Pomegranate Fruit Quality and Seed Drying Method: Effect on the Chemical Composition and Bioactivities of the Extracted Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Seed Drying and Sample Preparation
2.3. Oil Extraction
2.4. PSO Compositional Analysis
2.4.1. Refractive Index and ρ-Anisidine Value
2.4.2. Preparation of PSO Extracts for Total Phenolic Content, Antiradical, and Antimicrobial Activity
2.4.3. Total Phenolic Content
2.4.4. Radical Scavenging Activity
2.4.5. Tyrosinase Inhibition Determination
2.4.6. Antibacterial Determination
2.4.7. Fatty Acids
2.5. Statistical Analysis
3. Results and Discussion
3.1. Oil Yield
3.2. Refractive Index and ρ-Anisidine Value
3.3. Total Phenolic Content and Antiradical Activity
3.4. Tyrosinase Inhibition and Antimicrobial Activity
3.5. Fatty Acid Composition
3.6. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
AV | Anisidine value |
DPPH | 2.2-diphenyl-1-picryl hydrazyl |
FA | Fatty acid |
FD | Freeze dried |
FRAP | Ferric reducing antioxidant power |
GAE | Gallic acid equivalence |
GC-MS | Gas chromatograph mass spectroscopy |
HF | Healthy fruit |
IC50 | 50% inhibitory concentration |
LDL | Low density lipoprotein |
MIC | Minimum inhibitory concentration |
MUFA | Monounsaturated fatty acid |
PCA | Principal component analysis |
PS | Pomegranate seed |
PSO | Pomegranate seed oil |
PUFA | Polyunsaturated fatty acid |
RI | Refractive index |
SB | Sun burned |
SD | Sun dried |
SFA | Saturated fatty acid |
TEAC | Trolox equivalence antioxidant capacity |
TPC | Total phenolic content |
UFA | Unsaturated fatty acid |
References
- Fawole, A.O.; Makunga, N.P.; Opara, U.L. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement. Altern. Med. 2012, 12, 200. [Google Scholar] [CrossRef] [Green Version]
- Eikani, M.H.; Golmohammad, F.; Saied, S. Extraction of pomegranate (Punica granatum L.) seed oil using superheated hexane. Food Bioprod. Process. 2012, 90, 32–36. [Google Scholar] [CrossRef]
- Caligiani, A.; Bonzanini, F.; Palla, G.; Cirlini, M.; Bruni, R. Characterization of a Potential Nutraceutical Ingredient: Pomegranate (Punica granatum L.) Seed Oil Unsaponifiable Fraction. Plant Foods Hum. Nutr. 2010, 65, 277–283. [Google Scholar] [CrossRef]
- Koba, K.; Yanagita, T. Potential health benefits of pomegranate (Punica granatum L.) seed oil containing conjugated linolenic acid. In Nuts & Seeds in Health and Disease Prevention; Preedy, V., Watson, R., Patel, V., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 919–924. [Google Scholar]
- Pomegranate Association of South Africa (POMASA). Pomegranate Industry Overview. South Africa. 2020, pp. 1–16. Available online: https://www.sapomegranate.co.za/statistics-and-information/pomegranate-industry-overview/ (accessed on 4 September 2021).
