The Value-At-Risk Estimate of Stock and Currency-Stock Portfolios’ Returns
Abstract
:1. Introduction
2. Methodology
2.1. The Variance-Correlation Type of Bivariate GARCH Models
2.2. The Variance-Covariance Type of Bivariate GARCH Models
3. Assessment Methods of Alternative VaR Models
3.1. The Failure Rate and Unconditional Coverage Test
3.2. Conditional Coverage Test
3.3. Dynamic Quantile Test
3.4. Market Risk Capital and the Superior Predictive Ability Test
4. Data and Descriptive Statistics
5. Empirical Results and Analyses
5.1. Estimation Results for Alternative Bivariate GARCH Models
5.2. The Performance Assessments of VaR Forecasts
5.2.1. Preliminary Analysis of Average VaR Performance
5.2.2. Summary Comparison Results Based on Alternative Accuracy Measures
5.3. Robust Check for the Performance Assessments of VaR Forecasts
5.3.1. Can the Weight Combinations of Portfolios Affect the Performance of VaR Forecasts?
5.3.2. Can the Component Combinations of Portfolios Affect the Performance of VaR Forecasts?
5.3.3. Efficiency Evaluation Test via Market Risk Capital
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baba, Yoshi, Robert F. Engle, Dennis Kraft, and Kenneth F. Kroner. 1990. Multivariate Simultaneous Generalized ARCH. Oakland: University of California, unpublished manuscript. [Google Scholar]
- Baldi, Lucia, Massimo Peri, and Daniela Vandone. 2016. Stock markets’ bubbles burst and volatility spillovers in agricultural commodity markets. Research in International Business and Finance 38: 277–85. [Google Scholar] [CrossRef]
- Bams, Dennis, Gildas Blanchard, and Thorsten Lehnert. 2017. Volatility measures and Value-at-Risk. International Journal of Forecasting 33: 848–63. [Google Scholar] [CrossRef]
- Bauwens, Luc, Sebastien Laurent, and Jeroen V. K. Rombouts. 2006. Multivariate GARCH models: A survey. Journal of Applied Econometrics 21: 79–109. [Google Scholar] [CrossRef]
- Bayer, Sebastian. 2018. Combining Value-at-Risk forecasts using penalized quantile regressions. Econometrics and Statistics 8: 56–77. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1990. Modeling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model. Review of Economics and Statistics 72: 498–505. [Google Scholar] [CrossRef]
- Caporale, Guglielmo Maria, John Hunter, and Faek Menla Ali. 2014. On the linkages between stock prices and exchange rates: Evidence from the banking crisis of 2007–2010. International Review of Financial Analysis 33: 87–103. [Google Scholar] [CrossRef] [Green Version]
- Cappiello, Lorenzo, Robert F. Engle, and Kevin Sheppard. 2006. Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns. Journal of Financial Econometrics 4: 537–72. [Google Scholar] [CrossRef]
- Chang, Chia-Lin, Hui-Kuang Hsu, and Michael McAleer. 2013. Is small beautiful? Size effects of volatility spillovers for firm performance and exchange rates in tourism. North American Journal of Economics and Finance 26: 519–34. [Google Scholar] [CrossRef]
- Christoffersen, Peter. 1998. Evaluating interval forecasts. International Economic Review 39: 841–62. [Google Scholar] [CrossRef]
- Engle, Robert. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics 20: 339–50. [Google Scholar] [CrossRef]
- Engle, Robert, and Kenneth F. Kroner. 1995. Multivariate simultaneous GARCH. Econometric Theory 11: 122–50. [Google Scholar] [CrossRef]
- Engle, Robert F., and Simone Manganelli. 2004. CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business and Economic Statistics 22: 367–81. [Google Scholar] [CrossRef]
- Hansen, Peter Reinhard. 2005. A test for superior predictive ability. Journal of Business & Economic Statistics 23: 365–80. [Google Scholar]
- Hansen, Peter R., and Asger Lunde. 2005. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)? Journal of Applied Econometrics 20: 873–89. [Google Scholar] [CrossRef]
- Jarque, Carlos M., and Anil K. Bera. 1987. A test for normality of observations and regression residuals. International Statistics Review 55: 163–72. [Google Scholar] [CrossRef]
- Jorion, Philippe. 2000. Value at Risk: The New Benchmark for Managing Financial Risk. New York: McGraw-Hill. [Google Scholar]
- Kupiec, Paul H. 1995. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives 3: 73–84. [Google Scholar] [CrossRef]
- Laporta, Alessandro G., Luca Merlo, and Lea Petrella. 2018. Selection of Value at Risk models for energy commodities. Energy Economics 74: 628–43. [Google Scholar] [CrossRef]
- Lee, Cheng-Few, and Jung-Bin Su. 2012. Alternative statistical distributions for estimating Value-at-Risk: Theory and evidence. Review of Quantitative Finance and Accounting 39: 309–31. [Google Scholar] [CrossRef]
- Li, Hong. 2012. The impact of China’s stock market reforms on its international stock market linkages. Quarterly Review of Economics and Finance 52: 358–68. [Google Scholar] [CrossRef]
- Lin, Boqiang, and Jianglong Li. 2015. The spillover effects across natural gas and oil markets: Based on the VEC-MGARCH framework. Applied Energy 155: 229–41. [Google Scholar] [CrossRef]
- Liu, Xueyong, Haizhong An, Shupei Huang, and Shaobo Wen. 2017. The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model. Physica A 465: 374–83. [Google Scholar] [CrossRef]
- Lopez, Jose A. 1999. Regulatory evaluation of Value-at-Risk Models. Journal of Risk 1: 37–64. [Google Scholar] [CrossRef]
- McAleer, Michael. 2018. Stationarity and invertibility of a dynamic correlation matrix. Kybernetika 54: 363–74. [Google Scholar] [CrossRef]
- Moore, Tomoe, and Ping Wang. 2014. Dynamic linkage between real exchange rates and stock prices: Evidence from developed and emerging Asian markets. International Review of Economics and Finance 29: 1–11. [Google Scholar] [CrossRef] [Green Version]
- Moschini, Gian Carlo, and Robert J. Myers. 2002. Testing for constant hedge ratios in commodity markets: A multivariate GARCH approach. Journal of Empirical Finance 9: 589–603. [Google Scholar] [CrossRef]
- Ozkan, Ibrahim, and Lutfi Erden. 2015. Time-varying nature and macroeconomic determinants of exchange rate pass-through. International Review of Economics & Finance 38: 56–66. [Google Scholar]
- Politis, Dimitris N., and Joseph P. Romano. 1994. The stationary bootstrap. Journal of the American Statistical Association 89: 1303–13. [Google Scholar] [CrossRef]
- Sarma, Mandira, Susan Thomas, and Ajay Shah. 2003. Selection of value-at-risk models. Journal of Forecasting 22: 337–58. [Google Scholar] [CrossRef]
