A Review of Generators and Power Converters for Multi-MW Wind Energy Conversion Systems
Abstract
:1. Introduction
- Multi-MW WT generators for onshore/offshore WTs reported in the literature are discussed in the paper with benchmarks based on technological trends and market penetration.
- A detailed comparative study of WT generators is discussed in Section 3.7, and the commercially available generators for different manufacturers are presented and discussed.
- The future trend for WT generators is discussed (ref Section 4), and the high-power generators under the development stage are also presented.
- In addition, a broad range of power converters employed for multi-MW WT generators is presented in this article, with benchmarks focused on technological and market status.
- A detailed comparative study of the different converters and future trends for power converters are also presented.
2. Wind Energy Conversion Systems
- Basic control functions
- WECS-specific control functions
- Grid services
3. Generators for MW-WECS
3.1. Induction Generator
3.2. Doubly-Fed Induction Generator
- The conventional DFIG requires slip rings and brushes to connect the rotor to the power converter. This produces well-known issues associated with maintenance and robustness.
- The hardware and control systems required to achieve fault-ride-through capability in DFIG-based WECS are relatively complex.
3.2.1. Brushless Doubly-Fed Induction Generator
3.2.2. Brushless Doubly-Fed Reluctance Generator
3.2.3. Brushless Cascade Doubly Fed Induction Generator
3.2.4. Dual-Stator Brushless Doubly-Fed Induction Generator
3.3. Synchronous Generators
3.4. xDFM
3.5. Superconducting Generators
3.5.1. High-Temperature Superconducting Generator
3.5.2. Low-Temperature Superconducting Generator
3.5.3. Magnesium Diboride
3.6. Multi Channel Generator
3.7. Comparison of Multi-MW WECS
4. Recent Trends in Generators
- The HTS generator is one of the promising technologies without using REM. In addition, this technology offers lightweight generators with higher efficiency. At present, AMSC has this HTS generator with a power rating of 10 MW.
- The theoretical analysis has been conducted between ferrite magnet-based synchronous generators with conventional PMSG for 6 MW WT with the same stator design [91]. This study concludes that both generators are almost similar in terms of energy cost. However, optimizing the ferrite PMSG would be the alternative for neodymium iron boron-based PMSG (this solution is appropriate when the price of neodymium iron boron is increased continuously).
- REM can be replaced by double excitation [85]. In addition, the radial flux machines have the better option for DD WTs.
5. Power Converter Topologies for Multi-MW WECS
5.1. Parallel Two Level Back-to-Back Converter with Common and Individual dc-Link
5.2. Current Source Back-to-Back Converter
5.3. Neutral Point Clamped Back-to-Back Converter
5.4. Trends in Power Converters for Multi-MW WECSs
5.4.1. Modular Multilevel Back-to-Back Converters
5.4.2. Modular Multilevel Matrix Converter
5.4.3. Hexverter
5.4.4. Shunt Series Modular Multilevel Converter
5.4.5. Comparison of Different Converter Topology
6. Conclusions
- The DD PMSGs are highly preferable generators for high-power WECSs, whereas these generators are associated with REM, which could increase the cost, size and mass of the generators.
- The HTS generators can lead to the most significant weight and size reductions. However, the initial cost of this technology is still an issue to solve before reaching a higher technology readiness level.
- The LTS and MgB superconducting generators are under conceptual level. Therefore, there is an opportunity to explore these generators for the high-power wind industry.
- Currently, low-voltage power converters are highly dominating the wind industry. However, the reliability of those converters is a critical issue, and it needs to be addressed in future.
- This study suggests that MMC converters, such as Hexverter and MC, could be an appropriate future solution for WTs above 10 MW operating at the MV level as these converters have high power density, fault tolerance, modularity and high power quality.
- The HTS generator is the alternative solution to replace DFIG and PMSG [16]. However, the superconducting generators are still in the process of concept level. Currently, the AMSC manufactures the HTS generator, and replacing HTS with MgB could reduce the total cost [70]. Therefore, further studies are needed in this area to expand superconducting generators.
- WECS downtime is strongly dependent on power converter failures. Therefore, the reliability of power converters is a challenging area for future research, and medium-voltage power converters could improve the reliability issues.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Painuly, J.P.; Wohlgemuth, N. Chapter 18—Renewable energy technologies: Barriers and policy implications. In Renewable-Energy-Driven Future; Ren, J., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 539–562. [Google Scholar] [CrossRef]
- INERA. Renewable Energy Statistics 2021 The International Renewable Energy Agency. 2021. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 5 August 2021).
- IEA. Renewables 2021, IEA. 2021. Available online: https://www.iea.org/reports/renewables-2021 (accessed on 1 December 2021).
- GWEC. Global Wind Turbine Supplier Ranking for 2020. 2021. Available online: https://gwec.net/gwec-releases-global-wind-turbine-supplier-ranking-for-2020/ (accessed on 10 March 2022.).
- WWEA. World Wide Energy Association. 2020. Available online: https://wwindea.org/worldwide-wind-capacity-reaches-744-gigawatts/ (accessed on 30 March 2022).
- Global Wind Energy Council. GWEC|Global Wind Report 2021; Global Wind Energy Council: Brussels, Belgium, 2021. [Google Scholar]
- Cozzi, L.; Gould, T.; Bouckart, S.; Crow, D.; Kim, T.; Mcglade, C.; Olejarnik, P.; Wanner, B.; Wetzel, D. World Energy Outlook 2020. 2020, volume 2050, pp. 1–461. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 10 October 2021).
