Step-by-Step Hybrid Conversion of Glucose to 5-acetoxymethyl-2-furfural Using Immobilized Enzymes and Cation Exchange Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isomerization of Glucose
2.3. Transesterification of the Glucose and Fructose Mixture
2.4. Dehydration of DAF
3. Results and Discussion
3.1. Influence of Solvents on Isomerization and Esterification
3.2. Cycle of Isomerization and Trans-Esterification
3.3. Dehydration of Mixture of DAF and MAG
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Son, J.; Lee, K.H.; Lee, T.; Kim, H.S.; Shin, W.H.; Oh, J.M.; Koo, S.M.; Yu, B.J.; Yoo, H.Y.; Park, C. Enhanced Production of Bacterial Cellulose from Miscanthus as Sustainable Feedstock through Statistical Optimization of Culture Conditions. Int. J. Environ. Res. Public Health 2022, 19, 866. [Google Scholar] [CrossRef] [PubMed]
- Bielski, R.; Grynkiewicz, G. Furan platform chemicals beyond fuels and plastics. Green Chem. 2021, 23, 7458–7487. [Google Scholar] [CrossRef]
- Tong, X.; Ma, Y.; Li, Y. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A Gen. 2010, 385, 1–13. [Google Scholar] [CrossRef]
- Lew, C.M.; Rajabbeigi, N.; Tsapatsis, M. One-pot synthesis of 5-(ethoxymethyl) furfural from glucose using Sn-BEA and Amberlyst catalysts. Ind. Eng. Chem. Res. 2012, 51, 5364–5366. [Google Scholar] [CrossRef]
- Chaturvedi, T.; Hulkko, L.S.S.; Fredsgaard, M.; Thomsen, M.H. Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass. Processes 2022, 10, 1752. [Google Scholar] [CrossRef]
- Deng, J.; Liu, X.; Li, C.; Jiang, Y.; Zhu, J. Synthesis and properties of a bio-based epoxy resin from 2, 5-furandicarboxylic acid (FDCA). RSC Adv. 2015, 5, 15930–15939. [Google Scholar] [CrossRef]
- Bao, Q.; Qiao, K.; Tomida, D.; Yokoyama, C. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid. Catal. Commun. 2008, 9, 1383–1388. [Google Scholar] [CrossRef]
- Shimizu, K.; Uozumi, R.; Satsuma, A. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal. Commun. 2009, 10, 1849–1853. [Google Scholar] [CrossRef]
- Lansalot-Matras, C.; Moreau, C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal. Commun. 2003, 4, 517–520. [Google Scholar] [CrossRef]
- Wang, J.; Ren, J.; Liu, X.; Lu, G.; Wang, Y. High yield production and purification of 5-hydroxymethylfurfural. AlChE 2013, 59, 2558–2566. [Google Scholar] [CrossRef]
- Kang, E.S.; Hong, Y.W.; Chae, D.W.; Kim, B.; Kim, B.; Kim, Y.J.; Cho, J.K.; Kim, Y.G. From lignocellulosic biomass to furans via 5-acetoxymethylfurfural as an alternative to 5- hydroxymethylfurfural. Chem. Sus. Chem. 2015, 8, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.W.; Floyd, A.J.; Kinsman, R.G.; Roshanhyphen, A.Y. Dehydration reactions of fructose in non-aqueous media. J. Chem. Technol. Biot. 1982, 32, 920–924. [Google Scholar]
- Mckay, G.A.; Tavlarides, L.L. Enzymatic isomerization kinetics of D-Glucose to D-Fructose. J. Mol. Catal. A 1979, 6, 57–69. [Google Scholar] [CrossRef]
- D’Antona, N.; El-Idrissi, M.; Ittobane, N.; Nicolosi, G. Enzymatic procedures in the preparation of regioprotected D-fructose derivatives. Carbohydr. Res. 2005, 340, 319–323. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.; Son, J.; Lee, H.; Song, J.H.; Lee, T.; Jeon, H.; Kim, H.S.; Park, S.J.; Yoo, H.Y.; et al. Improved Productivity of Naringin Oleate with Flavonoid and Fatty Acid by Efficient Enzymatic Esterification. Antioxidants 2022, 11, 242. [Google Scholar] [CrossRef]
