Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia dealbata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Extraction Procedure
2.4. Extracts Characterization
2.5. Antimicrobial Activity
2.6. GC-TOFMS Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extract Yield and Composition
3.2. Antioxidant Activity
3.3. Extraction of Spent Raw Material
3.4. Correlations between Composition and Antioxidant Activity
3.5. Antimicrobial Activity
3.6. Characterisation of the Non-Polar Components of the Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maslin, B.R. Synoptic overview of Acacia sensu lato (Leguminosae: Mimosoideae) in East and Southeast Asia. Gard. Bull. Singap. 2015, 67, 231. [Google Scholar] [CrossRef]
- Breton, C.; Guerin, J.; Ducatillion, C.; Médail, F.; Kull, C.A.; Bervillé, A. Taming the wild and “wilding” the tame: Tree breeding and dispersal in Australia and the Mediterranean. Plant Sci. 2008, 175, 197–205. [Google Scholar] [CrossRef]
- Kull, C.A.; Shackleton, C.M.; Cunningham, P.J.; Ducatillon, C.; Dufour-Dror, J.-M.; Esler, K.J.; Friday, J.B.; Gouveia, A.C.; Griffin, A.R.; Marchante, E.; et al. Adoption, use and perception of Australian acacias around the world. Divers. Distrib. 2011, 17, 822–836. [Google Scholar] [CrossRef] [Green Version]
- Seigler, D.S. Phytochemistry of Acacia—Sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar] [CrossRef]
- Fuentes-Ramírez, A.; Pauchard, A.; Cavieres, L.A.; García, R.A. Survival and growth of Acacia dealbata vs. native trees across an invasion front in south-central Chile. For. Ecol. Manag. 2011, 261, 1003–1009. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.; Marchante, E.; Ens, E.J.; Holmes, P.M.; Pauchard, A.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J.; et al. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
- Lorenzo, P.; González, L.; Reigosa, M.J. The genus Acacia as invader: The characteristic case of Acacia dealbata Link in Europe. Ann. For. Sci. 2010, 67, 101. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.M.; Rejmánek, M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Ministério do Ambiente. Ministério do Ambiente Decreto-Lei n.o 565/99 de 21 de Dezembro; Série-A. N.o 295—31-12-1999; Diário da República: Lisboa, Portugal, 1999; pp. 9100–9115. [Google Scholar]
- Jæger, D.; O’Leary, M.C.; Weinstein, P.; Møller, B.L.; Semple, S.J. Phytochemistry and bioactivity of Acacia sensu stricto (Fabaceae: Mimosoideae). Phytochem. Rev. 2019, 18, 129–172. [Google Scholar] [CrossRef]
- Subhan, N.; Burrows, G.E.; Kerr, P.G.; Obied, H.K. Phytochemistry, Ethnomedicine, and Pharmacology of Acacia. In Studies in Natural Products Chemistry; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 57, pp. 247–326. ISBN 9780444640574. [Google Scholar]
- Miguel-Chávez, R.S. Phenolic Antioxidant Capacity: A Review of the State of the Art. In Phenolic Compounds—Biological Activity; IntechOpen: London, UK, 2017; pp. 59–74. [Google Scholar]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; IntechOpen: London, UK, 2019; pp. 1–28. [Google Scholar]
- Ghannoum, M.A.; Rice, L.B. Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef]
- Correia, R.; Quintela, J.C.; Duarte, M.P.; Gonçalves, M. Insights for the valorization of biomass from portuguese invasive Acacia spp. in a biorefinery perspective. Forests 2020, 11, 1342. [Google Scholar] [CrossRef]
- Ramli, S.; Harada, K.I.; Ruangrungsi, N. Antioxidant, antimicrobial and cytotoxicity activities of Acacia farnesiana (L.) Willd. Leaves ethanolic extract. Pharmacogn. J. 2011, 3, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Cock, I.E.; van Vuuren, S.F. South African food and medicinal plant extracts as potential antimicrobial food agents. J. Food Sci. Technol. 2015, 52, 6879–6899. [Google Scholar] [CrossRef]
- Nielsen, T.R.H.; Kuete, V.; Jäger, A.K.; Meyer, J.J.M.; Lall, N. Antimicrobial activity of selected South African medicinal plants. BMC Complement. Altern. Med. 2012, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Nyila, M.A.; Leonard, C.M.; Hussein, A.A.; Lall, N. Activity of South African medicinal plants against Listeria monocytogenes biofilms, and isolation of active compounds from Acacia karroo. S. Afr. J. Bot. 2012, 78, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, C.; Kumar, P.; Bankar, S.P.; Karthik, L. In vitro antibacterial activity and gas chromatography–mass spectroscopy analysis of Acacia karoo and Ziziphus mauritiana extracts. J. Taibah Univ. Sci. 2015, 9, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.P.; Cunico, M.M.; Auer, C.G.; Miguel, O.G.; Miguel, M.D.; da Silva, C.B.; Andrade, C.A.; Kerber, V.A. Potencial alelopático e antifúngico do extrato das folhas de Acacia longifolia (Andr.) Willd. Visão Acadêmica 2013, 14, 16–25. [Google Scholar] [CrossRef]