- Richardson, R.; McNerney, G. Wind energy systems. Proc. IEEE 1993, 81, 378–389. [Google Scholar] [CrossRef]
- Musial, W.; Spitsen, P.; Beiter, P.; Duffy, P.; Marquis, M.; Cooperman, A.; Hammond, R.; Shields, M. Offshore Wind Market Report 2021. Available online: https://www.energy.gov/sites/default/files/2021-08/Offshore%20Wind%20Market%20Report%202021%20Edition_Final.pdf (accessed on 2 October 2022).
- Durakovic, A. MingYang Launches 16 MW Offshore Wind Turbine. 2021. Available online: http://www.offshorewind.biz/2021/08/20/mingyang-launches-16-mw-offshore-wind-turbine/ (accessed on 20 August 2021).
- Khan, M.; Saleh, S.; Rahman, M. Generation and harmonics in interior permanent magnet wind generator. In Proceedings of the 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 3–6 May 2009; pp. 17–23. [Google Scholar] [CrossRef]
- Shourangiz-Haghighi, A.; Diazd, M.; Zhang, Y.; Li, J.; Yuan, Y.; Faraji, R.; Ding, L.; Guerrero, J.M. Developing More Efficient Wind Turbines: A Survey of Control Challenges and Opportunities. IEEE Ind. Electron. Mag. 2020, 14, 53–64. [Google Scholar] [CrossRef]
- Yaramasu, V. Predictive Control of Multilevel Converters for Megawatt Wind Energy Conversion Systems. Ph.D. Thesis, Electrical and Computer Engineering, Ryerson University Toronto, ON, Canada, 2014. [Google Scholar]
- Hansen, L.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Sørensen, P.; Bak-Jensen, B. Conceptual Survey of Generators and Power Electronics for Wind Turbines; Number 1205(EN) in Technical Report, Riso National Laboratory: Roskilde, Denmark, 2002; p. RISO-R-1205(EN). ISBN 87-550-2743-1. [Google Scholar]
- Peng, X.; Liu, Z.; Jiang, D. A review of multiphase energy conversion in wind power generation. Renew. Sustain. Energy Rev. 2021, 147, 1–14. [Google Scholar] [CrossRef]
- Goudarzi, N.; Zhu, W. A review of the development of wind turbine generators across the world. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Houston, TX, USA, 9–15 November 2012; Volume 45202, pp. 1257–1265. [Google Scholar]
- Cheng, M.; Zhu, Y. The state of the art of wind energy conversion systems and technologies: A review. Energy Convers. Manag. 2014, 88, 332–347. [Google Scholar] [CrossRef]
- Sawant, M.; Thakare, S.; Rao, A.P.; Feijóo-Lorenzo, A.E.; Bokde, N.D. A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics. Energies 2021, 14, 2041. [Google Scholar] [CrossRef]
- Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.K.; Orchard, M.E.; Saif, M. Critical Wind Turbine Components Prognostics: A Comprehensive Review. IEEE Trans. Instrum. Meas. 2020, 69, 9306–9328. [Google Scholar] [CrossRef]
- Ameur, A.; Loudiyi, K.; Aggour, M. Steady State and Dynamic Analysis of Renewable Energy Integration into the Grid using PSS/E Software. Energy Procedia 2017, 141, 119–125. [Google Scholar] [CrossRef]
- Mohapatra, G. Renewable Energy Interconnection and Compliance—An Australian Perspective. Destech Trans. Environ. Energy Earth Sci. 2016. [Google Scholar] [CrossRef]
- Wang, L.; Vo, Q.S.; Hsieh, M.H.; Ke, S.C.; Kuan, B.L.; Lu, X.Y.; Prokhorov, A.V. Transient stability analysis of Taiwan Power System’s power grid connected with a high-capacity offshore wind farm. In Proceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017—ECCE Asia), Kaohsiung, Taiwan, 3–7 June 2017; pp. 585–590. [Google Scholar] [CrossRef]
- Yaramasu, V.; Wu, B.; Sen, P.C.; Kouro, S.; Narimani, M. High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proc. IEEE 2015, 103, 740–788. [Google Scholar] [CrossRef]
- Gashi, A.; Kabashi, G.; Kabashi, S.; Ahmetaj, S.; Veliu, V. Simulation the Wind Grid Code Requirements for Wind Farms Connection in Kosovo Transmission Grid. Energy Power Eng. 2012, 4, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Yaramasu, V.; Dekka, A.; Durán, M.J.; Kouro, S.; Wu, B. PMSG-based wind energy conversion systems: Survey on power converters and controls. IET Electr. Power Appl. 2017, 11, 956–968. [Google Scholar] [CrossRef]
- Apata, O.; Oyedokun, D. An overview of control techniques for wind turbine systems. Sci. Afr. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Rajendran, S.; Diaz, M.; Chavez, H.; Cruchaga, M.; Castillo, E. Terminal Synergetic Control for Variable Speed Wind Turbine Using a Two Mass Model. In Proceedings of the 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaíso, Chile, 6–9 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Novaes Menezes, E.J.; Araújo, A.M.; Bouchonneau da Silva, N.S. A review on wind turbine control and its associated methods. J. Clean. Prod. 2018, 174, 945–953. [Google Scholar] [CrossRef]
- Njiri, J.G.; Söffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 2016, 60, 377–393. [Google Scholar] [CrossRef]