- Fawole, O.A.; Opara, U.L. Value-addition of sunburned pomegranate fruit to reduce postharvest losses: A cosmeceutical perspective. Acta Hortic. 2018, 225, 221–226. [Google Scholar] [CrossRef]
- Opara, I.K.; Fawole, O.A.; Kelly, C.; Opara, U.L. Quantification of on-farm pomegranate fruit postharvest losses and waste, and implications on sustainability indicators: South African case study. Sustainability 2021, 13, 5168. [Google Scholar] [CrossRef]
- Wittich, K.P. Apple sunburn risk detection—A simple model for agricultural decision making and some fruit temperature measurements. Erwerbs-Obstbau 2021, 63, 25–36. [Google Scholar] [CrossRef]
- Racsko, J.; Schrader, L.E. Sunburn of apple fruit: Historical background, recent advances, and future perspectives. Crit. Rev. Plant Sci. 2021, 31, 455–504. [Google Scholar] [CrossRef]
- Caleb, O.J.; Opara, U.L.; Witthuhn, C. Modified atmosphere packaging of pomegranate fruit and arils: A review. Food Bioproc. Technol. 2021, 5, 15–30. [Google Scholar] [CrossRef]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: Effect of preharvest and processing factors. Heliyon 2020, 6, e04962. [Google Scholar] [CrossRef] [PubMed]
- Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Ghafoor, K. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils. J. Food Sci. Technol. 2018, 55, 190–197. [Google Scholar] [CrossRef]
- Irondi, A.E.; Anokam, K.K.; Ndidi, U.S. Effect of drying methods on the phytochemical composition and antioxidant activities of Carica papaya seed. Int. J. Biosci. 2013, 11, 154–163. [Google Scholar]
- Dorta, E.; Lobo, M.G.; González, M. Using drying treatments to stabilise mango peel and seed: Effect on antioxidant activity. LWT-Food Sci. Technol. 2012, 45, 261–268. [Google Scholar] [CrossRef]
- Saavedra, J.; Cordova, A.; Navarro, R.; Díaz-Calderon, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- Teles, A.S.C.; Chávez, D.W.H.; Gomes, F.S.; Cabral, L.M.C.; Tonon, R.V. Effect of temperature on the degradation of bioactive compounds of pinot noir grape pomace during drying. Braz. J. Food Technol. 2018, 21, 1–7. [Google Scholar] [CrossRef] [Green Version]
- AOCS Official Method Cd 18-90, ρ-anisidine value. In Official Methods and Recommended Practices of the American oil Chemists’ Society; Firestone, D. (Ed.) AOCS Press: Champaign, IL, USA, 2003. [Google Scholar]
- Jakopic, J.; Petkovsek, M.M.; Likozar, A.; Solar, A.; Stampar, F.; Veberic, R. HPLC–MS identification of phenols in hazelnut (Corylus avellana L.) kernels. Food Chem. 2011, 124, 1100–1106. [Google Scholar] [CrossRef]
- Fawole, O.A.; Opara, U.L. Seasonal variation in chemical composition, aroma volatiles and antioxidant capacity of pomegranate during fruit development. Afr. J. Biotechnol. 2013, 12, 4006–4019. [Google Scholar]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Effect of blanching pomegranate seed on physicochemical attributes, bioactive com-pounds, and antioxidant activity of extracted oil. Molecules 2020, 25, 2554. [Google Scholar] [CrossRef]