- Edrah, S.M.; Alafid, F.; Shmeala, H.; Abobaker, D.M. Phytochemical analysis and antibacterial activity of Acacia pycnantha from Alkhums Libya. In Proceedings of the 2nd Annual Conference on Theories and Applications of Basic and Biosciences, Bali, Indonesia, 11–12 April 2019; pp. 704–712. [Google Scholar]
- Mahmoud, M.F.; Alrumman, S.A.; Hesham, A.E.L. Biological activities of some Acacia spp. (Fabaceae) against new clinical isolates identified by ribosomal RNA gene-based phylogenetic analysis. Pak. J. Pharm. Sci. 2016, 29, 221–229. [Google Scholar]
- El-Toumy, S.A.; Salib, J.Y.; Mohamed, W.M.; Morsy, F.A. Phytochemical and antimicrobial studies on Acacia saligna leaves. Egypt. J. Chem. 2010, 53, 705–717. [Google Scholar] [CrossRef] [Green Version]
- Noreen, I.; Iqbal, A.; Rabbi, F.-; Muhammad, A.; Shah, Z.; Rahman, Z.U. Antimicrobial activity of different solvents extracts of Acacia cyanophylla. Pak. J. Weed Sci. Res. 2017, 23, 79–90. [Google Scholar]
- Gumgumjee, N.M.; Hajar, A.S. Antimicrobial efficacy of Acacia saligna (Labill.) HL Wendl. and Cordia sinensis Lam. leaves extracts against some pathogenic microorganisms. Int. J. Microbiol. Immunol. Res 2015, 3, 51–57. [Google Scholar]
- Gedara, S.R.; Galala, A.A. New cytotoxic spirostane saponin and biflavonoid glycoside from the leaves of Acacia saligna (Labill.) H.L. Wendl. Nat. Prod. Res. 2014, 28, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Fowora, M.A.; Onyeaghasiri, F.U.; Olanlege, A.L.O.; Edu-Muyideen, I.O.; Adebesin, O.O. In Vitro Susceptibility of Dermatophytes to Anti-Fungal Drugs and Aqueous Acacia nilotica Leaf Extract in Lagos, Nigeria. J. Biomed. Sci. Eng. 2021, 14, 74–82. [Google Scholar] [CrossRef]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from Acacia dealbata and Olea europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef]
- Silva, E.; Fernandes, S.; Bacelar, E.; Sampaio, A. Antimicrobial activity of aqueous, ethanolic and methanolic leaf extracts from Acacia spp. and Eucalyptus nicholii. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, R.; Mishra, R.C.; Yadav, A.; Yadav, J.P. Screening of traditionally used medicinal plants for their antimicrobial efficacy against oral pathogens and GC-MS analysis of acacia nilotica extract. Indian J. Tradit. Knowl. 2019, 18, 162–168. [Google Scholar]
- Kumari, R.; Mishra, R.C.; Yadav, J.P. Preparation and in vitro antimicrobial activity of supercritical fluid extracts of selected Indian plants against oral pathogens and their phytochemicals and statistical analysis. Int. J. Green Pharm. 2020, 14, 146–154. [Google Scholar] [CrossRef]
- Kumari, R.; Mishra, R.C.; Sheoran, R.; Yadav, J.P. Fractionation of antimicrobial compounds from Acacia nilotica twig extract against oral pathogens. Biointerface Res. Appl. Chem. 2020, 10, 7097–7105. [Google Scholar] [CrossRef]
- Arshad, M.S.; Hussain, I.; Mahmood, M.S.; Khan, M.N. Evaluation of antimicrobial potential of Acacia nilotica (Kikar) against oral pathogens associated with caries and periodontitis. Pak. J. Agric. Sci. 2017, 54, 423–430. [Google Scholar] [CrossRef]
- Lomarat, P.; Chancharunee, S.; Anantachoke, N.; Kitphati, W.; Sripha, K.; Bunyapraphatsara, N. Bioactivity-guided separation of the active compounds in Acacia pennata responsible for the prevention of Alzheimer’s disease. Nat. Prod. Commun. 2015, 10, 1431–1434. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, V.H.; De Melo, M.M.R.; Portugal, I.; Silva, C.M. Extraction of added-value triterpenoids from Acacia dealbata leaves using supercritical fluid extraction. Processes 2021, 9, 1159. [Google Scholar] [CrossRef]
- Azwanida, N.N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 3–8. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Morais, J.S.; Ferreira, I.C.F.R. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem. 2010, 120, 247–254. [Google Scholar] [CrossRef]
- Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Hormonelle Beeinflussung des experimentellen Portiocarcinoms. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Mauricio, E.M.; Duarte, M.P.; Lima, K.; Fernandes, A.S.; Bernardo-Gil, G.; Cebola, M.-J. Potential of supercritical fluid myrtle extracts as an active ingredient and co-preservative for cosmetic and topical pharmaceutical applications. Sustain. Chem. Pharm. 2022, 28, 100739. [Google Scholar] [CrossRef]
- Popova, V.; Ivanova, T.; Stoyanova, A.; Nikolova, V.; Hristeva, T.; Zheljazkov, V.D. GC-MS composition and olfactory profile of concretes from the flowers of four Nicotiana species. Molecules 2020, 25, 2617. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Climate-Data.org. Clima Alcobaça. Available online: https://pt.climate-data.org/europa/portugal/alcobaca/alcobaca-882351/ (accessed on 1 April 2021).