- Moghadasi, A.; Sarwat, A.; Guerrero, J.M. A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators. Renew. Sustain. Energy Rev. 2016, 55, 823–839. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, R.; Díaz, M.; Rojas, F.; Clare, J.; Wheeler, P. Resonant control system for low-voltage ride-through in wind energy conversion systems. IET Power Electron. 2016, 9, 1297–1305. [Google Scholar] [CrossRef]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Van de Vyver, J.; De Kooning, J.D.M.; Meersman, B.; Vandevelde, L.; Vandoorn, T.L. Droop Control as an Alternative Inertial Response Strategy for the Synthetic Inertia on Wind Turbines. IEEE Trans. Power Syst. 2016, 31, 1129–1138. [Google Scholar] [CrossRef]
- Ganzel, S.; Gierschner, M.; Ritschel, U. Synthetic inertia control in the generator-side converter control of a grid-connected PMSG wind turbine. In Proceedings of the 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark, 9–12 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Liserre, M.; Cárdenas, R.; Molinas, M.; Rodriguez, J. Overview of Multi-MW Wind Turbines and Wind Parks. IEEE Trans. Ind. Electron. 2011, 58, 1081–1095. [Google Scholar] [CrossRef]
- Cardenas, R.; Pena, R.; Alepuz, S.; Asher, G. Overview of Control Systems for the Operation of DFIGs in Wind Energy Applications. IEEE Trans. Ind. Electron. 2013, 60, 2776–2798. [Google Scholar] [CrossRef]
- Polinder, H. Overview of and trends in wind turbine generator systems. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Polinder, H.; Ferreira, J.A.; Jensen, B.B.; Abrahamsen, A.B.; Atallah, K.; McMahon, R.A. Trends in Wind Turbine Generator Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 174–185. [Google Scholar] [CrossRef]
- Polinder, H.; van der Pijl, F.; de Vilder, G.J.; Tavner, P. Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy Convers. 2006, 21, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Delli Colli, V.; Marignetti, F.; Attaianese, C. Analytical and Multiphysics Approach to the Optimal Design of a 10-MW DFIG for Direct-Drive Wind Turbines. IEEE Trans. Ind. Electron. 2012, 59, 2791–2799. [Google Scholar] [CrossRef]
- Iov, F.; Teodorescu, R.; Blaabjerg, F.; Andresen, B.; Birk, J.; Miranda, J. Grid code compliance of grid-side converter in wind turbine systems. In Proceedings of the 2006 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–7. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Ma, K. Future on Power Electronics for Wind Turbine Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 139–152. [Google Scholar] [CrossRef]
- Long, T.; Shao, S.; Malliband, P.; Abdi, E.; McMahon, R.A. Crowbarless Fault Ride-Through of the Brushless Doubly Fed Induction Generator in a Wind Turbine Under Symmetrical Voltage Dips. IEEE Trans. Ind. Electron. 2013, 60, 2833–2841. [Google Scholar] [CrossRef]
- Yassin, E.F.; Yassin, H.M.; Hemeida, A.; Hallouda, M.M.; Yassin, Emad F. Real Time Simulation of Brushless Doubly Fed Reluctance Generator Driven Wind Turbine Considering Iron Saturation. IEEE Access. 2022, 10, 9925–9934. [Google Scholar] [CrossRef]
- Ademi, S.; Jovanović, M.G.; Hasan, M. Control of Brushless Doubly-Fed Reluctance Generators for Wind Energy Conversion Systems. IEEE Trans. Energy Convers. 2015, 30, 596–604. [Google Scholar] [CrossRef]
- Tohidi, S.; Tavner, P.; McMahon, R.; Oraee, H.; Zolghadri, M.R.; Shao, S.; Abdi, E. Low voltage ride-through of DFIG and brushless DFIG: Similarities and differences. Electric Power Systems Research. 2014, 110, 0378–7796. [Google Scholar] [CrossRef]
- Gowaid, I.A.; Abdel-Khalik, A.S.; Massoud, A.M.; Ahmed, S. Ride-Through Capability of Grid-Connected Brushless Cascade DFIG Wind Turbines in Faulty Grid Conditions—A Comparative Study. IEEE Trans. Sustain. Energy 2013, 4, 1002–1015. [Google Scholar] [CrossRef]
- Cheng, M.; Wei, X.; Han, P.; Zhu, Y.; Chen, Z. Modeling and control of a novel dual-stator brushless doubly-fed wind power generation system. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 3029–3035. [Google Scholar] [CrossRef]
- Han, P.; Cheng, M.; Wei, X.; Li, N. Modeling and Performance Analysis of a Dual-Stator Brushless Doubly Fed Induction Machine Based on Spiral Vector Theory. IEEE Trans. Ind. Appl. 2016, 52, 1380–1389. [Google Scholar] [CrossRef]
- Ding, K. The Rare Earth Magnet Industry and Rare Earth Price in China. EPJ Web Conf. 2014, 75, 04005. [Google Scholar] [CrossRef]
- Dehlinger, N. Étude des Performances d’une Machine à Flux Transverse à Noyaux Ferromagnétiques Amorphes. Ph.D. Thesis, Université Laval, Quebec, QC, Canada, 2007. [Google Scholar]
- Bang, D.; Polinder, H.; Shrestha, G.; Ferreira, J.A. Review of generator systems for direct-drive wind turbines. In Proceedings of the European Wind Energy Conference & Exhibition, Brussels, Belgium, 31 March – 3 April 2008; Volume 31, pp. 1–11. [Google Scholar]
- Svechkarenko, D. On Analytical Modeling and Design of a Novel Transverse Flux Generator for Offshore Wind Turbines. Ph.D. Thesis, KTH, Stockholm, Sweden, 2007. [Google Scholar]
- Economics, T. Neodymium. 2021. Available online: http:https://tradingeconomics.com/commodity/neodymium (accessed on 10 April 2022).