- Silvennoinen, Annastiina, and Timo Teräsvirta. 2009. Multivariate GARCH Models. Handbook of Financial Time Series. New York: Springer, pp. 201–29. [Google Scholar]
- Su, Jung-Bin. 2014a. How to mitigate the impact of inappropriate distributional settings when the parametric value-at-risk approach is used? Quantitative Finance 14: 305–25. [Google Scholar] [CrossRef]
- Su, Jung-Bin. 2014b. Empirical analysis of long memory, leverage, and distribution effects for stock market risk estimates. North American Journal of Economics and Finance 30: 1–39. [Google Scholar] [CrossRef]
- Su, Jung-Bin. 2014c. The interrelation of stock markets in China, Taiwan and Hong Kong and their constructional portfolio’s value-at-risk estimate. Journal of Risk Model Validation 8: 69–127. [Google Scholar] [CrossRef]
- Su, Jung-Bin. 2015. Value-at-risk estimates of the stock indices in developed and emerging markets including the spillover effects of currency market. Economic Modelling 46: 204–24. [Google Scholar] [CrossRef]
- Su, Jung-Bin, and Jui-Cheng Hung. 2011. Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation. Economic Modelling 28: 1117–30. [Google Scholar] [CrossRef]
- Su, Jung-Bin, Ming-Chih Lee, and Chien-Liang Chiu. 2014. Why does skewness and the fat-tail effect influence value-at-risk estimates? Evidence from alternative capital markets. International Review of Economics & Finance 31: 59–85. [Google Scholar]
- Tamakoshi, Go, and Shigeyuki Hamori. 2014. Co-movements among major European exchange rates: A multivariate time-varying asymmetric approach. International Review of Economics and Finance 31: 105–13. [Google Scholar] [CrossRef]
- Turhan, M. Ibrahim, Ahmet Sensoy, Kevser Ozturk, and Erk Hacihasanoglu. 2014. A view to the long-run dynamic relationship between crude oil and the major asset classes. International Review of Economics & Finance 33: 286–99. [Google Scholar]
- Wang, Ping, and Peijie Wang. 2010. Price and volatility spillovers between the Greater China Markets and the developed markets of US and Japan. Global Finance Journal 21: 304–17. [Google Scholar] [CrossRef]
- Wang, Kai-Li, Jau-Rong Li, and Meng-Jou Hsiao. 2010. A further investigation of dynamic information transmission between DRs and their underlying stocks with exchange rate threshold effects. Journal of Financial Studies 18: 93–130. [Google Scholar]
- Weber, Enzo. 2013. Simultaneous stochastic volatility transmission across American equity markets. Quarterly Review of Economics and Finance 53: 53–60. [Google Scholar] [CrossRef] [Green Version]
- Yaya, OlaOluwa S., Mohammed M. Tumala, and Christopher G. Udomboso. 2016. Volatility persistence and returns spillovers between oil and gold prices: Analysis before and after the global financial crisis. Resources Policy 49: 273–81. [Google Scholar] [CrossRef]
- Yu, Wenhua, Kun Yang, Yu Wei, and Likun Lei. 2018. Measuring Value-at-Risk and Expected Shortfall of crude oil portfolio using extreme value theory and vine copula. Physica A 490: 1423–33. [Google Scholar] [CrossRef]
1 | Owing to the wide application of the DCC model, McAleer (2018) derived the stationarity and invertibility conditions of the DCC model in order to provide a solid statistical foundation for the estimates of the DCC parameters. |
2 | For more details about these two types of models, please see Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009). |
3 | The parameters of the standard CCC and DCC models are estimated by the GARCH instruction provided by the Rats 6.0 program. The parameters of these models are estimated only by one step compared with the two steps’ CCC and DCC models. |
4 | In a real case, if an institution wants to evaluate the operation performance of several fund managers that respectively have different values of assets measured with different currencies, indicating that it is hard to evaluate their operation performance when ‘the VaR expressed in actual monetary value’ is used. However, it is easy to evaluate their performance as ‘the VaR expressed in return’ is utilized since the return is dimensionless. Notably, we can convert the above expression via the following equation. ‘The VaR expressed in actual monetary value’ = ‘the VaR expressed in return’ * the value of asset’s position. Taking an example to illustrate it, if the value of an asset is USD 1000, and its VaR expressed in return is 1.4091%, then ‘the VaR expressed in actual monetary value’ is equal to USD 14.091 (=1.4091%* USD1000). |
5 | The BEKK model is named after Baba et al. (1990). |
6 | The parameters of the standard BEKK model are estimated by the GARCH instruction provided by the Rats 6.0 program. The parameters of these models are estimated only by one step. This approach is the same as the standard CCC and DCC models mentioned above. |
7 | According to Bauwens et al. (2006), there are three non-mutually exclusive approaches to construct multivariate GARCH models: (i) direct generalizations of the univariate GARCH model of Bollerslev (1986); (ii) linear combinations of univariate GARCH models; and (iii) nonlinear combinations of univariate GARCH models. Notably, both the VEC and BEKK models belong to the above first approach. In the general VEC model, each element of the conditional variance matrix () is a linear function of the lagged squared errors and cross-products of errors and lagged values of the elements of . The BEKK model is a special case of the VEC model. Hence, the number of parameters in the BEKK model is less than that in the VEC model. For example, the numbers of parameters in the VEC(1,1) and BEKK(1,1,1) models are and , respectively. The BEKK(1,1,1) model is expressed as Equation (10) in this study. |
8 | Please see the Proposition 2.1 of Engle and Kroner (1995) for more details. |
9 | Regarding the seven stock indices, the total number of bi-component portfolios can be calculated by . |
10 | For each pair of data, they are retained for the same trade date and are deleted otherwise. Taking the Ny-Da pair of data as an example, both NYSE and DAX are traded on 31 January 2002, thus the close prices of both data are retained on this date. Conversely, if only NYSE is traded on 25 May 2003, whereas DAX is not traded on this date, then the close price of NYSE on this date must be deleted, and vice versa. |
