang, H.; Gajjar, A. Posterior fossa syndrome and long-term neuropsychological outcomes among children treated for medulloblastoma on a multi-institutional, prospective study. Neuro-Oncology 2017, 19, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
  67. Conklin, H.M.; Reddick, W.E.; Ashford, J.; Ogg, S.; Howard, S.C.; Morris, E.B.; Brown, R.; Bonner, M.; Christensen, R.; Wu, S.; et al. Long-term efficacy of methylphenidate in enhancing attention regulation, social skills, and academic abilities of childhood cancer survivors. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 4465–4472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Ayoub, R.; Ruddy, R.M.; Cox, E.; Oyefiade, A.; Derkach, D.; Laughlin, S.; Ades-aron, B.; Shirzadi, Z.; Fieremans, E.; MacIntosh, B.J.; et al. Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nat. Med. 2020, 26, 1285–1294. [Google Scholar] [CrossRef]
  69. Hardy, K.K.; Willard, V.W.; Allen, T.M.; Bonner, M.J. Working memory training in survivors of pediatric cancer: A randomized pilot study. Psycho-Oncology 2013, 22, 1856–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Conklin, H.M.; Ogg, R.J.; Ashford, J.M.; Scoggins, M.A.; Zou, P.; Clark, K.N.; Martin-Elbahesh, K.; Hardy, K.K.; Merchant, T.E.; Jeha, S.; et al. Computerized Cognitive Training for Amelioration of Cognitive Late Effects Among Childhood Cancer Survivors: A Randomized Controlled Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 3894–3902. [Google Scholar] [CrossRef] [Green Version]
  71. Patel, S.K.; Katz, E.R.; Richardson, R.; Rimmer, M.; Kilian, S. Cognitive and problem solving training in children with cancer: A pilot project. J. Pediatr. Hematol. Oncol. 2009, 31, 670–677. [Google Scholar] [CrossRef] [PubMed]
  72. Butler, R.W.; Copeland, D.R.; Fairclough, D.L.; Mulhern, R.K.; Katz, E.R.; Kazak, A.E.; Noll, R.B.; Patel, S.K.; Sahler, O.J.Z. A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. J. Consult. Clin. Psychol. 2008, 76, 367–378. [Google Scholar] [CrossRef]
  73. Shalitin, S.; Gal, M.; Goshen, Y.; Cohen, I.J.; Yaniv, I.; Phillip, M. Endocrine outcome in long-term survivors of childhood brain tumors. Horm. Res. Paediatr. 2011, 76, 113–122. [Google Scholar] [CrossRef] [PubMed]
  74. Merchant, T.E.; Goloubeva, O.; Pritchard, D.L.; Gaber, M.; Xiong, X.; Danish, R.K.; Lustig, R.H. Radiation dose-volume effects on growth hormone secretion. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 1264–1270. [Google Scholar] [CrossRef]
  75. Lawson, S.A.; Horne, V.E.; Golekoh, M.C.; Hornung, L.; Burns, K.C.; Fouladi, M.; Rose, S.R. Hypothalamic-pituitary function following childhood brain tumors: Analysis of prospective annual endocrine screening. Pediatr. Blood Cancer 2019, 66, e27631. [Google Scholar] [CrossRef] [PubMed]
  76. Knight, K.R.G.; Kraemer, D.F.; Neuwelt, E.A. Ototoxicity in children receiving platinum chemotherapy: Underestimating a commonly occurring toxicity that may influence academic and social development. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 8588–8596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  77. Bass, J.K.; Hua, C.-H.; Huang, J.; Onar-Thomas, A.; Ness, K.K.; Jones, S.; White, S.; Bhagat, S.P.; Chang, K.; Merchant, T.E. Hearing Loss in Patients Who Received Cranial Radiation Therapy for Childhood Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 1248–1255. [Google Scholar] [CrossRef] [Green Version]
  78. Grewal, S.; Merchant, T.; Reymond, R.; McInerney, M.; Hodge, C.; Shearer, P. Auditory late effects of childhood cancer therapy: A report from the Children’s Oncology Group. Pediatrics 2010, 125, e938–e950. [Google Scholar] [CrossRef] [Green Version]
  79. Van As, J.W.; van den Berg, H.; van Dalen, E.C. Platinum-induced hearing loss after treatment for childhood cancer. Cochrane Database Syst. Rev. 2016, 2016, Cd010181. [Google Scholar] [CrossRef] [PubMed]