- Ingeteam. INDAR DFIG Series. 2017. Available online: https://www.ingeteam.com/indar/en-us/electric-generators/wind-generators/pc30_10_186/indar-dfig-series.aspx (accessed on 15 April 2022).
- Qu, R.; Liu, Y.; Wang, J. Review of Superconducting Generator Topologies for Direct-Drive Wind Turbines. IEEE Trans. Appl. Supercond. 2013, 23, 5201108. [Google Scholar] [CrossRef]
- Karmaker, H.; Ho, M.; Kulkarni, D. Comparison between Different Design Topologies for Multi-Megawatt Direct Drive Wind Generators Using Improved Second Generation High Temperature Superconductors. IEEE Trans. Appl. Supercond. 2015, 25, 1–5. [Google Scholar] [CrossRef]
- Yang, Y.; Duan, S.; Ren, Y.; Jiang, Y.; Feng, L.; Zhang, X.; Chai, H.; Kuang, M.; Wu, J.; Yang, X.; et al. Design and Development of a Cryogen-Free Superconducting Prototype Generator With YBCO Field Windings. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Keysan, O. Application of high-temperature superconducting machines to direct drive renewable energy systems. In Electrical Drives for Direct Drive Renewable Energy Systems; Mueller, M., Polinder, H., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2013; pp. 219–252. [Google Scholar] [CrossRef]
- Maples, B.; Hand, M.; Musial, W. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010. [Google Scholar]
- Suprapower. Uprapower (EU) Project. 2016. Available online: https://cordis.europa.eu/project/id/308793 (accessed on 10 March 2022).
- Sung, H.J.; Badcock, R.A.; Jiang, Z.; Choi, J.; Park, M.; Yu, I.K. Design and Heat Load Analysis of a 12 MW HTS Wind Power Generator Module Employing a Brushless HTS Exciter. IEEE Trans. Appl. Supercond. 2016, 26, 1–4. [Google Scholar] [CrossRef]
- Karmaker, H.; Chen, E. Design concepts for a direct drive wind generator using new superconductors. In Proceedings of the 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, 26–28 October 2015; pp. 22–25. [Google Scholar] [CrossRef]
- Wang, J.; Qu, R.; Tang, Y.; Liu, Y.; Zhang, B.; He, J.; Zhu, Z.; Fang, H.; Su, L. Design of a Superconducting Synchronous Generator With LTS Field Windings for 12 MW Offshore Direct-Drive Wind Turbines. IEEE Trans. Ind. Electron. 2016, 63, 1618–1628. [Google Scholar] [CrossRef]
- Research, G.E. High Efficiency Ultra-Light Superconducting Generator. 2019. Available online: https://www.energy.gov/sites/default/files/2021-08/CX-024181.pdf (accessed on 14 July 2021).
- Evangelous Trifon Laskaris, LaskarisKiruba Sivasubramaniam Method and Apparatus for a Superconducting Generator Driven by a Wind Turbine. US Patent 7,821,164 B2, 26 October 2010.
- Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J.M.; Tropeano, M.; Sun, J.; Canosa, T. Lightweight MgB2 superconducting 10 MW wind generator. Supercond. Sci. Technol. 2015, 29, 024005. [Google Scholar] [CrossRef]
- Hoang, T.K.; Quéval, L.; Berriaud, C.; Vido, L. Design of a 20-MW Fully Superconducting Wind Turbine Generator to Minimize the Levelized Cost of Energy. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Liu, D.; Polinder, H.; Abrahamsen, A.B.; Ferreira, J.A. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines: Cost of Energy Based. IEEE Trans. Appl. Supercond. 2017, 27, 1–7. [Google Scholar] [CrossRef]
- Wolmarans, J.; Gerber, M.; Polinder, H.; de Haan, S.; Ferreira, J.; Clarenbach, D. A 50 kW integrated fault tolerant permanent magnet machine and motor drive. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 345–351. [Google Scholar] [CrossRef]
- Andresen, B.; Birk, J. A high power density converter system for the Gamesa G10x 4,5 MW wind turbine. In Proceedings of the 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 2–5 September 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z. Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2008, 2, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Amirat, Y.; Benbouzid, M.; Bensaker, B.; Wamkeue, R. The state of the art of generators for wind energy conversion systems. Electromotion 2007, 14, 163–172. [Google Scholar]
- Ameli, M.T.; Moslehpour, S.; Mirzaie, A. Feasibility study for replacing asynchronous generators with synchronous generators in wind farm power stations. In Proceedings of the International Conference on Engineering & Technology, Nashville, TN, USA, 17–19 November 2008. [Google Scholar]
- Bang, D.j.; Polinder, H.; Shrestha, G.; Ferreira, J.A. Promising Direct-Drive Generator System for Large Wind Turbines. In Proceedings of the 2008 Wind Power to the Grid—EPE Wind Energy Chapter 1st Seminar, Delft, The Netherlands, 27–28 March 2008; pp. 1–10. [Google Scholar] [CrossRef]
- Duan, Y.; Harley, R.G. Present and future trends in wind turbine generator designs. In Proceedings of the 2009 IEEE Power Electronics and Machines in Wind Applications, Lincoln, NE, USA, 24–26 June 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Semken, R.S.; Polikarpova, M.; Röyttä, P.; Alexandrova, J.; Pyrhönen, J.; Nerg, J.; Mikkola, A.; Backman, J. Direct-drive permanent magnet generators for high-power wind turbines: Benefits and limiting factors. IET Renew. Power Genern. 2012, 6, 1–8. [Google Scholar] [CrossRef]
- Patil, N.S.; Bhosle, Y.N. A review on wind turbine generator topologies. In Proceedings of the 2013 International Conference on Power, Energy and Control (ICPEC), Dindigul, India, 6–8 February 2013; pp. 625–629. [Google Scholar] [CrossRef]