11 | When we conduct a hypothesis test there are two kinds of errors: type I and type II errors. Briefly, type I errors happen when we reject a true null hypothesis whereas type II errors happen when we fail to reject a false null hypothesis. Although the errors cannot be completely eliminated, we can minimize one type of error. However, when we try to decrease the probability of one type of error, the probability for the other type increases. The only way to decrease these two types of errors is to increase the sample size. Thus, in this study, we set the sample size of the estimation (respectively, forecast) period as 3300 (respectively, 500). They are large enough in order to decrease type I and type II errors as much as we can. |
12 | The out-of-sample VaR forecast is executed via a rolling window approach. That is, the seven bivariate GARCH models are estimated for each of 28 pair-wise data series, with a sample of 3300 daily returns, and then a one-day-ahead VaR forecast of the bi-component portfolio for the next period is obtained. Subsequently, the estimation period is then rolled forward by adding one new day and dropping the most distant day. Via repeating this procedure, the out-of-sample VaR forecasts are computed for the next 500 days. |
13 | Due to the limited space, the empirical results of the other 22 bi-component portfolios for the NS-ADCC model, and the empirical results for the other six bivariate GARCH models (i.e. the S-CCC, NS-CSS, S-DCC, NS-DCC, S-BEKK, and NS-BEKK models) are all omitted here and are available upon request. |
14 | The mean VaR is the average of all the VaR values over the out-of-sample period, and can be calculated by the following equation: , where denotes the value of the portfolio’s VaR at time t, and can be calculated by Equation (8) or Equation (16). The sample size of the out-of-sample period is equal to 500 in this study. |
15 | Actually, it is very hard to compete against the models’ forecasting performance via the failure rate since it cannot provide the significance level for the obtained conclusion. Owing to the above reason, the forecasting performance comparison of alternative models based on the failure rate is listed in the section of ‘Preliminary analysis of average VaR performance’. |
16 | Notably, the failure rate and mean VaR is regarded as the preliminary analysis of the average VaR performance. They cannot provide precise results. Moreover, due to the limited space, the detailed results of the VaR forecasting performance at the 99% level based on failure rate are omitted here and are available upon request. However, the summary results of this level are also listed in Table 5. |
17 | Due to the limited space, the detailed results of the VaR forecasting performance at the 99% level based on mean VaR are omitted here and are available upon request. However, the summary results of this level are also listed in Table 5. |
18 | Due to the limited space, the detailed results of the VaR forecasting performance at the other three levels (90%, 99%, and 99.5%) based on the LRuc, LRcc, DQ tests are omitted here and are available upon request. However, the summary results of these three levels are also listed in Table 7. |
19 | Even if the total number of passing three accuracy tests is zero for the NS-ADCC model at panel A of Table 8 ( weight combination of stock portfolio), we considered this model since the NS-DCC model is the special case of NS-ADCC model. |
20 | Due to the limited space, the results of the efficiency evaluation test based on MRC for the other two weight combinations stock and currency-stock portfolios are omitted here and are available upon request. However, the summary results of the above results are also listed in Table 12. |
Mean | Std. Dev. | Max. | Min. | Skewness | Kurtosis | J-B | Q2 (24) | |
---|---|---|---|---|---|---|---|---|
NYSE | 0.0089 | 1.2783 | 11.5257 | −10.232 | −0.2954 c | 9.169 c | 13,370.5 c | 7455.9 c |
S&P500 | 0.0074 | 1.2701 | 10.9571 | −9.4695 | −0.1789 c | 8.1254 c | 10,476.6 c | 6366.9 c |
Nasdaq | 0.0042 | 1.5947 | 11.1594 | −9.5876 | 0.0327 | 4.6001 c | 3352.0 c | 5291.3 c |
CAC40 | −0.0100 | 1.5396 | 10.5945 | −9.4715 | 0.0105 | 4.6143 c | 3372.2 c | 3455.4 c |
DAX | 0.0079 | 1.5817 | 10.7974 | −9.5756 | −0.0399 | 4.4070 c | 3076.9 c | 3645.6 c |
FTSE | −0.0015 | 1.2463 | 9.3842 | −9.2645 | −0.0890 b | 5.9661 c | 5642.3 c | 4986.8 c |
SMI | −0.0011 | 1.2668 | 10.7876 | −10.518 | −0.1255 c | 8.2662 c | 10,831.7 c | 2591.4 c |
UDI | −0.0028 | 0.4755 | 2.1552 | −4.1066 | −0.2346 c | 3.3553 c | 1817.9 c | 1062.7 c |
Ny-Sp | Ny-Na | Ny-Ca | Ny-Da | Ny-Ft | Ny-Sm | |
---|---|---|---|---|---|---|
Panel A. The univariate GARCH(1,1) model for the first component stock index | ||||||
0.0505 (0.015) c | 0.0505 (0.015) c | 0.0505 (0.015) c | 0.0505 (0.015) c | 0.0505 (0.015) c | 0.0505 (0.015) c | |
0.0178 (0.003) c | 0.0178 (0.003) c | 0.0178 (0.003) c | 0.0178 (0.003) c | 0.0178 (0.003) c | 0.0178 (0.003) c | |
0.0886 (0.003) c | 0.0886 (0.003) c | 0.0886 (0.003) c | 0.0886 (0.003) c | 0.0886 (0.003) c | 0.0886 (0.003) c | |
0.8986 (0.006) c | 0.8986 (0.006) c | 0.8986 (0.006) c | 0.8986 (0.006) c | 0.8986 (0.006) c | 0.8986 (0.006) c | |
39.228 b | 39.228 b | 39.228 b | 39.228 b | 39.228 b | 39.228 b | |
LL1 | −4800.17 | −4800.17 | −4800.17 | −4800.17 | −4800.17 | −4800.17 |
Panel B. The univariate GARCH(1,1) model for the second component stock index | ||||||
0.0491 (0.015) c | 0.0656 (0.018) c | 0.0503 (0.018) c | 0.0811 (0.018) c | 0.0407 (0.014) c | 0.0512 (0.016) c | |
0.0168 (0.001) c | 0.0174 (0.001) c | 0.0220 (0.001) c | 0.0239 (0.002) c | 0.0132 (0.001) c | 0.0387 (0.001) c | |
0.0880 (0.002) c | 0.0758 (0.001) c | 0.0872 (0.002) c | 0.0926 (0.002) c | 0.0945 (0.002) c | 0.1242 (0.002) c | |
0.9000 (0.001) c | 0.9163 (0.001) c | 0.9040 (0.001) c | 0.8982 (0.001) c | 0.8972 (0.002) c | 0.8511 (0.001) c | |
38.818 b | 44.580 c | 30.213 | 26.734 | 30.074 | 8.831 | |
LL2 | −4803.92 | −5598.51 | −5557.72 | −5588.51 | −4751.05 | −4833.02 |
Panel C. The conditional correlation matrix equation | ||||||
0.2041 (0.009) c | 0.1925 (0.019) c | 0.1000 (0.011) c | 0.0715 (4 × 10−8) c | 0.1451 (0.000) c | −0.101 (5 × 10−10) c | |
0.9738 (0.002) c | 0.9782 (0.003) c | 0.9939 (0.001) c | 0.9934 (3 × 10−8) c | 0.9619 (1 × 10−10) c | 0.6633 (1 × 10−9) c | |