- Ahangari, B.; Sargolzaei, J. Extraction of pomegranate seed oil using subcritical propane and supercritical carbon dioxide 1. Theor. Found. Chem. Eng. 2012, 46, 258–265. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Z.; Zheng, B.; Lo, Y.M. Ultrasonics Sonochemistry Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrason. Sonochem. 2013, 20, 202–208. [Google Scholar] [CrossRef]
- Omosuli, S.V.; Oloye, D.A.; Ibrahim, T.A. Effect of drying methods on the physicochemical properties and fatty acid composition of moringa seeds oil. Arch. Food Nutr. Sci. 2017, 1, 27–32. [Google Scholar]
- Taiwo, A.A.; Agbotoba, M.O.; Oyedepo, J.A.; Shobo, O.A.; Oluwadare, I.; Olawunmi, M.O. Effects of drying methods on properties of watermelon (Citrullus lanatus) seed oil. Afr. J. Food, Agric. Nutr. Dev. 2008, 8, 492–501. [Google Scholar] [CrossRef]
- Khoddami, A.; Bin, Y.; Man, C.; Roberts, T.H. Physicochemical properties, and fatty acid profile of seed oil from pomegranate (Punica granatum L.) extracted by cold pressing. Eur. J. Lipid Sci. Technol. 2014, 116, 553–562. [Google Scholar] [CrossRef]
- Ogrodowska, D.; Tańska, M.; Brandt, W. The Influence of Drying Process Conditions on the Physical Properties, Bioactive Compounds and Stability of Encapsulated Pumpkin Seed Oil. Food Bioproc. Technol. 2017, 10, 1265–1280. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, Y.; Che, L. Effects of different drying methods on the extraction rate and qualities of oils from demucilaged flaxseed. Dry. Technol. 2018, 36, 1642–1652. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Ying, L.N.; Amir, H.M.S.; Azzatul, F.S.; Sharifudin, M.S.; Hasmadi, M.; Lee, J.S.; Mansoor, A.H.; Jumardi, R.; Matanjun, P.; et al. Effects of drying methods on the characteristics of rambutan (Nephelium lappaceum L.) seed fat: An optimisation approach. Eng. Rep. 2021, 1, e12050. [Google Scholar] [CrossRef]
- Pande, G.; Akoh, C.C. Antioxidant capacity and lipid characterization of six Georgia-grown pomegranate cultivars. J. Agric. Food Chem. 2009, 57, 9427–9436. [Google Scholar] [CrossRef]
- Costa, A.M.M.; Silva, L.O.; Torres, A.G. Chemical composition of commercial cold-pressed pomegranate (Punica granatum) seed oil from Turkey and Israel, and the use of bioactive compounds for samples’ origin preliminary discrimination. J. Food Compost. Anal. 2019, 75, 8–16. [Google Scholar] [CrossRef]
- Bualuang, O.; Onwude, D.; Uso, A.; Peerachaakkarachai, K.; Mora, P.; Dulsamphan, S.; Sena, P. Determination of drying kinetics, some physical, and antioxidant properties of papaya seeds undergoing microwave vacuum drying. J. Food Process. Eng. 2018, 43, e13176. [Google Scholar] [CrossRef]
- Araujoa, R.G.; Rodriguez-Jassoa, R.M.; Ruiza, H.A.; Govea-Salasb, M.; Pintadoc, M.E.; Aguilara, C.N. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind. Crop. Prod. 2014, 154, 112623. [Google Scholar] [CrossRef]
- Masuda, M.; Murata, K.; Fukuhama, A.; Naruto, S.; Fujita, T.; Uwaya, A.; Isami, F.; Matsuda, H. Inhibitory effects of constituents of Morinda citrifolia seeds on elastase and tyrosinase. J. Nat. Med. 2009, 63, 267–273. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, M.; Ran, J.; Zhang, T.; Sun, H.; Dong, M.; Zhang, Z.; Zheng, H. Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi J. Biol. Sci. 2016, 23, 379–388. [Google Scholar] [CrossRef] [Green Version]