- Strous, T.D.; Polinder, H.; Ferreira, J.A. Brushless doubly-fed induction machines for wind turbines: Developments and research challenges. IET Electr. Power Appl. 2017, 11, 991–1000. [Google Scholar] [CrossRef]
- Prashanth, N.; Sujatha, P. Commonly Used Wind Generator Systems: A Comparison Note. Indones. J. Electr. Eng. Comput. Sci. 2017, 7, 299–311. [Google Scholar] [CrossRef]
- Liu, D.; Polinder, H.; Abrahamsen, A.B.; Ferreira, J.A. Potential of Partially Superconducting Generators for Large Direct-Drive Wind Turbines. IEEE Trans. Appl. Supercond. 2017, 27, 1–11. [Google Scholar] [CrossRef]
- Bensalah, A.; Benhamida, M.; Barakat, G.; Amara, Y. Large wind turbine generators: State-of-the-art review. In Proceedings of the 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018; pp. 2205–2211. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Nejad, A.R. Evaluation of PMSG-based drivetrain technologies for 10-MW floating offshore wind turbines: Pros and cons in a life cycle perspective. Wind Energy 2020, 23, 1542–1563. [Google Scholar] [CrossRef]
- Bensalah, A.; Barakat, G.; Amara, Y. Electrical Generators for Large Wind Turbine: Trends and Challenges. Energies 2022, 15, 6700. [Google Scholar] [CrossRef]
- Faulstich, S.; Hahn, B.; Tavner, P.J. Wind turbine downtime and its importance for offshore deployment. Wind Energy 2011, 14, 327–337. [Google Scholar] [CrossRef]
- Dubois, M.; Polinder, H.; Ferreira, J. Comparison of generator topologies for direct-drive wind turbines. In Proceedings of the 2000 Nordic Countries Power and Industrial Electronics Conference, Aalborg, Denmark, 13–16 June 2000; pp. 22–26. [Google Scholar]
- Keysan, O. Future electrical generator technologies for offshore wind turbines. Eng. Technol. Ref. 2014, 1, 1–14. [Google Scholar] [CrossRef]
- The Portal of Wind Turbine Models. Wind Turbine. 2022. Available online: https://en.wind-turbine-models.com/turbines (accessed on 24 October 2022).
- Turbine List. Wind Turbine and Wind Farm Database. 2022. Available online: http://www.thewindpower.net (accessed on 24 October 2022).
- Bhuiyan, N.A.; McDonald, A. Assessment of the suitability of ferrite magnet excited synchronous generators for offshore wind turbines. In Proceedings of the EWEA Offshore 2015, Copenhagen, Denmark, 17–20 November 2015. [Google Scholar]
- Yaramasu, V.; Wu, B. Predictive Control of a Three-Level Boost Converter and an NPC Inverter for High-Power PMSG-Based Medium Voltage Wind Energy Conversion Systems. IEEE Trans. Power Electron. 2014, 29, 5308–5322. [Google Scholar] [CrossRef]
- Chinchilla, M.; Arnaltes, S.; Burgos, J. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Trans. Energy Convers. 2006, 21, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Geng, H.; Xu, D.; Wu, B.; Yang, G. Active Damping for PMSG-Based WECS With DC-Link Current Estimation. IEEE Trans. Ind. Electron. 2011, 58, 1110–1119. [Google Scholar] [CrossRef]
- Xu, Z.; Li, R.; Zhu, H.; Xu, D.; Zhang, C.H. Control of Parallel Multiple Converters for Direct-Drive Permanent-Magnet Wind Power Generation Systems. IEEE Trans. Power Electron. 2012, 27, 1259–1270. [Google Scholar] [CrossRef]
- Song, Y.; Wang, B. Survey on Reliability of Power Electronic Systems. IEEE Trans. Power Electron. 2013, 28, 591–604. [Google Scholar] [CrossRef]
- Dai, J.; Xu, D.; Wu, B. A Novel Control Scheme for Current-Source-Converter-Based PMSG Wind Energy Conversion Systems. IEEE Trans. Power Electron. 2009, 24, 963–972. [Google Scholar] [CrossRef]
- Lang, Y.; Wu, B.; Zargari, N. A Novel Reactive Power Control Scheme for CSC Based PMSG Wind Energy System. In Proceedings of the 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 5–9 October 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, B.; Pontt, J.; Rodriguez, J.; Bernet, S.; Kouro, S. Current-Source Converter and Cycloconverter Topologies for Industrial Medium-Voltage Drives. IEEE Trans. Ind. Electron. 2008, 55, 2786–2797. [Google Scholar] [CrossRef]
- Yazdani, A.; Iravani, R. A neutral-point clamped converter system for direct-drive variable-speed wind power unit. IEEE Trans. Energy Convers. 2006, 21, 596–607. [Google Scholar] [CrossRef]
- Schmitt, B.; Sommer, R. Retrofit of fixed speed induction motors with medium voltage drive converters using NPC three-level inverter high-voltage IGBT based topology. In Proceedings of the ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570), Pusan, Korea, 12–16 June 2001; Volume 2, pp. 746–751. [Google Scholar] [CrossRef]
- Helle, L.; Munk-Nielsen, S. Comparison of converter efficiency in large variable speed wind turbines. In Proceedings of the APEC 2001 Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), Anaheim, CA, USA, 4–8 March 2001; Volume 1, pp. 628–634. [Google Scholar] [CrossRef]
- Zhang, Z.; Hackl, C.M.; Kennel, R. Computationally Efficient DMPC for Three-Level NPC Back-to-Back Converters in Wind Turbine Systems With PMSG. IEEE Trans. Power Electron. 2017, 32, 8018–8034. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Al-Akayshee, M. A Reliable Medium-Voltage High-Power Conversion System for MWs Wind Turbines. IEEE Trans. Sustain. Energy 2020, 11, 859–867. [Google Scholar] [CrossRef]
- ABB, Medium Voltage Wind Turbine Converter PCS6000. 2022. Available online: https://new.abb.com/power-converters-inverters/wind-turbines/utility-scale/pcs6000 (accessed on 24 October 2022).