−2 × 10−5 (3 × 10−5) | 0.0701 (0.064) | −9 × 10−6 (0.035) | 0.1044 (2 × 10−11) c | −1 × 10−5 (0.000) c | −1.3 × 10−4 (0.0) c | |
0.9746 (0.014) | 0.8748 (0.059) | 0.6219 (0.093) | 0.6326 (0.090) | 0.5769 (0.051) | 0.4944 (0.011) | |
LL3 | −4386.75 | −7768.51 | −9449.89 | −9428.01 | −8758.57 | −9078.06 |
Ny-Sp | Ny-Na | Ny-Ca | Ny-Da | Ny-Ft | Ny-Sm | Sp-Na | S1 | S2 | S3 | S4 | |
S-CCC | 0.056 | 0.072 | 0.078 | 0.086 | 0.082 | 0.068 | 0.072 | 2 | 0 | 0 | - |
NS-CCC | 0.064 | 0.072 | 0.078 | 0.084 | 0.080 | 0.068 | 0.074 | 2 | 3 | 0 | - |
S-DCC | 0.050 | 0.058 | 0.066 | 0.060 | 0.060 | 0.050 | 0.058 | 7 | 7 | 7 | - |
NS-DCC | 0.064 | 0.072 | 0.074 | 0.084 | 0.074 | 0.072 | 0.074 | 0 | 4 | 0 | 2 |
S-BEKK | 0.064 | 0.072 | 0.080 | 0.074 | 0.082 | 0.072 | 0.078 | 2 | 0 | 0 | - |
NS-BEKK | 0.066 | 0.072 | 0.078 | 0.086 | 0.078 | 0.072 | 0.072 | 3 | 1 | 0 | - |
NS-ADCC | 0.064 | 0.072 | 0.076 | 0.084 | 0.076 | 0.068 | 0.074 | - | - | - | 1 |
Sp-Ca | Sp-Da | Sp-Ft | Sp-Sm | Na-Ca | Na-Da | Na-Ft | |||||
S-CCC | 0.092 | 0.078 | 0.090 | 0.074 | 0.080 | 0.074 | 0.088 | 0 | 0 | 0 | - |
NS-CCC | 0.080 | 0.076 | 0.084 | 0.070 | 0.080 | 0.072 | 0.088 | 5 | 2 | 0 | - |
S-DCC | 0.060 | 0.058 | 0.074 | 0.058 | 0.058 | 0.070 | 0.064 | 7 | 6 | 6 | - |
NS-DCC | 0.078 | 0.074 | 0.082 | 0.070 | 0.076 | 0.072 | 0.086 | 0 | 5 | 0 | 1 |
S-BEKK | 0.076 | 0.068 | 0.090 | 0.074 | 0.078 | 0.068 | 0.082 | 3 | 1 | 1 | - |
NS-BEKK | 0.080 | 0.078 | 0.080 | 0.072 | 0.076 | 0.076 | 0.080 | 4 | 3 | 0 | - |
NS-ADCC | 0.080 | 0.074 | 0.082 | 0.070 | 0.076 | 0.070 | 0.082 | - | - | - | 2 |
Na-Sm | Ca-Da | Ca-Ft | Ca-Sm | Da-Ft | Da-Sm | Ft-Sm | |||||
S-CCC | 0.072 | 0.074 | 0.068 | 0.060 | 0.072 | 0.066 | 0.072 | 2 | 1 | 1 | - |
NS-CCC | 0.072 | 0.066 | 0.062 | 0.064 | 0.070 | 0.068 | 0.066 | 4 | 2 | 0 | - |
S-DCC | 0.042 * | 0.060 | 0.062 | 0.046 * | 0.058 | 0.068 | 0.052 | 5 | 5 | 5 | - |
NS-DCC | 0.072 | 0.064 | 0.062 | 0.060 | 0.072 | 0.068 | 0.068 | 0 | 2 | 0 | 1 |
S-BEKK | 0.074 | 0.070 | 0.058 | 0.062 | 0.064 | 0.066 | 0.064 | 4 | 2 | 2 | - |
NS-BEKK | 0.068 | 0.064 | 0.062 | 0.060 | 0.074 | 0.068 | 0.066 | 3 | 4 | 0 | - |
NS-ADCC | 0.074 | 0.064 | 0.062 | 0.060 | 0.072 | 0.068 | 0.068 | - | - | - | 0 |
Ny-Sp | Ny-Na | Ny-Ca | Ny-Da | Ny-Ft | Ny-Sm | Sp-Na | S1 | S2 | S3 | S4 | |
S-CCC | −1.4091 | −1.4483 | −1.5124 | −1.5304 | −1.2833 | −1.3269 | −1.4743 | 0 | 0 | 0 | - |
NS-CCC | −1.4098 | −1.4657 | −1.5443 | −1.5693 | −1.3090 | −1.3493 | −1.4983 | 7 | 1 | 0 | - |
S-DCC | −1.5538 | −1.5421 | −1.6369 | −1.7554 | −1.3867 | −1.4296 | −1.5800 | 7 | 7 | 7 | - |
NS-DCC | −1.4102 | −1.4910 | −1.5578 | −1.5693 | −1.3243 | −1.3507 | −1.5198 | 0 | 7 | 0 | 4 |
S-BEKK | −1.3908 | −1.4551 | −1.5733 | −1.5852 | −1.3034 | −1.3448 | −1.4913 | 4 | 0 | 0 | - |
NS-BEKK | −1.3820 | −1.4664 | −1.5387 | −1.5411 | −1.3126 | −1.3253 | −1.4967 | 3 | 0 | 0 | - |
NS-ADCC | −1.4102 | −1.4909 | −1.5551 | −1.5693 | −1.3234 | −1.3479 | −1.5198 | - | - | - | 0 |
Sp-Ca | Sp-Da | Sp-Ft | Sp-Sm | Na-Ca | Na-Da | Na-Ft | |||||
S-CCC | −1.4932 | −1.5176 | −1.2668 | −1.3117 | −1.5738 | −1.6023 | −1.3522 | 0 | 0 | 0 | - |
NS-CCC | −1.5298 | −1.5596 | −1.2943 | −1.3374 | −1.6024 | −1.6381 | −1.3720 | 7 | 1 | 0 | - |
S-DCC | −1.5915 | −1.6840 | −1.3337 | −1.4311 | −1.7643 | −1.7069 | −1.4406 | 7 | 7 | 7 | - |
NS-DCC | −1.5432 | −1.5586 | −1.3081 | −1.3427 | −1.6171 | −1.6402 | −1.3913 | 0 | 6 | 0 | 4 |
S-BEKK | −1.5550 | −1.5769 | −1.2827 | −1.3176 | −1.6229 | −1.6598 | −1.3950 | 6 | 0 | 0 | - |
NS-BEKK | −1.5219 | −1.5321 | −1.2919 | −1.3174 | −1.6058 | −1.6177 | −1.3758 | 1 | 0 | 0 | - |
NS-ADCC | −1.5415 | −1.5611 | −1.3061 | −1.3380 | −1.6178 | −1.6425 | −1.3865 | - | - | - | 3 |
Na-Sm | Ca-Da | Ca-Ft | Ca-Sm | Da-Ft | Da-Sm | Ft-Sm | |||||
S-CCC | −1.3946 | −1.9465 | −1.6814 | −1.7286 | −1.6709 | −1.7457 | −1.4840 | 0 | 0 | 0 | - |
NS-CCC | −1.4078 | −2.0114 | −1.7267 | −1.7713 | −1.7241 | −1.7910 | −1.5147 | 7 | 0 | 0 | - |
S-DCC | −1.6290 | −2.0847 | −1.7812 | −2.0290 | −1.9297 | −1.7918 | −1.6887 | 6 | 7 | 6 | - |
NS-DCC | −1.4211 | −2.0574 | −1.7398 | −1.7773 | −1.7435 | −1.7951 | −1.5154 | 1 | 7 | 1 | 2 |
S-BEKK | −1.3816 | −2.0203 | −1.7504 | −1.7624 | −1.7478 | −1.7912 | −1.5184 | 6 | 0 | 0 | - |
NS-BEKK | −1.4024 | −2.0156 | −1.7250 | −1.7125 | −1.7332 | −1.7133 | −1.4849 | 1 | 0 | 0 | - |
NS-ADCC | −1.4111 | −2.0557 | −1.7398 | −1.7773 | −1.7435 | −1.7951 | −1.5154 | - | - | - | 0 |
Panel A. Failure Rate | ||||||||||||||||||||||||||||||||||||
S1 | S2 | S3 | S4 | |||||||||||||||||||||||||||||||||
95% Level | S1,95 | 99% Level | S1,99 | SS1 | 95% Level | S2,95 | 99% Level | S2,99 | SS2 | 95% Level | S3,95 | 99% Level | S3,99 | SS3 | 95% Level | S4,95 | 99% Level | S4,99 | SS4 | |||||||||||||||||
S-CCC | 2 | 0 | 2 | 4 | 1 | 1 | 0 | 2 | 6 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | - | - | - | - | - | - | - | - | - |
NS-CCC | 2 | 5 | 4 | 11 | 1 | 2 | 5 | 8 | 19 | 3 | 2 | 2 | 7 | 2 | 2 | 4 | 8 | 15 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | - | - | - | - | - | - | - | - | - |
S-DCC | 7 | 7 | 5 | 19 | 5 | 7 | 5 | 17 | 36 | 7 | 6 | 5 | 18 | 5 | 6 | 5 | 16 | 34 | 7 | 6 | 5 | 18 | 5 | 6 | 5 | 16 | 34 | - | - | - | - | - | - | - | - | - |
NS-DCC | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 4 | 5 | 2 | 11 | 2 | 1 | 2 | 5 | 16 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 1 | 1 | 4 | 1 | 0 | 1 | 2 | 6 |
S-BEKK | 2 | 3 | 4 | 9 | 2 | 4 | 5 | 11 | 20 | 0 | 1 | 2 | 3 | 4 | 1 | 3 | 8 | 11 | 0 | 1 | 2 | 3 | 4 | 1 | 3 | 8 | 11 | - | - | - | - | - | - | - | - | - |
NS-BEKK | 3 | 4 | 3 | 10 | 1 | 2 | 2 | 5 | 15 | 1 | 3 | 4 | 8 | 3 | 3 | 2 | 8 | 16 | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 5 | 5 | - | - | - | - | - | - | - | - | - |
NS-ADCC | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 3 |
Panel B. Mean VaR | ||||||||||||||||||||||||||||||||||||
S1 | S2 | S3 | S4 | |||||||||||||||||||||||||||||||||
95% Level | S1,95 | 99% Level | S1,99 | SS1 | 95% Level | S2,95 | 99% Level | S2,99 | SS2 | 95% Level | S3,95 | 99% Level | S3,99 | SS3 | 95% Level | S4,95 | 99% Level | S4,99 | SS4 | |||||||||||||||||
S-CCC | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | - | - |
NS-CCC | 7 | 7 | 7 | 21 | 6 | 7 | 7 | 20 | 41 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | - | - |
S-DCC | 7 | 7 | 6 | 20 | 7 | 7 | 6 | 20 | 40 | 7 | 7 | 7 | 21 | 7 | 7 | 6 | 20 | 41 | 7 | 7 | 6 | 20 | 7 | 7 | 6 | 20 | 40 | - | - | - | - | - | - | - | - | - |