- Climate-Data.org. Clima Almada. Available online: https://pt.climate-data.org/europa/portugal/almada/almada-7111/ (accessed on 1 April 2021).
- Luís, A.; Gil, N.; Amaral, M.E.; Duarte, A.P. Antioxidant activities of extracts from Acacia melanoxylon, Acacia dealbata and Olea europaea and alkaloids estimation. Int. J. Pharm. Pharm. Sci. 2012, 4, 225–231. [Google Scholar]
- Gabr, S.; Nikles, S.; Maria, E.; Wenzig, P.; Ardjomand-woelkart, K.; Hathout, R.M.; El-ahmady, S.; Abdel, A.; Singab, A.; Bauer, R. Characterization and optimization of phenolics extracts from Acacia species in relevance to their anti-inflammatory activity. Biochem. Syst. Ecol. 2018, 78, 21–30. [Google Scholar] [CrossRef]
- Xiong, J.; Grace, M.H.; Esposito, D.; Wang, F.; Lila, M.A. Phytochemical characterization and anti-inflammatory properties of Acacia mearnsii leaves. Nat. Prod. Commun. 2016, 11, 649–653. [Google Scholar] [CrossRef] [Green Version]
- Zheleva-Dimitrova, D.; Sinan, K.I.; Etienne, O.K.; Ak, G.; Sharmeen, J.B.; Dervisoglu, G.; Ozdemir, F.A.; Mahomoodally, M.F.; Zengin, G. Comprehensive chemical characterization and biological evaluation of two Acacia species: A. nilotica and A. ataxacantha. Food Chem. Toxicol. 2021, 156, 112446. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the biological potential of Pinus pinaster bark extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef] [PubMed]
- Tung, Y.T.; Wu, J.H.; Hsieh, C.Y.; Chen, P.S.; Chang, S.T. Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by an on-line screening method. Food Chem. 2009, 115, 1019–1024. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Joseph, J.M.; Manian, S. Antioxidant and free radical scavenging activities of Indian acacias: Acacia leucophloea (Roxb.) Willd., Acacia ferruginea Dc., Acacia dealbata Link. and Acacia pennata (l.) Willd. Int. J. Food Prop. 2013, 16, 1717–1729. [Google Scholar] [CrossRef]
- Kopjar, M.; Tadić, M.; Piližota, V. Phenol content and antioxidant activity of green, yellow and black tea leaves. Chem. Biol. Technol. Agric. 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Sariburun, E.; Şahin, S.; Demir, C.; Türkben, C.; Uylaşer, V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J. Food Sci. 2010, 75, 328–335. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, T.; Choi, Y.-W.; Kim, Y.-K. Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus densiflora Bark Extract. Biomed Res. Int. 2019, 2019, 3520675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, M.B.; Tharaphan, P.; Chotivanich, K.; Tarning, J.; Anal, A.K. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. BMC Complement. Altern. Med. 2017, 17, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afsar, T.; Razak, S.; Shabbir, M.; Khan, M.R. Antioxidant activity of polyphenolic compounds isolated from ethyl—Acetate fraction of Acacia hydaspica R. Parker. Chem. Cent. J. 2018, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Zia-Ul-Haq, M.; Cavar, S.; Qayum, M.; Khan, I.; Ahmad, S. Chemical composition and antioxidant potential of Acacia leucophloea Roxb. Acta Bot. Croat. 2013, 72, 133–144. [Google Scholar] [CrossRef]
- Astuya, A.; Ziehe, J.; Rivera, A.; Ortiz, S.; Ulloa, V.; Roeckel, M.; Aspé, E.; Fernández, K. Antioxidant and anti-inflammatory activities of Pinus radiata bark extract in salmonid cell lines. Aquac. Res. 2016, 48, 3568–3578. [Google Scholar] [CrossRef]
- Salar, R.K.; Seasotiya, L. Free radical scavenging activity, phenolic contents and phytochemical evaluation of different extracts of stem bark of Butea monosperma (Lam.) Kuntze. Front. Life Sci. 2011, 5, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.; Msaada, K.; Hamdaoui, G.; Limam, F.; Marzouk, B. Variation in Phenolic Composition and Antioxidant Activity during Flower Development of Safflower (Carthamus tinctorius L.). J. Agric. Food Chem. 2011, 59, 4455–4463. [Google Scholar] [CrossRef]