- ABB, Low Voltage Wind Turbine Converter ACS8000. 2022. Available online: https://new.abb.com/power-converters-inverters/wind-turbines/utility-scale/acs800 (accessed on 24 October 2022).
- Ingeteam Wind Converters. 2022. Available online: https://www.ingeteam.com/cl/es-cl/convertidores-de-frecuencia-e-inversores/energia-eolica/pc28322/convertidores.aspx (accessed on 24 October 2022).
- Siemens Energy HVDC Plus. 2022. Available online: https://www.siemens-energy.com/global/en/offerings/power-transmission/portfolio/high-voltage-direct-current-transmission-solutions/hvdc-plus.html (accessed on 24 October 2022).
- Perez, M.A.; Rodriguez, J.; Fuentes, E.J.; Kammerer, F. Predictive Control of AC–AC Modular Multilevel Converters. IEEE Trans. Ind. Electron. 2012, 59, 2832–2839. [Google Scholar] [CrossRef]
- Kawamura, W.; Akagi, H. Control of the modular multilevel cascade converter based on triple-star bridge-cells (MMCC-TSBC) for motor drives. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 3506–3513. [Google Scholar] [CrossRef]
- Davies, M.; Dommaschk, M.; Dorn, J.; Lang, J.; Retzmann, D.; Soerangr, D. HVDC PLUS-basics and principle of operation. Siemens Ag 2008, 1–24. [Google Scholar]
- Novakovic, B.; Nasiri, A. Modular Multilevel Converter for Wind Energy Storage Applications. IEEE Trans. Ind. Electron. 2017, 64, 8867–8876. [Google Scholar] [CrossRef]
- Nakanishi, T.; Orikawa, K.; Itoh, J.i. Modular Multilevel Converter for wind power generation system connected to micro-grid. In Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 653–658. [Google Scholar] [CrossRef]
- Diaz, M.; Cardenas, R.; Espinoza, M.; Rojas, F.; Mora, A.; Clare, J.C.; Wheeler, P. Control of Wind Energy Conversion Systems Based on the Modular Multilevel Matrix Converter. IEEE Trans. Ind. Electron. 2017, 64, 8799–8810. [Google Scholar] [CrossRef]
- Melendez, C.; Diaz, M.; Cerda, S.; Rojas, F.; Chavez, H. Frequency Support Control of a Modular Multilevel Matrix Converter based Wind Energy Conversion System. In Proceedings of the 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), Concepcion, Chile, 17–19 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Angkititrakul, S.; Erickson, R. Capacitor voltage balancing control for a modular matrix converter. In Proceedings of the Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC ’06, Dallas, TX, USA, 19–23 March 2006; pp. 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- Erickson, R.; Al-Naseem, O. A new family of matrix converters. In Proceedings of the IECON’01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243), Denver, CO, USA, 29 November–2 December 2001; Volume 2, pp. 1515–1520. [Google Scholar] [CrossRef]
- Diaz, M.; Cárdenas, R.; Espinoza, M.; Mora, A.; Wheeler, P. Modelling and control of the Modular Multilevel Matrix Converter and its application to Wind Energy Conversion Systems. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 5052–5057. [Google Scholar] [CrossRef]
- Okazaki, Y.; Kawamura, W.; Hagiwara, M.; Akagi, H.; Ishida, T.; Tsukakoshi, M.; Nakamura, R. Which is more suitable for MMCC-based medium-voltage motor drives, a DSCC inverter or a TSBC converter? In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 1053–1060. [Google Scholar] [CrossRef]
- Thitichaiworakorn, N.; Hagiwara, M.; Akagi, H. A Medium-Voltage Large Wind Turbine Generation System Using an AC/AC Modular Multilevel Cascade Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 534–546. [Google Scholar] [CrossRef]
- Kammerer, F.; Gommeringer, M.; Kolb, J.; Braun, M. Benefits of Operating Doubly Fed Induction Generators by Modular Multilevel Matrix Converters. In Proceedings of the PCIM EUROPE 2013—International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany 14–16 May 2013. [Google Scholar]
- Rong, F.; Yan, J.; Sun, W.; Huang, S.; Wu, Q. Control strategy of wind energy conversion system based on H-MMC under asymmetrical grid faults. IET Power Electron. 2019, 12, 3149–3157. [Google Scholar] [CrossRef]