NS-DCC | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 7 | 6 | 7 | 20 | 7 | 6 | 7 | 20 | 40 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 4 | 4 | 2 | 10 | 4 | 4 | 2 | 10 | 20 |
S-BEKK | 4 | 6 | 6 | 16 | 4 | 5 | 6 | 15 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | - | - |
NS-BEKK | 3 | 1 | 1 | 5 | 3 | 2 | 1 | 6 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | - | - |
NS-ADCC | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | 3 | 0 | 3 | 2 | 3 | 0 | 5 | 8 |
Panel A. The LRuc Test | ||||||||
Ny-Sp | Ny-Na | Ny-Ca | Ny-Da | Ny-Ft | Ny-Sm | Sp-Na | Sum | |
S-CCC | 0.3653 | 4.5110 | 7.1022 | 11.3307 | 9.1101 | 3.0805 | 4.5110 | 2 |
[0.5455] | [0.0336] | [0.0076] | [0.0007] | [0.0025] | [0.0792] | [0.0336] | ||
NS-CCC | 1.9027 | 4.5110 | 7.1022 | 10.1944 | 8.0790 | 3.0805 | 5.3168 | 2 |
[0.1677] | [0.0336] | [0.0076] | [0.0014] | [0.0044] | [0.0792] | [0.0211] | ||
S-DCC | 0.0000 | 0.6421 | 2.4591 | 0.9921 | 0.9921 | 0.0000 | 0.6421 | 7 |
[1.0000] | [0.4229] | [0.1168] | [0.3192] | [0.3192] | [1.0000] | [0.4229] | ||
NS-DCC | 1.9027 | 4.5110 | 5.3168 | 10.1944 | 5.3168 | 4.5110 | 5.3168 | 1 |
[0.1677] | [0.0336] | [0.0211] | [0.0014] | [0.0211] | [0.0336] | [0.0211] | ||
S-BEKK | 1.9027 | 4.5110 | 8.0790 | 5.3168 | 9.1101 | 4.5110 | 7.1022 | 1 |
[0.1677] | [0.0336] | [0.0044] | [0.0211] | [0.0025] | [0.0336] | [0.0076] | ||
NS-BEKK | 2.4591 | 4.5110 | 7.1022 | 11.3307 | 7.1022 | 4.5110 | 4.5110 | 1 |
[0.1168] | [0.0336] | [0.0076] | [0.0007] | [0.0076] | [0.0336] | [0.0336] | ||
NS-ADCC | 1.9027 | 4.5110 | 6.1810 | 10.1944 | 6.1810 | 3.0805 | 5.3168 | 2 |
[0.1677] | [0.0336] | [0.0129] | [0.0014] | [0.0129] | [0.0792] | [0.0211] | ||
Sp-Ca | Sp-Da | Sp-Ft | Sp-Sm | Na-Ca | Na-Da | Na-Ft | ||
S-CCC | 15.0408 | 7.1022 | 13.7549 | 5.3168 | 8.0790 | 5.3168 | 12.5179 | 0 |
[0.0001] | [0.0076] | [0.0002] | [0.0211] | [0.0044] | [0.0211] | [0.0004] | ||
NS-CCC | 8.0790 | 6.1810 | 10.1944 | 3.7650 | 8.0790 | 4.5110 | 12.5179 | 1 |
[0.0044] | [0.0129] | [0.0014] | [0.0523] | [0.0044] | [0.0336] | [0.0004] | ||
S-DCC | 0.9921 | 0.6421 | 5.3168 | 0.6421 | 0.6421 | 3.7650 | 1.9027 | 6 |
[0.3192] | [0.4229] | [0.0211] | [0.4229] | [0.4229] | [0.0523] | [0.1677] | ||
NS-DCC | 7.1022 | 5.3168 | 9.1101 | 3.7650 | 6.1810 | 4.5110 | 11.3307 | 1 |
[0.0076] | [0.0211] | [0.0025] | [0.0523] | [0.0129] | [0.0336] | [0.0007] | ||
S-BEKK | 6.1810 | 3.0805 | 13.7549 | 5.3168 | 7.1022 | 3.0805 | 9.1101 | 2 |
[0.0129] | [0.0792] | [0.0002] | [0.0211] | [0.0076] | [0.0792] | [0.0025] | ||
NS-BEKK | 8.0790 | 7.1022 | 8.0790 | 4.5110 | 6.1810 | 6.1810 | 8.0790 | 0 |
[0.0044] | [0.0076] | [0.0044] | [0.0336] | [0.0129] | [0.0129] | [0.0044] | ||
NS-ADCC | 8.0790 | 5.3168 | 9.1101 | 3.7650 | 6.1810 | 3.7650 | 9.1101 | 2 |
[0.0044] | [0.0211] | [0.0025] | [0.0523] | [0.0129] | [0.0523] | [0.0025] | ||
Na-Sm | Ca-Da | Ca-Ft | Ca-Sm | Da-Ft | Da-Sm | Ft-Sm | ||
S-CCC | 4.5110 | 5.3168 | 3.0805 | 0.9921 | 4.5110 | 2.4591 | 4.5110 | 3 |
[0.0336] | [0.0211] | [0.0792] | [0.3192] | [0.0336] | [0.1168] | [0.0336] | ||
NS-CCC | 4.5110 | 2.4591 | 1.4130 | 1.9027 | 3.7650 | 3.0805 | 2.4591 | 6 |
[0.0336] | [0.1168] | [0.2345] | [0.1677] | [0.0523] | [0.0792] | [0.1168] | ||
S-DCC | 0.7107 | 0.9921 | 1.4130 | 0.1728 | 0.6421 | 3.0805 | 0.0415 | 7 |
[0.3991] | [0.3192] | [0.2345] | [0.6775] | [0.4229] | [0.0792] | [0.8384] | ||
NS-DCC | 4.5110 | 1.9027 | 1.4130 | 0.9921 | 4.5110 | 3.0805 | 3.0805 | 5 |
[0.0336] | [0.1677] | [0.2345] | [0.3192] | [0.0336] | [0.0792] | [0.0792] | ||
S-BEKK | 5.3168 | 3.7650 | 0.6421 | 1.4130 | 1.9027 | 2.4591 | 1.9027 | 6 |
[0.0211] | [0.0523] | [0.4229] | [0.2345] | [0.1677] | [0.1168] | [0.1677] | ||
NS-BEKK | 3.0805 | 1.9027 | 1.4130 | 0.9921 | 5.3168 | 3.0805 | 2.4591 | 6 |
[0.0792] | [0.1677] | [0.2345] | [0.3192] | [0.0211] | [0.0792] | [0.1168] | ||
NS-ADCC | 5.3168 | 1.9027 | 1.4130 | 0.9921 | 4.5110 | 3.0805 | 3.0805 | 5 |
[0.0211] | [0.1677] | [0.2345] | [0.3192] | [0.0336] | [0.0792] | [0.0792] | ||
Panel B. The LRcc Test | ||||||||
Ny-Sp | Ny-Na | Ny-Ca | Ny-Da | Ny-Ft | Ny-Sm | Sp-Na | Sum | |
S-CCC | 0.4874 | 4.5806 | 8.3725 | 14.2417 | 11.1676 | 5.8915 | 4.5806 | 4 |
[0.7836] | [0.1012] | [0.0152] | [0.0008] | [0.0037] | [0.0525] | [0.1012] | ||
NS-CCC | 2.3481 | 4.5806 | 8.3725 | 13.5015 | 10.4649 | 5.8915 | 5.3441 | 4 |
[0.3091] | [0.1012] | [0.0152] | [0.0011] | [0.0053] | [0.0525] | [0.0691] | ||
S-DCC | 0.4258 | 0.7050 | 3.8973 | 8.3789 | 3.3337 | 4.4727 | 1.6051 | 6 |
[0.8082] | [0.7029] | [0.1424] | [0.0151] | [0.1888] | [0.1068] | [0.4481] | ||
NS-DCC | 2.3481 | 4.5806 | 7.1218 | 13.5015 | 8.8586 | 6.6231 | 5.9173 | 3 |
[0.3091] | [0.1012] | [0.0284] | [0.0011] | [0.0119] | [0.0364] | [0.0518] | ||
S-BEKK | 2.3481 | 4.5806 | 10.4649 | 8.8586 | 11.1676 | 8.4983 | 7.4256 | 2 |
[0.3091] | [0.1012] | [0.0053] | [0.0119] | [0.0037] | [0.0142] | [0.0244] | ||
NS-BEKK | 2.7784 | 4.5806 | 8.3725 | 14.2417 | 9.8444 | 6.6231 | 4.5806 | 3 |
[0.2492] | [0.1012] | [0.0152] | [0.0008] | [0.0072] | [0.0364] | [0.1012] | ||
NS-ADCC | 2.3481 | 4.5806 | 7.7056 | 13.5015 | 9.3082 | 5.8915 | 5.9173 | 4 |
[0.3091] | [0.1012] | [0.0212] | [0.0011] | [0.0095] | [0.0525] | [0.0518] | ||
Sp-Ca | Sp-Da | Sp-Ft | Sp-Sm | Na-Ca | Na-Da | Na-Ft | ||
S-CCC | 16.9305 | 8.3725 | 17.5529 | 7.1218 | 10.4649 | 11.0641 | 15.0612 | 0 |
[0.0002] | [0.0152] | [0.0001] | [0.0284] | [0.0053] | [0.0039] | [0.0005] | ||
NS-CCC | 10.4649 | 9.3082 | 15.4585 | 4.7351 | 10.4649 | 8.4983 | 15.0612 | 1 |
[0.0053] | [0.0095] | [0.0004] | [0.0937] | [0.0053] | [0.0142] | [0.0005] | ||
S-DCC | 1.7585 | 3.3432 | 5.9173 | 3.3432 | 1.6051 | 8.2299 | 5.5328 | 6 |
[0.4150] | [0.1879] | [0.0518] | [0.1879] | [0.4481] | [0.0163] | [0.0628] | ||
NS-DCC | 8.3725 | 8.8586 | 12.8426 | 4.7351 | 7.7056 | 8.4983 | 14.2417 | 1 |
[0.0152] | [0.0119] | [0.0016] | [0.0937] | [0.0212] | [0.0142] | [0.0008] | ||
S-BEKK | 9.3082 | 5.891 | 17.5529 | 11.0641 | 8.3725 | 5.8915 | 11.1676 | 2 |
[0.0095] | 5[0.0525] | [0.0001] | [0.0039] | [0.0152] | [0.0525] | [0.0037] | ||
NS-BEKK | 9.1201 | 8.3725 | 12.2670 | 6.6231 | 7.7056 | 11.3752 | 12.2670 | 0 |
[0.0104] | [0.0152] | [0.0021] | [0.0364] | [0.0212] | [0.0033] | [0.0021] | ||
NS-ADCC | 10.4649 | 8.8586 | 12.8426 | 4.7351 | 7.7056 | 8.2299 | 12.8426 | 1 |
[0.0053] | [0.0119] | [0.0016] | [0.0937] | [0.0212] | [0.0163] | [0.0016] | ||
Na-Sm | Ca-Da | Ca-Ft | Ca-Sm | Da-Ft | Da-Sm | Ft-Sm | ||