- De Melo, I.L.P.; de Carvalho, E.B.T.; Silva, A.M.O.; Yoshime, L.T.; Sattler, J.A.G.; Pavan, R.T.; Mancini-Filho, J. Characterization of constituents, quality, and stability of pomegranate seed oil (Punica granatum L.). Food Sci. Technol. 2014, 36, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crop. Prod. 2015, 70, 178–184. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial activity in Middle Eastern plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- Alqahtani, F.Y.; Aleanizy, F.S.; Mahmoud, A.Z.; Farshori, N.N.; Alfaraj, R.; Al-sheddi, E.S.; Alsarra, I.A. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi J. Biol. Sci. 2019, 26, 1089–1092. [Google Scholar] [CrossRef]
- Zaouay, F.; Brahem, M.; Boussaa, F.; Haddada, F.M.; Tounsi, M.S.; Mars, M. Effects of fruit cracking and maturity stage on quality attributes and fatty acid composition of pomegranate seed oils. Int. J. Fruit Sci. 2020, 20, 1959–1968. [Google Scholar] [CrossRef]
- Prabakaran, M.; Lee, K.J.; An, Y.; Kwon, C.; Kim, S.; Yang, Y.; Ahmad, A.; Kim, S.H.; Chung, M. Changes in soybean (Glycine max L.) flour fatty-acid content based on storage temperature and duration. Molecules 2018, 23, 2713. [Google Scholar] [CrossRef] [Green Version]
- Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health benefits of punicic acid: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Cicero, N.; Albergamo, A.; Salvo, A.; Bua, G.D.; Bartolomeo, G.; Mangano, V.; Rotondo, A.; Di Stefano, V.; Di Bella, G.; Dugo, G. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Res. Int. 2018, 109, 517–525. [Google Scholar] [CrossRef] [PubMed]
Seed Drying Method | Fruit Quality | RI (25 °C) | AV | DPPH (IC50) (µg/mL) | Monophenolase (IC50) (µg/mL) | Diphenolase (IC50) (µg/mL) |
---|---|---|---|---|---|---|
Freeze-dried | Healthy | 1.4990 ± 0.0000 a | 4.80 ± 2.03 a | 59.29 ± 1.91 a | 0.49 ± 0.074 a | 0.68 ± 0.046 c |
Sun-burned | 1.4920 ± 0.0000 a | 4.65 ± 0.60 a | 39.97 ± 2.37 bc | 0.33 ± 0.040 b | 2.43 ± 0.543 a | |
Sun-dried | Healthy | 1.4982 ± 0.0000 a | 3.25 ± 0.85 a | 56.65 ± 2.40 a | 0.33 ± 0.032 b | 1.80 ± 0.550 ab |
Sun-burned | 1.4902 ± 0.0000 a | 2.75 ± 0.60 a | 51.98 ± 5.88 ab | 0.31 ± 0.001 b | 0.94 ± 0.328 bc | |
Oven-dried | Healthy | 1.4988 ± 0.0000 a | 2.18 ± 0.08 a | 47.03 ± 3.77 abc | 0.35 ± 0.014 b | 0.64 ± 0.056 bc |
Sun-burned | 1.4900 ± 0.0000 a | 2.67 ± 0.12 a | 34.77 ± 3.56 c | 0.36 ± 0.008 b | 0.68 ± 0.047 bc | |
Ascorbic acid | 0.99 ± 0.027 | |||||
Arbutin | 0.04 ± 0.001 | 0.01 ± 0.001 | ||||
Significance Level | ||||||
Fruit condition (A) | 0.312 | 0.646 | 0.006 | 0.087 | 0.289 | |
Drying method (B) | 0.421 | 0.122 | 0.025 | 0.101 | 0.054 | |
AxB | 0.811 | 0.979 | 0.203 | 0.106 | 0.008 |
Gram Positive | Gram Negative | ||||
---|---|---|---|---|---|
Seed Drying Method | Fruit Quality | Bacillus Subtilis | Staphylococus Aureus | Escherichia Coli | Klebsiella Pneumonia |
Freeze-dried | Healthy | 6.25 | 6.25 | 12.5 | 1.563 |
Sun-burned | 12.5 | >12.50 | 12.5 | >12.50 | |
Sun-dried | Healthy | 3.125 | 6.25 | 3.125 | 3.125 |
Sun-burned | >12.50 | >12.50 | >12.5 | >12.50 | |
Oven-dried | Healthy | 6.25 | 3.125 | 6.25 | 12.5 |
Sun-burned | >12.5 | 6.25 | >12.5 | >12.50 | |