- Pizarro, P.; Diaz, M.; Rojas, F.; Espinoza, M.; Tarisciotti, L.; Gomis-Bellmunt, O. A decoupled control strategy for a shunt-series modular multilevel converter in wind energy conversion system applications. In Proceedings of the 2021 IEEE International Conference on Automation/24th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2021, Valparaíso, Chile, 22–26 March 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Diaz, M.; Cárdenas Dobson, R.; Ibaceta, E.; Mora, A.; Urrutia, M.; Espinoza, M.; Rojas, F.; Wheeler, P. An Overview of Applications of the Modular Multilevel Matrix Converter. Energies 2020, 13, 5546. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, X. An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems. Processes 2021, 9, 300. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Liserre, M.; Ma, K. Power Electronics Converters for Wind Turbine Systems. IEEE Trans. Ind. Appl. 2012, 48, 708–719. [Google Scholar] [CrossRef]
Generator | Gear Box Type | Advantages | Disadvantage | Comments |
---|---|---|---|---|
DFIG | 1G and 3G |
|
|
|
Brushless DFIG | Medium speed |
|
|
|
Synchronous Generator | Direct Drive |
|
| – |
PM generator | Direct Drive |
|
|
|
High temperature superconducting | Direct Drive |
|
|
|
Manufacture | Model | Generator Type | Gear Box | Power (MW)/Rotor Diameter (m)/Speed (rpm)/Voltage (kV) | Onshore or Offshore | Commercial Status |
---|---|---|---|---|---|---|
DFIG Manufacture | ||||||
Sinovel, China | SL6000/128 SL6000/155 | DFIG | 1-Stage and 2-Stage Planetary | 6MW/128/1200/6.3 | Onshore | Available |
United Power | UP6000-136 | DFIG | – | 6 MW/136/–/6.6 | Onshore | Available |
Senvion | 6.2M126 | DFIG | – | 6.15 MW/126/1170/33 | Onshore | Available |
REpower | 6.2M152 | DFIG | planetary | 6.2 MW/152/–/– | – | Available |
Ingeteam | – | DFIG | 3-Stage | 9 MW/ | Both | Available |
HTS Manufacture | ||||||
AMSC, USA | wt10000dd | HTS (cryogenic and water cooling) | DD | 10 MW/190/10/12 | Offshore | Available |
EESG Manufacture | ||||||
Enercon | E-126 7.580 | EESG | DD | 7.5 MW/127/12/0.69 | Onshore | Available |
Aerodyn | SCD 8.0 MW | EESG | DD | 8 MW/168/–/– | – | – |
SG Manufacture | ||||||
Aerodyn, Germany | aerodyn aM 6.0/139 | ASG / PMSG | – | 6MW/139/–/3.3 | – | – |
aerodyn SCD 8.0/168 | Synchronous | Planetary | 8 MW/168/308/– | Both | – | |
aerodyn SCD nezzy2 twin-rotor | synchronous with brushless electrical field excitation | two-stage planetary gearbox with flex pins | 15 MW/150/– | Both | 2022 | |
aerodyn SCD 8.0/168 | synchronous (electrically excited) | Planetary | 8 MW/168/– | – | – |
Manufacture | Model | Generator Type | Gear Box | Power (MW)/Rotor Diameter (m)/Speed (rpm)/Voltage (kV) | Onshore or Offshore | Commercial Status |
---|---|---|---|---|---|---|
PMSG Manufacture | ||||||
Ingeteam | – | PMSG | DD/1G/3G | 9 MW/– | Both | Available |
Siemens Gamesa | SWT-7.0-154 | PMSG | DD | 7 MW/154/– | Offshore | Available |
SWT-7.0-154 | PMSG | DD | 7 MW/154/– | Offshore | Available | |
SWT-6.0-154 | PMSG | DD | 6 MW/154/– | Offshore | Available | |
SG 10.0-193 | PMSG | DD | 10 MW/193/– | Offshore | Available | |
SG14-222 | PMSG | DD | 14 MW/222/– | Offshore | Under development (2024) | |
SG 11.0-200 | PMSG | DD | 11 MW/200/– | Offshore | Under development (2022) | |
MHI Vestas Offshore, Denmark | V174-9.5 MW | PMSG | Geared (1:41) | 9.5 MW/174/400/– | Both | Available |
V164-8.0 MW | PMSG | planetary | 8 MW/164/500/30 | Both | Available | |
V164-8.3 MW | PMSG | planetary | 8 MW/164/500/66 | Both | – | |
V164-8.8 MW | PMSG | planetary | 8.8 MW/164/500/30 | Both | Available | |
V164-10 MW | PMSG | Geared (1:41) | 10 MW/167 | Both | – | |
Swiss Electric, China | YZ127/6.0 YZ140/6.0 YZ160/6.0 | PMSG | DD | 6MW/150/12/3 6MW/170/12/3 6MW/190/12/3 | Both | – |
YZ150/10.0 YZ170/10.0 YZ190/10.0 | PMSG | DD | 10MW/127/12/3 10MW/140/12/3 10MW/160/12/3 | Both | – | |
General Electric | Haliade-X 12 MW | PMSG | DD | 12 MW/220/–/6.6 | – | Available |
Haliade-X 13 MW | PMSG | DD | 13 MW/220/–/6.6 | – | 2023 | |