S-CCC | 8.4983 | 11.0641 | 5.8915 | 5.5726 | 8.4983 | 7.9810 | 6.6231 | 2 |
[0.0142] | [0.0039] | [0.0525] | [0.0616] | [0.0142] | [0.0184] | [0.0364] | ||
NS-CCC | 8.4983 | 10.7855 | 3.4251 | 5.5328 | 6.2122 | 8.0564 | 2.7784 | 3 |
[0.0142] | [0.0045] | [0.1804] | [0.0628] | [0.0447] | [0.0178] | [0.2492] | ||
S-DCC | 7.5978 | 1.7585 | 2.0071 | 5.7610 | 1.6051 | 5.8915 | 4.0175 | 6 |
[0.0223] | [0.4150] | [0.3665] | [0.0561] | [0.4481] | [0.0525] | [0.1341] | ||
NS-DCC | 8.4983 | 10.9746 | 3.4251 | 3.3337 | 8.4983 | 8.0564 | 3.2955 | 3 |
[0.0142] | [0.0041] | [0.1804] | [0.1888] | [0.0142] | [0.0178] | [0.1924] | ||
S-BEKK | 11.0641 | 10.7251 | 3.3432 | 3.4251 | 3.6140 | 7.9810 | 2.3481 | 4 |
[0.0039] | [0.0046] | [0.1879] | [0.1804] | [0.1641] | [0.0184] | [0.3091] | ||
NS-BEKK | 5.8915 | 10.9746 | 3.4251 | 5.5726 | 8.8586 | 8.0564 | 2.7784 | 4 |
[0.0525] | [0.0041] | [0.1804] | [0.0616] | [0.0119] | [0.0178] | [0.2492] | ||
NS-ADCC | 11.0641 | 10.9746 | 3.4251 | 3.3337 | 8.4983 | 8.0564 | 3.2955 | 3 |
[0.0039] | [0.0041] | [0.1804] | [0.1888] | [0.0142] | [0.0178] | [0.1924] | ||
Panel C. The DQ Test | ||||||||
Ny-Sp | Ny-Na | Ny-Ca | Ny-Da | Ny-Ft | Ny-Sm | Sp-Na | Sum | |
S-CCC | 10.3218 | 12.2181 | 12.0662 | 33.4966 | 26.8956 | 12.3289 | 10.0792 | 5 |
[0.1710] | [0.0936] | [0.0983] | [0.0000] | [0.0003] | [0.0902] | [0.1841] | ||
NS-CCC | 10.2944 | 12.0725 | 11.9839 | 28.8697 | 27.2485 | 12.5786 | 10.8587 | 5 |
[0.1724] | [0.0981] | [0.1010] | [0.0001] | [0.0003] | [0.0830] | [0.1448] | ||
S-DCC | 3.7374 | 8.5843 | 7.3272 | 19.6552 | 18.7722 | 10.3007 | 13.4539 | 5 |
[0.8094] | [0.2838] | [0.3956] | [0.0063] | [0.0089] | [0.1721] | [0.0617] | ||
NS-DCC | 10.3132 | 12.1512 | 11.2779 | 37.2880 | 22.0679 | 13.0092 | 12.2997 | 5 |
[0.1715] | [0.0956] | [0.1269] | [0.0000] | [0.0024] | [0.0718] | [0.0911] | ||
S-BEKK | 10.0575 | 12.2142 | 16.0366 | 19.1733 | 23.0047 | 20.5890 | 14.0009 | 3 |
[0.1853] | [0.0937] | [0.0247] | [0.0076] | [0.0017] | [0.0044] | [0.0511] | ||
NS-BEKK | 10.1730 | 12.5699 | 11.8918 | 34.6125 | 24.0851 | 11.2893 | 10.2065 | 5 |
[0.1789] | [0.0833] | [0.1041] | [0.0000] | [0.0011] | [0.1264] | [0.1771] | ||
NS-ADCC | 10.3132 | 12.1526 | 11.5718 | 33.5806 | 23.4834 | 12.5590 | 12.3032 | 5 |
[0.1715] | [0.0956] | [0.1155] | [0.0000] | [0.0014] | [0.0836] | [0.0910] | ||
Sp-Ca | Sp-Da | Sp-Ft | Sp-Sm | Na-Ca | Na-Da | Na-Ft | ||
S-CCC | 30.3576 | 18.2263 | 37.9757 | 16.0300 | 15.2448 | 24.5045 | 31.0751 | 0 |
[0.0000] | [0.0109] | [0.0000] | [0.0248] | [0.0329] | [0.0009] | [0.0000] | ||
NS-CCC | 20.2060 | 18.0954 | 37.3363 | 12.2757 | 15.3185 | 18.6607 | 31.1347 | 1 |
[0.0051] | [0.0115] | [0.0000] | [0.0918] | [0.0321] | [0.0093] | [0.0000] | ||
S-DCC | 4.3366 | 6.6243 | 13.7254 | 11.9702 | 3.6055 | 15.4307 | 12.6713 | 6 |
[0.7402] | [0.4690] | [0.0562] | [0.1015] | [0.8239] | [0.0308] | [0.0805] | ||
NS-DCC | 14.5434 | 18.7120 | 30.9949 | 12.2764 | 14.4964 | 18.6412 | 30.5141 | 1 |
[0.0423] | [0.0091] | [0.0000] | [0.0918] | [0.0430] | [0.0093] | [0.0000] | ||
S-BEKK | 16.1927 | 13.1625 | 35.5377 | 20.6767 | 15.3437 | 13.9051 | 20.7264 | 2 |
[0.0234] | [0.0682] | [0.0000] | [0.0042] | [0.0318] | [0.0528] | [0.0041] | ||
NS-BEKK | 12.8649 | 18.0528 | 39.2391 | 13.9991 | 13.9110 | 25.1249 | 29.5862 | 3 |
[0.0754] | [0.0117] | [0.0000] | [0.0511] | [0.0527] | [0.0007] | [0.0001] | ||
NS-ADCC | 20.5613 | 18.7242 | 31.0229 | 12.2829 | 14.4518 | 18.1772 | 34.3521 | 1 |
[0.0044] | [0.0090] | [0.0000] | [0.0916] | [0.0437] | [0.0111] | [0.0000] | ||
Na-Sm | Ca-Da | Ca-Ft | Ca-Sm | Da-Ft | Da-Sm | Ft-Sm | ||
S-CCC | 25.8101 | 22.3909 | 10.9822 | 12.0453 | 17.3897 | 17.2360 | 26.4417 | 2 |
[0.0005] | [0.0021] | [0.1393] | [0.0990] | [0.0150] | [0.0159] | [0.0004] | ||
NS-CCC | 25.8747 | 21.4803 | 7.6053 | 12.5239 | 13.7256 | 17.2310 | 7.1334 | 4 |
[0.0005] | [0.0031] | [0.3686] | [0.0845] | [0.0562] | [0.0159] | [0.4151] | ||
S-DCC | 13.3830 | 3.3975 | 4.8187 | 10.4288 | 13.2134 | 17.0012 | 10.4312 | 6 |
[0.0633] | [0.8459] | [0.6820] | [0.1655] | [0.0670] | [0.0173] | [0.1654] | ||
NS-DCC | 25.8073 | 21.9385 | 7.7121 | 7.7693 | 19.4782 | 16.9916 | 9.4860 | 3 |
[0.0005] | [0.0026] | [0.3586] | [0.3533] | [0.0068] | [0.0174] | [0.2196] | ||
S-BEKK | 23.7673 | 21.6152 | 7.5296 | 9.2160 | 10.0008 | 17.0505 | 6.3742 | 4 |
[0.0012] | [0.0029] | [0.3758] | [0.2375] | [0.1885] | [0.0170] | [0.4967] | ||
NS-BEKK | 12.0903 | 21.9022 | 7.6893 | 11.8549 | 17.9357 | 16.7977 | 17.1000 | 3 |
[0.0976] | [0.0026] | [0.3607] | [0.1054] | [0.0122] | [0.0187] | [0.0167] | ||
NS-ADCC | 31.0924 | 21.9193 | 7.7121 | 7.7693 | 19.4782 | 16.9965 | 9.4886 | 3 |
[0.0000] | [0.0026] | [0.3586] | [0.3533] | [0.0068] | [0.0174] | [0.2194] |
90% Level | 95% Level | |||||||||||||||||||||||||
LRuc | S90,uc | LRcc | S90,cc | DQ | S90,dq | S90 | LRuc | S95,uc | LRcc | S95,cc | DQ | S95,dq | S95 | |||||||||||||
S-CCC | 7 | 7 | 4 | 18 | 5 | 2 | 1 | 8 | 3 | 2 | 2 | 7 | 33 | 2 | 0 | 3 | 5 | 4 | 0 | 2 | 6 | 5 | 0 | 2 | 7 | 18 |
NS-CCC | 7 | 7 | 5 | 19 | 6 | 3 | 2 | 11 | 3 | 3 | 2 | 8 | 38 | 2 | 1 | 6 | 9 | 4 | 1 | 3 | 8 | 5 | 1 | 4 | 10 | 27 |
S-DCC | 7 | 7 | 7 | 21 | 7 | 7 | 4 | 18 | 6 | 4 | 3 | 13 | 52 | 7 | 6 | 7 | 20 | 6 | 6 | 6 | 18 | 5 | 6 | 6 | 17 | 55 |
NS-DCC | 7 | 7 | 6 | 20 | 6 | 5 | 3 | 14 | 3 | 3 | 2 | 8 | 42 | 1 | 1 | 5 | 7 | 3 | 1 | 3 | 7 | 5 | 1 | 3 | 9 | 23 |
S-BEKK | 7 | 7 | 7 | 21 | 5 | 5 | 4 | 14 | 3 | 2 | 3 | 8 | 43 | 1 | 2 | 6 | 9 | 2 | 2 | 4 | 8 | 3 | 2 | 4 | 9 | 26 |
NS-BEKK | 7 | 7 | 4 | 18 | 7 | 4 | 2 | 13 | 3 | 2 | 2 | 7 | 38 | 1 | 0 | 6 | 7 | 3 | 0 | 4 | 7 | 5 | 3 | 3 | 11 | 25 |
NS-ADCC | 7 | 7 | 6 | 20 | 6 | 4 | 3 | 13 | 3 | 2 | 2 | 7 | 40 | 2 | 2 | 5 | 9 | 4 | 1 | 3 | 8 | 5 | 1 | 3 | 9 | 26 |
99% Level | 99.5% Level | |||||||||||||||||||||||||
LRuc | S99,uc | LRcc | S99,cc | DQ | S99,dq | S99 | LRuc | S995,uc | LRcc | S995,cc | DQ | S995,dq | S995 | |||||||||||||
S-CCC | 2 | 1 | 0 | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 5 | 2 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
NS-CCC | 1 | 1 | 0 | 2 | 1 | 0 | 1 | 2 | 1 | 0 | 1 | 2 | 6 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
S-DCC | 4 | 5 | 4 | 13 | 3 | 2 | 2 | 7 | 2 | 2 | 2 | 6 | 26 | 5 | 5 | 5 | 15 | 1 | 0 | 0 | 1 | 1 | 0 | 3 | 4 | 20 |
NS-DCC | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 1 | 0 | 1 | 2 | 5 | 2 | 3 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