- Nikolla, E.; Román-Leshkov, Y.; Moliner, M.; Davis, M.E. “One-pot” synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-beta zeolite. ACS Catal. 2011, 1, 408–410. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, G.W.; Smiley, K.L. Free and immobilized glucose isomerase from Streptomyces phaeochromogenes. Appl. Microbiol. 1971, 21, 588–591. [Google Scholar] [CrossRef]
- Lee, H.S.; Hong, J. Kinetics of glucose isomerization to fructose by immobilized glucose isomerase: Anomeric reactivity of D-glucose in kinetic model. J. Biotechnol. 2000, 84, 145–153. [Google Scholar] [CrossRef]
- Stahlberg, T.; Woodley, J.M.; Riisager, A. Enzymatic isomerization of glucose and xylose in ionic liquids. Catal. Sci. Technol. 2012, 2, 291–295. [Google Scholar]
- Parveen, F.; Upadhyayula, S. Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities-A mechanistic and experimental study. Fuel Process.Technol. 2017, 162, 30–36. [Google Scholar] [CrossRef]
- Ha, S.H.; Hiep, N.M.; Koo, Y.M. Enhanced production of fructose palmitate by lipase-catalyzed esterification in ionic liquids. Biotechnol. Bioprocess. Eng. 2010, 15, 126–130. [Google Scholar] [CrossRef]
- Coulon, D.; Girardin, M.; Rovel, B.; Ghoul, M. Comparison of direct esterification and transesterification of fructose by Candida antartica lipase. Biotechnol. Lett. 1995, 17, 183–186. [Google Scholar] [CrossRef]
- Farag, S. Separation and analysis of some sugars by using thin layer chromatography. A.S.S.B.T. 1979, 20, 251–254. [Google Scholar] [CrossRef]
- Baek, Y.; Lee, S.; Son, J.; Lee, T.; Oh, J.M.; Lee, S.H.; Kim, H.U.; Seo, S.W.; Park, S.J.; Yoo, H.Y.; et al. Efficient Production of Naringin Acetate with Different Acyl Donors via Enzymatic Transesterification by Lipases. Int. J. Environ. Res. Public Health 2022, 19, 2972. [Google Scholar] [CrossRef] [PubMed]
- Bock, K.; Meldal, M.; Meyer, B.; Wiebe, L. Isomerization of D-glucose with glucose-isomerase. A mechanistic study. Acta Chem. Scand. B 1983, 37, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šabeder, S.; Habulin, M.; Knez, Ž. Lipase-catalyzed synthesis of fatty acid fructose esters. J. Food Eng. 2006, 77, 880–886. [Google Scholar] [CrossRef]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef] [Green Version]
- Le Joubioux, F.; Bridiau, N.; Henda, Y.B.; Achour, O.; Graber, M.; Maugard, T. The control of Novozym® 435 chemoselectivity and specificity by the solvents in acylation reactions of amino-alcohols. J. Mol. Catal. B Enzym. 2013, 95, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 2007, 316, 1597–1600. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Chen, L.; Liu, R.; Huang, X.; Ye, D. Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem. 2014, 16, 2490–2499. [Google Scholar] [CrossRef]
- Sampath, G.; Kannan, S. Fructose dehydration to 5-hydroxymethylfurfural: Remarkable solvent influence on recyclability of Amberlyst-15 catalyst and regeneration studies. Catal. Commun. 2013, 13, 41–44. [Google Scholar] [CrossRef]
- Frija, L.M.T.; Afonso, C.A.M. Amberlyst®-15: A reusable heterogeneous catalyst for the dehydration of tertiary alcohols. Tetrahedron 2012, 68, 7414–7421. [Google Scholar] [CrossRef]
- Pal, R.; Sarkar, T. Amberlyst-15 in organic synthesis. Arkivoc Arch. Org. Chem. 2012, 1, 570–609. [Google Scholar] [CrossRef] [Green Version]
- Simeonov, S.P.; Afonso, C.A.M. Batch and flow synthesis of 5-hydroxymethylfurfural (HMF) from fructose as a bioplatform intermediate: An experiment for the organic or analytical laboratory. J. Chem. Educ. 2013, 90, 1373–1375. [Google Scholar] [CrossRef]
- Takagaki, A.; Ohara, M.; Nishimura, S.; Ebitani, K. A one-pot reaction for biorefinery: Combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem.Comm. 2009, 40, 6276–6278. [Google Scholar] [CrossRef]