Haliade150-6 MW | PMSG | DD | 6 MW/151/11.5/0.9 | – | Available | |
Goldwind | GW184-6.45 MW | PMSG | DD | 6.5 MW/184/–/ | – | Available |
GW175-8 MW | PMSG | DD | 8 MW/175/–/ | – | Available | |
MingYang, China | MySE6.45-180 | PMSG | medium-speed gearbox | 6.45 MW/178/ | Offshore | Available |
MySE7.25-158 | PMSG | medium-speed gearbox | 7 MW/158/ | Offshore | Available | |
MySE8.3-180 | PMSG | medium-speed gearbox | 8.3 MW/178/ | Offshore | Available | |
CSIC, China | MH152-6.2 | PMSG | – | 6.2 MW/152/–/– | Both | – |
Bewind | BW 6.xM172 | PMSG | 2-stage gearbox | 6 MW/172/–/– | Offshore | Available |
Dongfang, China | D10000-185 | PMSG | DD | 10 MW/185/10/12 | Both | – |
D10000-185 | PMSG | DD | 11 MW/185/10/12 | Both | – | |
D8000-185 | PMSG | DD | 8 MW/185/–/– | Both | – | |
D7000-186 | PMSG | DD | 7 MW/186/–/– | Both | – | |
Samsung | S7.0-171 | PMSG | planet flexpin | 7 MW/171.2/400/3.3 | Both | – |
Sewind, Shanghai | El.W8000-167 | PMSG | DD | 8 MW/167/12/069 | Both | – |
Manufacture | Model | Generator Type | Gear Box | Power (MW)/Rotor Diameter (m)/Speed (rpm)/Voltage (kV) | Onshore or Offshore | Commercial Status |
---|---|---|---|---|---|---|
Siemens Gamesa | SG14-222 | PMSG | DD | 14 MW/222/– | Offshore | 2024 |
General Electric | Haliade-X 14 MW | PMSG | DD | 14 MW/220/11.5/6.6 | – | 2023 |
MingYang, China | MySE16.0-242 | PMSG | medium-speed gearbox | 16 MW/242/ | Offshore | 2024 |
Bewind | BW 14.xM225 | PMSG | 2-stage gearbox | 14 MW/225/–/– | Offshore | – |
Vestas | V236-15.0 MW | PMSG | medium speed gearbox | 15 MW/236/–/– | Offshore | second half of 2022 |
Commercial Model | Converter Type | Power Rating | Nominal Voltage | Semiconductor Type |
---|---|---|---|---|
PCS6000 | NPC BTB | 4–12 MW | 3.3 kV | IGCTs |
ACS800-87LC | 2L BTB | 1.5–6 MW | 525–690 V | LV-IGBTs |
ACS880-87LC | 2L BTB | 1.5–8 MW | – | LV-IGBTs |
SINAMICS W180 | Parallel 2L BTB | 2 to 10 MW | 690 V | LV-IGBTs |
DFIG 500-5000 | 2L BTB | 2 MW–5 MW | 690 V | LV-IGBTs |
FC LV 100-10000 | 2L BTB | 2 MW–5 MW | 690 V | LV-IGBTs |
FC MV 3000-15000 | NPC | 7.5–15 MW | 3000 V | HV-IGBTs |
INGECON WIND MV100 | NPC BTB | 5–15 MW | 3.3 kV | HV-IGBTs |
Siemesns HVDC plus | MC | – | 13.2–13.8 kV | HV-IGBTs |
Parameters | Parallel 2L BTB Converter | Neutral-Point Clamped BTB Converter | Current Source BTB Converter | MC | Hexverter | MC |
---|---|---|---|---|---|---|
Power rating | 0.75–6 MW | 3–8 MW | 3–10 MW | 10 MW and above | 10 MW and above | 10 MW and above |
Typical Voltage | LV | LV | LV | LV and MV | LV and MV | LV and MV |
Technology Status | Well Established | Well Established | Research Only | Research Only | Research Only | Research Only |
Reliability of system | High | Medium | High | High | High | High |
Grid Code Compliance | Medium | Good | Good | Excellent | Low | Excellent |
Circulating Currents | Medium | – | – | High | High | Low |
Commercial Example | Ingeteam FC LV | Ingeteam FC MV, Converteam 7000 | Rockwell PL 7000 | Siemens HVDC plus | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, S.; Diaz, M.; Cárdenas, R.; Espina, E.; Contreras, E.; Rodriguez, J. A Review of Generators and Power Converters for Multi-MW Wind Energy Conversion Systems. Processes 2022, 10, 2302. https://doi.org/10.3390/pr10112302
Rajendran S, Diaz M, Cárdenas R, Espina E, Contreras E, Rodriguez J. A Review of Generators and Power Converters for Multi-MW Wind Energy Conversion Systems. Processes. 2022; 10(11):2302. https://doi.org/10.3390/pr10112302
Chicago/Turabian StyleRajendran, Saravanakumar, Matias Diaz, Roberto Cárdenas, Enrique Espina, Emilio Contreras, and Jose Rodriguez. 2022. "A Review of Generators and Power Converters for Multi-MW Wind Energy Conversion Systems" Processes 10, no. 11: 2302. https://doi.org/10.3390/pr10112302
APA StyleRajendran, S., Diaz, M., Cárdenas, R., Espina, E., Contreras, E., & Rodriguez, J. (2022). A Review of Generators and Power Converters for Multi-MW Wind Energy Conversion Systems. Processes, 10(11), 2302. https://doi.org/10.3390/pr10112302