S-BEKK | 2 | 3 | 0 | 5 | 2 | 2 | 0 | 4 | 1 | 1 | 1 | 3 | 12 | 2 | 4 | 1 | 7 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 2 | 10 |
NS-BEKK | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 4 | 1 | 0 | 1 | 2 | 9 | 1 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
NS-ADCC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 7 |
Panel A.bi-component portfolios | |||||||||||||||||
90% Level | 95% Level | 99% Level | 99.5% Level | SUM | |||||||||||||
LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | ||
S-CCC | 18 | 8 | 7 | 33 | 5 | 6 | 7 | 18 | 3 | 1 | 1 | 5 | 3 | 0 | 0 | 3 | 59 |
NS-CCC | 19 | 11 | 8 | 38 | 9 | 8 | 10 | 27 | 2 | 2 | 2 | 6 | 2 | 0 | 0 | 2 | 73 |
S-DCC | 21 | 18 | 13 | 52 | 20 | 18 | 17 | 55 | 13 | 7 | 6 | 26 | 15 | 1 | 4 | 20 | 153 |
NS-DCC | 20 | 14 | 8 | 42 | 7 | 7 | 9 | 23 | 1 | 2 | 2 | 5 | 5 | 0 | 0 | 5 | 75 |
S-BEKK | 21 | 14 | 8 | 43 | 9 | 8 | 9 | 26 | 5 | 4 | 3 | 12 | 7 | 1 | 2 | 10 | 91 |
NS-BEKK | 18 | 13 | 7 | 38 | 7 | 7 | 11 | 25 | 3 | 4 | 2 | 9 | 3 | 0 | 0 | 3 | 75 |
NS-ADCC | 20 | 13 | 7 | 40 | 9 | 8 | 9 | 26 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 7 | 73 |
Panel B.bi-component portfolios | |||||||||||||||||
90% Level | 95% Level | 99% Level | 99.5% Level | SUM | |||||||||||||
LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | ||
S-CCC | 10 | 5 | 3 | 18 | 7 | 6 | 7 | 20 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 2 | 41 |
NS-CCC | 20 | 14 | 11 | 45 | 13 | 11 | 11 | 35 | 2 | 1 | 1 | 4 | 3 | 0 | 3 | 6 | 90 |
S-DCC | 21 | 16 | 14 | 51 | 18 | 12 | 14 | 44 | 11 | 5 | 4 | 20 | 12 | 2 | 6 | 20 | 135 |
NS-DCC | 20 | 14 | 11 | 45 | 13 | 11 | 11 | 35 | 1 | 1 | 1 | 3 | 2 | 0 | 3 | 5 | 88 |
S-BEKK | 19 | 11 | 11 | 41 | 15 | 8 | 9 | 32 | 0 | 0 | 0 | 0 | 5 | 1 | 4 | 10 | 83 |
NS-BEKK | 17 | 14 | 11 | 42 | 11 | 11 | 12 | 34 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 79 |
NS-ADCC | 19 | 14 | 11 | 44 | 13 | 11 | 11 | 35 | 1 | 1 | 1 | 3 | 2 | 0 | 3 | 5 | 87 |
Panel C.bi-component portfolios | |||||||||||||||||
90% Level | 95% Level | 99% Level | 99.5% Level | SUM | |||||||||||||
LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | ||
S-CCC | 16 | 15 | 10 | 41 | 12 | 11 | 10 | 33 | 7 | 2 | 0 | 9 | 8 | 0 | 0 | 8 | 91 |
NS-CCC | 20 | 17 | 14 | 51 | 16 | 16 | 13 | 45 | 1 | 2 | 1 | 4 | 4 | 0 | 1 | 5 | 105 |
S-DCC | 21 | 19 | 17 | 57 | 20 | 19 | 17 | 56 | 13 | 5 | 2 | 20 | 11 | 3 | 4 | 18 | 151 |
NS-DCC | 21 | 16 | 14 | 51 | 17 | 16 | 14 | 47 | 3 | 2 | 1 | 6 | 4 | 0 | 0 | 4 | 108 |
S-BEKK | 21 | 17 | 14 | 52 | 19 | 18 | 16 | 53 | 6 | 3 | 2 | 11 | 7 | 1 | 1 | 9 | 125 |
NS-BEKK | 20 | 16 | 12 | 48 | 18 | 15 | 12 | 45 | 2 | 1 | 1 | 4 | 3 | 0 | 0 | 3 | 100 |
NS-ADCC | 21 | 16 | 14 | 51 | 18 | 15 | 14 | 47 | 2 | 2 | 1 | 5 | 3 | 0 | 0 | 3 | 106 |
Udi-Ny | Udi-Sp | Udi-Na | Udi-Ca | Udi-Da | Udi-Ft | Udi-Sm | Sum | |
---|---|---|---|---|---|---|---|---|
Panel A. The LRuc test | ||||||||
S-CCC | 0.3643[0.5461] | 0.0899[0.7642] | 0.0000[1.0000] | 1.7119[0.1907] | 5.8681[0.0154] | 0.0000[1.0000] | 1.0466[0.3062] | 6 |
NS-CCC | 0.0220[0.8818] | 0.0223[0.8811] | 0.0220[0.8818] | 1.3597[0.2435] | 5.8681[0.0154] | 0.0878[0.7669] | 0.3474[0.5555] | 6 |
S-DCC | 0.0899[0.7642] | 1.1375[0.2861] | 0.8303[0.3621] | 0.0000[1.0000] | 1.3597[0.2435] | 0.0223[0.8811] | 0.8303[0.3621] | 7 |
NS-DCC | 0.2036[0.6517] | 1.9058[0.1674] | 0.0899[0.7642] | 0.0220[0.8818] | 1.3597[0.2435] | 0.0223[0.8811] | 0.5729[0.4491] | 7 |
S-BEKK | 0.0878[0.7669] | 0.0000[1.0000] | 0.0220[0.8818] | 2.5309[0.1116] | 7.2612[0.0070] | 0.1965[0.6575] | 1.3597[0.2435] | 6 |
NS-BEKK | 0.0899[0.7642] | 1.9058[0.1674] | 0.0000[1.0000] | 0.1965[0.6575] | 1.7119[0.1907] | 0.0878[0.7669] | 0.2036[0.6517] | 7 |
NS-ADCC | 0.2036[0.6517] | 1.9058[0.1674] | 0.0899[0.7642] | 0.0220[0.8818] | 1.3597[0.2435] | 0.0223[0.8811] | 0.3643[0.5461] | 7 |
Panel B. The LRcc test | ||||||||
S-CCC | 0.5221[0.7702] | 0.1279[0.9380] | 2.4 × 10−5[0.9999] | 2.4195[0.2982] | 6.0139[0.0494] | 5.0545[0.0798] | 6.0584[0.0483] | 5 |
NS-CCC | 0.1643[0.9211] | 0.0313[0.9844] | 0.0329[0.9836] | 2.2588[0.3232] | 6.0139[0.0494] | 4.1640[0.1246] | 7.0446[0.0295] | 5 |
S-DCC | 0.5617[0.7551] | 1.1650[0.5584] | 0.8347[0.6587] | 1.9366[0.3797] | 3.1793[0.2039] | 3.7804[0.1510] | 7.1652[0.0278] | 6 |
NS-DCC | 0.2911[0.8645] | 2.0396[0.3606] | 0.1279[0.9380] | 2.9583[0.2278] | 2.2588[0.3232] | 3.7804[0.1510] | 6.3292[0.0422] | 6 |
S-BEKK | 0.1634[0.9215] | 2 × 10−5[0.9999] | 0.0329[0.9836] | 2.9262[0.2315] | 7.2906[0.0261] | 5.5319[0.0629] | 5.8702[0.0531] | 6 |
NS-BEKK | 0.1279[0.9380] | 2.0396[0.3606] | 2 × 10−5[0.9999] | 1.3339[0.5132] | 2.4195[0.2982] | 2.6549[0.2651] | 9.3299[0.0094] | 6 |
NS-ADCC | 0.2911[0.8645] | 2.0396[0.3606] | 0.1279 [0.9380] | 2.9583[0.2278] | 2.2588[0.3232] | 3.7804[0.1510] | 5.5747[0.0615] | 7 |
Panel C. The DQ test | ||||||||
S-CCC | 1.9277[0.9637] | 1.1787[0.9914] | 2.3263[0.9395] | 5.2358[0.6312] | 9.1635[0.2411] | 8.9207[0.2583] | 14.5328[0.0424] | 6 |
NS-CCC | 2.5911[0.9200] | 1.3865[0.9859] | 2.4799[0.9286] | 6.1659[0.5205] | 9.1240[0.2438] | 7.4978[0.3789] | 13.0912[0.0699] | 7 |
S-DCC | 3.5911[0.8254] | 2.1972[0.9481] | 4.8508[0.6781] | 8.3832[0.3000] | 13.7697[0.0554] | 7.4171[0.3867] | 11.3058[0.1258] | 7 |
NS-DCC | 2.7042[0.9109] | 2.7454[0.9075] | 2.4149[0.9333] | 8.0607[0.3272] | 10.8364[0.1459] | 6.9173[0.4375] | 9.9127[0.1935] | 7 |
S-BEKK | 2.4411[0.9314] | 2.3166[0.9402] | 2.5963[0.9196] | 7.0117[0.4276] | 11.5043[0.1180] | 9.6540[0.2090] | 12.9049[0.0744] | 7 |
NS-BEKK | 2.3700[0.9365] | 2.3697[0.9365] | 2.2142[0.9470] | 6.5538[0.4767] | 9.2576[0.2346] | 6.5970[0.4720] | 12.8241[0.0765] | 7 |
NS-ADCC | 2.6933[0.9118] | 3.0184[0.8832] | 2.5772[0.9211] | 8.0607[0.3272] | 10.8363[0.1459] | 6.9173[0.4375] | 11.0342[0.1371] | 7 |
Panel A.bi-component portfolios | |||||||||||||||||
90% Level | 95% Level | 99% Level | 99.5% Level | SUM | |||||||||||||
LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | ||
S-CCC | 6 | 5 | 6 | 17 | 5 | 3 | 4 | 12 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 30 |
NS-CCC | 6 | 5 | 7 | 18 | 5 | 3 | 4 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
S-DCC | 7 | 6 | 7 | 20 | 6 | 7 | 5 | 18 | 1 | 2 | 0 | 3 | 0 | 1 | 1 | 2 | 43 |
NS-DCC | 7 | 6 | 7 | 20 | 6 | 7 | 5 | 18 | 1 | 2 | 1 | 4 | 0 | 1 | 2 | 3 | 45 |
S-BEKK | 6 | 6 | 7 | 19 | 3 | 5 | 4 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 |