- Qi, X.; Watanabe, M.; Aida, T.M.; Smith Jr, R.L. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem. 2008, 10, 799–805. [Google Scholar] [CrossRef]
- Jakob, A.; Grilc, M.; Teržan, J.; Likozar, B. Solubility Temperature Dependence of Bio-Based Levulinic Acid, Furfural, and Hydroxymethylfurfural inWater, Nonpolar, Polar Aprotic and Protic Solvents. Processes 2021, 9, 924. [Google Scholar] [CrossRef]
- Thananatthanachon, T.; Rauchfuss, T.B. Efficient production of the liquid fuel 2, 5-dimethylfuran from fructose using formic acid as a reagent. Angew. Chem. Int. Ed. 2010, 122, 6766–6768. [Google Scholar] [CrossRef]
- Okano, T.; Qiao, K.; Bao, Q.; Tomida, D.; Hagiwara, H.; Yokoyama, C. Dehydration of fructose to 5-hydroxymethylfurfural (HMF) in an aqueous acetonitrile biphasic system in the presence of acidic ionic liquids. Appl. Catal. A Gen. 2013, 451, 1–5. [Google Scholar] [CrossRef]
- Aellig, C.; Hermans, I. Continuous D-Fructose Dehydration to 5-Hydroxymethylfurfural Under Mild Conditions. Chem. Sus. Chem. 2012, 5, 1737–1742. [Google Scholar] [CrossRef]
- Qi, X.; Watanabe, M.; Aida, T.M.; Smith Jr, R.L. Selective conversion of D-fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures. Ind. Eng. Chem. Res. 2008, 47, 9234–9239. [Google Scholar] [CrossRef]
- Wang, T.; Nolte, M.W.; Shanks, B.H. Catalytic dehydration of C 6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem. 2014, 16, 548–572. [Google Scholar] [CrossRef]
- Mushrif, S.H.; Caratzoulas, S. Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: A molecular dynamics investigation. Phys. Chem. Chem. Phys. 2012, 14, 2637–2644. [Google Scholar] [CrossRef] [PubMed]
Entry | Solvent | Fructose Yield (%) |
---|---|---|
1 | Acetone | 3 |
2 | 1,4-Dioxane | 3 |
3 | Ethanol | 4 |
4 | Ethyl acetate | 0 |
5 | Ethyl ether | 0 |
6 | THF | 5 |
7 | Vinyl acetate | 0 |
8 | H2O | 50 |
9 | Buffer pH7 solution | 29 |
10 | 1% H2O in THF | 5 |
11 | 5% H2O in THF | 64 |
12 | 10% H2O in THF | 67 |
13 | 15% H2O in THF | 38 |
14 | 20% H2O in THF | 20 |
Entry | Solvent | DAF Yield (%) | ||||
---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | ||
1 | Acetone | 45 | 46 | 44 | 47 | 48 |
2 | 1,4-Dioxane | 90 | 87 | 94 | 89 | 88 |
3 | Ethanol | 0 | 0 | 0 | 0 | 0 |
4 | Ethyl acetate | 96 | 93 | 93 | 87 | 89 |
5 | Ethyl ether | 32 | 44 | 46 | 48 | 54 |
6 | H2O | 0 | 0 | 0 | 0 | 0 |
7 | THF | 89 | 93 | 96 | 95 | 80 |
8 | Vinyl acetate | 68 | 84 | 85 | 90 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.W.; Cho, J.K.; Park, C.; Kim, B.-J. Step-by-Step Hybrid Conversion of Glucose to 5-acetoxymethyl-2-furfural Using Immobilized Enzymes and Cation Exchange Resin. Processes 2022, 10, 2086. https://doi.org/10.3390/pr10102086
Lee KW, Cho JK, Park C, Kim B-J. Step-by-Step Hybrid Conversion of Glucose to 5-acetoxymethyl-2-furfural Using Immobilized Enzymes and Cation Exchange Resin. Processes. 2022; 10(10):2086. https://doi.org/10.3390/pr10102086
Chicago/Turabian StyleLee, Kyung Won, Jin Ku Cho, Chulhwan Park, and Baek-Jin Kim. 2022. "Step-by-Step Hybrid Conversion of Glucose to 5-acetoxymethyl-2-furfural Using Immobilized Enzymes and Cation Exchange Resin" Processes 10, no. 10: 2086. https://doi.org/10.3390/pr10102086
APA StyleLee, K. W., Cho, J. K., Park, C., & Kim, B.-J. (2022). Step-by-Step Hybrid Conversion of Glucose to 5-acetoxymethyl-2-furfural Using Immobilized Enzymes and Cation Exchange Resin. Processes, 10(10), 2086. https://doi.org/10.3390/pr10102086