Streptomycin (mg/mL) | <0.0195 | <0.0195 | <0.0195 | <0.0195 |
Fatty Acids | FDH | FD-SB | SDH | SD-SB | ODH | OD-SB |
---|---|---|---|---|---|---|
SFA | ||||||
Palmitic acid (C16:0) | 4.95 ± 0.022 ab | 4.68 ± 0.006 c | 5.04 ± 0.025 ab | 4.90 ± 0.040 b | 5.08 ± 0.014 a | 4.98 ± 0.087 ab |
Margaric acid (C17:0 | 1.18 ± 0.006 a | 1.50 ± 0.395 a | 1.03 ± 0.041 a | 1.03 ± 0.065 a | 1.03 ± 0.011 a | 1.06 ± 0.061 a |
Stearic acid (C18:0) | 1.73 ± 0.023 ab | 1.64 ± 0.005 ab | 1.60 ± 0.026 b | 1.67 ± 0.117 ab | 1.82 ± 0.010 ab | 1.72 ± 0.024 a |
Arachidic acid (C20:0) | 0.39 ± 0.001 b | 0.37 ± 0.001 c | 0.39 ± 0.005 bc | 0.38 ± 0.009 bc | 0.41 ± 0.004 a | 0.38 ± 0.001 bc |
Behenic acid (C22:0) | 0.20 ± 0.005 a | 0.14 ± 0.017 b | 0.15 ± 0.009 b | 0.13 ± 0.006 b | 0.12 ± 0.005 b | 0.13 ± 0.006 b |
MUFA | ||||||
cis-Oleic acid (C18:1 n-9 cis) | 6.78 ± 0.032 d | 7.25 ± 0.100 bc | 7.07 ± 0.08 cd | 7.17 ± 0.14b c | 7.45 ± 0.028 ab | 7.76 ± 0.117 a |
trans-Oleic acid (C18:1 n-9 trans) | 0.41 ± 0.003 a | 0.40 ± 0.017 a | 0.43 ± 0.002 a | 0.42 ± 0.02 a | 0.41 ± 0.004 a | 0.41 ± 0.008 a |
PUFA | ||||||
γ-Linolenic acid (C18:3 n-6) | 0.20 ± 0.008 a | 0.18 ± 0.005 b | 0.18 ± 0.006 b | 0.20 ± 0.006 a | 0.20 ± 0.003 ab | 0.21 ± 0.005 a |
Punicic acid (cis-9, trans-11, cis-13 C18:3) | 81.21 ± 0.275 c | 82.46 ± 0.538 ab | 82.51 ± 0.158 ab | 82.68 ± 0.172 a | 81.64 ± 0.028 abc | 81.52 ± 0.294 bc |
α-Linolenic acid (C18:3 n-3) | 0.72 ± 0.006 c | 0.78 ± 0.017 bc | 0.91 ± 0.018 b | 0.55 ± 0.011 d | 0.90 ± 0.002 b | 1.07 ± 0.083 a |
∑SFA | 8.45 ± 0.06 a | 8.32 ± 0.41 a | 8.20 ± 0.09 a | 8.12 ± 0.08 a | 8.46 ± 0.02 a | 8.27 ± 0.18 a |
∑MUFA | 7.18 ± 0.04 d | 7.66 ± 0.08b c | 7.50 ± 0.08 bd | 7.58 ± 0.14 bc | 7.86 ± 0.03 ac | 8.17 ± 0.13 a |
∑PUFA | 82.13 ± 0.26 b | 83.42 ± 0.55 a | 83.59 ± 0.17 a | 83.43 ± 0.16 a | 82.74 ± 0.03 ab | 82.81 ± 0.21 ab |
∑MUFA/PUFA ratio | 0.09 ± 0.00 c | 0.09 ± 0.00 bc | 0.09 ± 0.00 c | 0.09 ± 0.00 bc | 0.09 ± 0.00 ab | 0.10 ± 0.00 a |
∑UFA/SFA ratio | 10.57 ± 0.04 a | 10.98 ± 0.60 a | 11.11 ± 0.13 a | 11.21 ± 0.11 a | 10.71 ± 0.02 a | 11.01 ± 0.25 a |
ω6/ω3 ratio | 0.28 ± 0.01 a | 0.23 ± 0.01 c | 0.19 ± 0.00 d | 0.37 ± 0.01 b | 0.22 ± 0.00 cd | 0.20 ± 0.01 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fawole, O.A.; Kaseke, T.; Opara, U.L. Pomegranate Fruit Quality and Seed Drying Method: Effect on the Chemical Composition and Bioactivities of the Extracted Oil. Processes 2022, 10, 3. https://doi.org/10.3390/pr10010003
Fawole OA, Kaseke T, Opara UL. Pomegranate Fruit Quality and Seed Drying Method: Effect on the Chemical Composition and Bioactivities of the Extracted Oil. Processes. 2022; 10(1):3. https://doi.org/10.3390/pr10010003
Chicago/Turabian StyleFawole, Olaniyi Amos, Tafadzwa Kaseke, and Umezuruike Linus Opara. 2022. "Pomegranate Fruit Quality and Seed Drying Method: Effect on the Chemical Composition and Bioactivities of the Extracted Oil" Processes 10, no. 1: 3. https://doi.org/10.3390/pr10010003
APA StyleFawole, O. A., Kaseke, T., & Opara, U. L. (2022). Pomegranate Fruit Quality and Seed Drying Method: Effect on the Chemical Composition and Bioactivities of the Extracted Oil. Processes, 10(1), 3. https://doi.org/10.3390/pr10010003