NS-BEKK | 7 | 6 | 7 | 20 | 6 | 7 | 6 | 19 | 1 | 2 | 1 | 4 | 0 | 0 | 1 | 1 | 44 |
NS-ADCC | 7 | 7 | 7 | 21 | 6 | 6 | 5 | 17 | 1 | 1 | 1 | 3 | 0 | 1 | 2 | 3 | 44 |
Panel B.bi-component portfolios | |||||||||||||||||
90% Level | 95% Level | 99% Level | 99.5% Level | SUM | |||||||||||||
LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | ||
S-CCC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NS-CCC | 7 | 6 | 6 | 19 | 6 | 6 | 6 | 18 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 39 |
S-DCC | 7 | 6 | 7 | 20 | 7 | 5 | 5 | 17 | 2 | 1 | 1 | 4 | 3 | 0 | 0 | 3 | 44 |
NS-DCC | 7 | 6 | 7 | 20 | 7 | 5 | 5 | 17 | 0 | 2 | 1 | 3 | 0 | 0 | 1 | 1 | 41 |
S-BEKK | 7 | 6 | 6 | 19 | 5 | 4 | 4 | 13 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 33 |
NS-BEKK | 7 | 6 | 6 | 19 | 7 | 5 | 4 | 16 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 1 | 38 |
NS-ADCC | 7 | 6 | 7 | 20 | 7 | 5 | 5 | 17 | 0 | 2 | 1 | 3 | 0 | 0 | 1 | 1 | 41 |
Panel C.bi-component portfolios | |||||||||||||||||
90% Level | 95% Level | 99% Level | 99.5% Level | SUM | |||||||||||||
LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | LRuc | LRcc | DQ | Sum | ||
S-CCC | 0 | 1 | 4 | 5 | 2 | 2 | 6 | 10 | 7 | 4 | 4 | 15 | 7 | 3 | 4 | 14 | 44 |
NS-CCC | 7 | 7 | 7 | 21 | 7 | 7 | 7 | 21 | 3 | 2 | 0 | 5 | 3 | 0 | 0 | 3 | 50 |
S-DCC | 7 | 5 | 6 | 18 | 7 | 6 | 7 | 20 | 5 | 2 | 2 | 9 | 4 | 0 | 2 | 6 | 53 |
NS-DCC | 7 | 5 | 6 | 18 | 7 | 7 | 7 | 21 | 7 | 3 | 3 | 13 | 6 | 0 | 2 | 8 | 60 |
S-BEKK | 7 | 7 | 7 | 21 | 7 | 7 | 6 | 20 | 3 | 2 | 0 | 5 | 3 | 0 | 0 | 3 | 49 |
NS-BEKK | 7 | 5 | 6 | 18 | 7 | 7 | 7 | 21 | 5 | 2 | 3 | 10 | 5 | 0 | 2 | 7 | 56 |
NS-ADCC | 7 | 6 | 6 | 19 | 7 | 7 | 7 | 21 | 7 | 3 | 3 | 13 | 6 | 0 | 2 | 8 | 61 |
Panel A. The bi-component stock portfolios | ||||||||
Ny-Sp | Ny-Na | Ny-Ca | Ny-Da | Ny-Ft | Ny-Sm | Sp-Na | Sum | |
S-DCC | 7.8910(1.724) | 8.0044(2.008) | 8.2003(2.348) | 8.4113(1.788) | 6.8843(1.994) | 6.9209(2.080) | 8.0728(2.027) | 1 |
[0.000] | [0.000] | [0.000] | [0.000] | [0.510] | [0.010] | [0.000] | ||
NS-DCC | 7.2111(2.455) | 7.5252(2.501) | 7.9801(2.340) | 8.0803(2.160) | 7.0083(2.383) | 6.8579(2.166) | 7.6419(2.577) | 0 |
[0.000] | [0.004] | [0.000] | [0.000] | [0.000] | [0.000] | [0.007] | ||
NS-BEKK | 7.0659(2.337) | 7.3937(2.269) | 7.8118(2.146) | 7.8791(1.923) | 6.8751(2.120) | 6.6864(1.885) | 7.4977(2.295) | 7 |
[0.498] | [0.528] | [0.568] | [0.619] | [0.557] | [0.523] | [0.535] | ||
NS-ADCC | 7.2111(2.455) | 7.5250(2.501) | 7.9720(2.367) | 8.0878(2.163) | 7.0207(2.425) | 6.8287(2.112) | 7.6419(2.577) | 0 |
[0.000] | [0.001] | [0.000] | [0.000] | [0.001] | [0.000] | [0.004] | ||
Sp-Ca | Sp-Da | Sp-Ft | Sp-Sm | Na-Ca | Na-Da | Na-Ft | ||
S-DCC | 7.8820(2.256) | 8.2991(1.942) | 6.8906(2.186) | 6.9046(2.072) | 8.3522(1.901) | 8.3967(1.829) | 7.0895(1.999) | 2 |
[0.037] | [0.000] | [0.104] | [0.000] | [0.019] | [0.073] | [0.634] | ||
NS-DCC | 7.8908(2.339) | 8.0216(2.170) | 6.9040(2.405) | 6.7965(2.182) | 8.1983(2.369) | 8.3949(2.230) | 7.2283(2.402) | 0 |
[0.000] | [0.000] | [0.003] | [0.000] | [0.031] | [0.000] | [0.011] | ||
NS-BEKK | 7.7161(2.116) | 7.8271(1.902) | 6.7619(2.113) | 6.6260(1.868) | 8.1093(2.122) | 8.2155(1.924) | 7.1130(2.097) | 7 |
[0.520] | [0.665] | [0.917] | [0.523] | [0.733] | [0.945] | [0.442] | ||
NS-ADCC | 7.8820(2.368) | 8.0500(2.172) | 6.8929(2.407) | 6.7560(2.148) | 8.2153(2.413) | 8.4142(2.221) | 7.2187(2.453) | 0 |
[0.000] | [0.000] | [0.006] | [0.000] | [0.013] | [0.000] | [0.066] | ||
Na-Sm | Ca-Da | Ca-Ft | Ca-Sm | Da-Ft | Da-Sm | Ft-Sm | ||
S-DCC | 7.5970(1.947) | 10.2190(2.242) | 9.2129(1.436) | 8.8354(1.232) | 8.5388(0.915) | 9.3045(1.837) | 8.1860(2.395) | 5(8) |
[0.000] | [0.822] | [0.140] | [0.465] | [0.889] | [0.548] | [0.000] | ||
NS-DCC | 7.0929(2.193) | 10.6129(2.697) | 9.1373(2.960) | 9.1406(2.709) | 9.1602(2.746) | 9.1858(2.414) | 7.9692(2.715) | 2(2) |
[0.000] | [0.000] | [0.005] | [0.000] | [0.889] | [0.548] | [0.002] | ||
NS-BEKK | 6.9765(1.852) | 10.3884(2.538) | 8.9687(2.588) | 8.7994(2.439) | 9.0521(2.563) | 8.7474(2.143) | 7.7521(2.266) | 7(21) |
[0.856] | [0.178] | [0.889] | [0.548] | [0.889] | [0.548] | [0.521] | ||
NS-ADCC | 7.0177(2.155) | 10.6069(2.707) | 9.1373(2.960) | 9.1406(2.709) | 9.1602(2.746) | 9.1864(2.415) | 7.9690(2.715) | 2(2) |
[0.144] | [0.000] | [0.008] | [0.000] | [0.889] | [0.548] | [0.001] | ||
Panel B. The bi-component currency-stock portfolios | ||||||||
Udi-Ny | Udi-Sp | Udi-Na | Udi-Ca | Udi-Da | Udi-Ft | Udi-Sm | Sum | |
S-DCC | 4.1895(1.214) | 4.2479(1.338) | 4.7965(1.348) | 6.2143(1.543) | 6.3642(1.361) | 4.8727(1.547) | 5.1948(1.394) | 5 |
[0.002] | [0.433] | [0.028] | [0.115] | [0.388] | [0.315] | [0.297] | ||
NS-DCC | 4.1493(1.220) | 4.2775(1.272) | 4.7987(1.332) | 6.2952(1.528) | 6.4516(1.314) | 4.9358(1.567) | 5.2512(1.328) | 0 |
[0.005] | [0.000] | [0.000] | [0.000] | [0.000] | [0.000] | [0.001] | ||
NS-BEKK | 4.1102(1.214) | 4.2392(1.233) | 4.7541(1.236) | 6.1904(1.469) | 6.3584(1.270) | 4.8605(1.536) | 5.1756(1.149) | 7 |
[0.649] | [0.634] | [0.927] | [0.885] | [0.612] | [0.685] | [0.703] | ||
NS-ADCC | 4.1486(1.223) | 4.2577(1.276) | 4.7742(1.341) | 6.2952(1.528) | 6.4516(1.315) | 4.9358(1.567) | 5.2512(1.328) | 1 |
[0.002] | [0.049] | [0.129] | [0.000] | [0.000] | [0.000] | [0.001] |
Stock Portfolios | Currency-Stock Portfolios | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
w1 | w2 | w1 | w2 | w1 | w2 | w1 | w2 | w1 | w2 | w1 | w2 | |
0.5 | 0.5 | 0.25 | 0.75 | 0.75 | 0.25 | 0.5 | 0.5 | 0.25 | 0.75 | 0.75 | 0.25 | |
S-DCC | 8 | 8 | 7 | 5 | 4 | 0 | ||||||
NS-DCC | 2 | 0 | 1 | 0 | 1 | 0 | ||||||
NS-BEKK | 21 | 19 | 20 | 7 | 7 | 7 | ||||||
NS-ADCC | 2 | 0 | 1 | 1 | 1 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.-B.; Hung, J.-C. The Value-At-Risk Estimate of Stock and Currency-Stock Portfolios’ Returns. Risks 2018, 6, 133. https://doi.org/10.3390/risks6040133
Su J-B, Hung J-C. The Value-At-Risk Estimate of Stock and Currency-Stock Portfolios’ Returns. Risks. 2018; 6(4):133. https://doi.org/10.3390/risks6040133
Chicago/Turabian StyleSu, Jung-Bin, and Jui-Cheng Hung. 2018. "The Value-At-Risk Estimate of Stock and Currency-Stock Portfolios’ Returns" Risks 6, no. 4: 133. https://doi.org/10.3390/risks6040133
APA StyleSu, J. -B., & Hung, J. -C. (2018). The Value-At-Risk Estimate of Stock and Currency-Stock Portfolios’ Returns. Risks, 6(4), 133. https://doi.org/10.3390/risks6040133