  80. Bess, F.H.; Dodd-Murphy, J.; Parker, R.A. Children with minimal sensorineural hearing loss: Prevalence, educational performance, and functional status. Ear Hear. 1998, 19, 339–354. [Google Scholar] [CrossRef] [Green Version]
  81. Streckmann, F.; Balke, M.; Cavaletti, G.; Toscanelli, A.; Bloch, W.; Décard, B.F.; Lehmann, H.C.; Faude, O. Exercise and Neuropathy: Systematic Review with Meta-Analysis. Sports Med. 2021, 1–23. [Google Scholar] [CrossRef]
  82. Michel, G.; Kuehni, C.E.; Bergstraesser, E.; Rebholz, C.E.; Von Der Weid, N.X. Psychological distress in adult survivors of childhood cancer: The Swiss Childhood Cancer Survivor study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
  83. Siegwart, V.; Benzing, V.; Spitzhuettl, J.; Schmidt, M.; Grotzer, M.; Steinlin, M.; Leibundgut, K.; Roebers, C.; Everts, R. Cognition, psychosocial functioning, and health-related quality of life among childhood cancer survivors. Neuropsychol. Rehabil. 2020, 1–24. [Google Scholar] [CrossRef]
  84. Meeske, K.A.; Patel, S.K.; Palmer, S.N.; Nelson, M.B.; Parow, A.M. Factors associated with health-related quality of life in pediatric cancer survivors. Pediatr. Blood Cancer 2007, 49, 298–305. [Google Scholar] [CrossRef] [PubMed]
  85. Brinkman, T.M.; Li, C.; Vannatta, K.; Marchak, J.G.; Lai, J.S.; Prasad, P.K.; Kimberg, C.; Vuotto, S.; Di, C.; Srivastava, D.; et al. Behavioral, Social, and Emotional Symptom Comorbidities and Profiles in Adolescent Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 3417–3425. [Google Scholar] [CrossRef]
  86. Brinkman, T.M.; Zhang, N.; Recklitis, C.J.; Kimberg, C.; Zeltzer, L.; Muriel, A.C.; Stovall, M.; Srivastava, D.K.; Sklar, C.A.; Robison, L.L.; et al. Suicide ideation and associated mortality in adult survivors of childhood cancer. Cancer 2014, 120, 271–277. [Google Scholar] [CrossRef] [PubMed]
  87. Van Dijk, E.M.; van Dulmen-den Broeder, E.; Kaspers, G.J.; van Dam, E.W.; Braam, K.I.; Huisman, J. Psychosexual functioning of childhood cancer survivors. Psycho-Oncology 2008, 17, 506–511. [Google Scholar] [CrossRef] [PubMed]
  88. Ford, J.S.; Kawashima, T.; Whitton, J.; Leisenring, W.; Laverdière, C.; Stovall, M.; Zeltzer, L.; Robison, L.L.; Sklar, C.A. Psychosexual functioning among adult female survivors of childhood cancer: A report from the childhood cancer survivor study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 3126–3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Hovén, E.; Fagerkvist, K.; Jahnukainen, K.; Ljungman, L.; Lähteenmäki, P.M.; Axelsson, O.; Lampic, C.; Wettergren, L. Sexual dysfunction in young adult survivors of childhood cancer—A population-based study. Eur. J. Cancer 2021, 154, 147–156. [Google Scholar] [CrossRef] [PubMed]
  90. Kuehni, C.E.; Strippoli, M.P.; Rueegg, C.S.; Rebholz, C.E.; Bergstraesser, E.; Grotzer, M.; von der Weid, N.X.; Michel, G. Educational achievement in Swiss childhood cancer survivors compared with the general population. Cancer 2012, 118, 1439–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  91. Lancashire, E.R.; Frobisher, C.; Reulen, R.C.; Winter, D.L.; Glaser, A.; Hawkins, M.M. Educational attainment among adult survivors of childhood cancer in Great Britain: A population-based cohort study. J. Natl. Cancer Inst. 2010, 102, 254–270. [Google Scholar] [CrossRef] [PubMed]
  92. Koch, S.V.; Kejs, A.M.T.; Engholm, G.; Johansen, C.; Schmiegelow, K. Educational attainment among survivors of childhood cancer: A population-based cohort study in Denmark. Br. J. Cancer 2004, 91, 923–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Dumas, A.; Berger, C.; Auquier, P.; Michel, G.; Fresneau, B.; Allodji, R.; Haddy, N.; Rubino, C.; Vassal, G.; Valteau-Couanet, D.; et al. Educational and occupational outcomes of childhood cancer survivors 30 years after diagnosis: A French cohort study. Br. J. Cancer 2016, 114, 1060–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Schulte, F.; Bartels, U.; Barrera, M. A pilot study evaluating the efficacy of a group social skills program for survivors of childhood central nervous system tumors using a comparison group and teacher reports. Psycho-Oncology 2014, 23, 597–600. [Google Scholar] [CrossRef] [PubMed]
  95. Devine, K.A.; Bukowski, W.M.; Sahler, O.J.Z.; Ohman-Strickland, P.; Smith, T.H.; Lown, E.A.; Patenaude, A.F.; Korones, D.N.; Noll, R.B. Social Competence in Childhood Brain Tumor Survivors: Feasibility and Preliminary Outcomes of a Peer-Mediated Intervention. J. Dev. Behav. Pediatr. 2016, 37, 475–482. [Google Scholar] [CrossRef] [PubMed]
  96. Wade, S.L.; Narad, M.E.; Moscato, E.L.; LeBlond, E.I.; King, J.A.; Raj, S.P.; Platt, A.; Thompson, A.N.; Baum, K.T.; Salloum, R. A Survivor’s Journey: Preliminary efficacy of an online problem-solving therapy for survivors of pediatric brain tumor. Pediatr. Blood Cancer 2020, 67, e28043. [Google Scholar] [CrossRef] [PubMed]
  97. Mertens, A.C.; Liu, Q.; Neglia, J.P.; Wasilewski, K.; Leisenring, W.; Armstrong, G.T.; Robison, L.L.; Yasui, Y. Cause-specific late mortality among 5-year survivors of childhood cancer: The Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2008, 100, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
  98. Bowers, D.C.; Mulne, A.F.; Reisch, J.S.; Elterman, R.D.; Munoz, L.; Booth, T.; Shapiro, K.; Doxey, D.L. Nonperioperative strokes in children with central nervous system tumors. Cancer 2002, 94, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
  99. Bowers, D.C.; Liu, Y.; Leisenring, W.; McNeil, E.; Stovall, M.; Gurney, J.G.; Robison, L.L.; Packer, R.J.; Oeffinger, K.C. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: A report from the Childhood Cancer Survivor Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 5277–5282. [Google Scholar] [CrossRef]
  100. Haddy, N.; Mousannif, A.; Tukenova, M.; Guibout, C.; Grill, J.; Dhermain, F.; Pacquement, H.; Oberlin, O.; El-Fayech, C.; Rubino, C.; et al. Relationship between the brain radiation dose for the treatment of childhood cancer and the risk of long-term cerebrovascular mortality. Brain 2011, 134, 1362–1372. [Google Scholar] [CrossRef] [Green Version]
  101. Mueller, S.; Fullerton, H.; Stratton, K.; Leisenring, W.; Weathers, R.E.; Stovall, M.; Armstrong, G.T.; Goldsby, R.E.; Packer, R.J.; Sklar, C.A.; et al. Radiation, atherosclerotic risk factors, and stroke risk in survivors of pediatric cancer: A report from the Childhood Cancer Survivor Study. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  102. Yeom, K.W.; Lober, R.M.; Partap, S.; Telischak, N.; Tsolinas, R.; Barnes, P.D.; Edwards, M.S.B. Increased focal hemosiderin deposition in pediatric medulloblastoma patients receiving radiotherapy at a later age. J. Neurosurg. Pediatr. 2013, 12, 444–451. [Google Scholar] [CrossRef] [PubMed]
  103. Mulrooney, D.A.; Yeazel, M.W.; Leisenring, W.M.; Kawashima, T.; Mertens, A.C.; Mitby, P.; Stovall, M.; Donaldson, S.S.; Green, D.M.; Sklar, C.A.; et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: Retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ Clin. Res. Ed. 2009, 339, b4606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Otth, M.; Scheinemann, K. Surveillance imaging for high-grade childhood brain tumors: What to do 10 years after completion of treatment? Pediatr. Blood Cancer 2018, 65, e27311. [Google Scholar] [CrossRef] [PubMed]
  105. Van Kalsbeek, R.J.; van der Pal, H.J.H.; Kremer, L.C.M.; Bardi, E.; Brown, M.C.; Effeney, R.; Winther, J.F.; Follin, C.; den Hartogh, J.; Haupt, R.; et al. European PanCareFollowUp Recommendations for surveillance of late effects of childhood, adolescent, and young adult cancer. Eur. J. Cancer 2021, 154, 316–328. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.