- Oliveira, C.S.D.; Moreira, P.; Resende, J.; Cruz, M.T.; Pereira, C.M.F.; Silva, A.M.S.; Santos, S.A.O.; Silvestre, A.J.D. Characterization and cytotoxicity assessment of the lipophilic fractions of different morphological parts of Acacia dealbata. Int. J. Mol. Sci. 2020, 21, 1814. [Google Scholar] [CrossRef] [Green Version]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, M.; Kumar, S.; Sharma, D.; Yadav, J.P. In vitro antioxidant activities and GC-MS analysis of different solvent extracts of Acacia nilotica leaves. Indian J. Pharm. Sci. 2018, 80, 892–902. [Google Scholar] [CrossRef]
- Abdel-Farid, I.B.; Sheded, M.G.; Mohamed, E.A. Metabolomic profiling and antioxidant activity of some Acacia species. Saudi J. Biol. Sci. 2014, 21, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulewicz-Magulska, B.; Wesolowski, M. Total Phenolic Contents and Antioxidant Potential of Herbs Used for Medical and Culinary Purposes. Plant Foods Hum. Nutr. 2019, 74, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-based screening and identification of flavonoids and derived metabolites in human urine after oral administration of exocarpium citri grandis extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.R. Nosocomial infections and infection control. Medicine 2017, 45, 629–633. [Google Scholar] [CrossRef]
- Ganaie, H.A.; Ali, M.N.; Ganai, B.A.; Meraj, M.; Ahmad, M. Antibacterial activity of 14, 15-dihydroajugapitin and 8-o-acetylharpagide isolated from Ajuga bracteosa Wall ex. Benth against human pathogenic bacteria. Microb. Pathog. 2017, 103, 114–118. [Google Scholar] [CrossRef]
- Wu, S.-C.; Liu, F.; Zhu, K.; Shen, J.-Z. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. J. Agric. Food Chem. 2019, 67, 13195–13211. [Google Scholar] [CrossRef]
- Leitão, J.H. Microbial Virulence Factors. Int. J. Mol. Sci. 2020, 21, 5320. [Google Scholar] [CrossRef]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef]
- Pereira, F.B.M.; Domingues, F.M.J.; Silva, A.M.S. Triterpenes from Acacia dealbata. Nat. Prod. Lett. 1996, 8, 97–103. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Chandra Shill, M.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A review of biomedical activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Lou-Bonafonte, J.M.; Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Herrera-Marcos, L.V.; Sanchez-Marco, J.; Arnal, C.; Osada, J. Current Insights into the Biological Action of Squalene. Mol. Nutr. Food Res. 2018, 62, 1800136. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.R.; Lin, Y.K.; Fang, J.Y. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and tocotrienols—Bioactive dietary compounds; what is certain, what is doubt? Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef]
- Xu, F.; Huang, X.; Wu, H.; Wang, X. Beneficial health effects of lupenone triterpene: A review. Biomed. Pharmacother. 2018, 103, 198–203. [Google Scholar] [CrossRef]
- Wal, P.; Wal, A.; Sharma, G.; Rai, A.K. Biological activities of lupeol. Syst. Rev. Pharm. 2011, 2, 96–103. [Google Scholar] [CrossRef]
Samples | Maceration at Room Temperature | Hot Extraction | |||||
---|---|---|---|---|---|---|---|
70% ACE | 70% ET | 70% MET | 70% ACE | 70% ET | 70% MET | ||
Leaves | |||||||
Yield | Fresh (ALC) | 12.2 ± 0.1 h | 10.8 ± 0.1 j | 11.6 ± 0.1 i | 12.2 ± 0.1 h | 11.0 ± 0.1 j | 9.9 ± 0.1 l |
Fresh (CAP) | 10.5 ± 0.2 k | 10.0 ± 0.1 l | 9.8 ± 0.1 l | 12.3 ± 0.1 i | 9.8 ± 0.1 l | 9.9 ± 0.1 l | |
Dried (ALC) | 14.8 ± 0.1 c | 14.4 ± 0.1 de | 14.1 ± 0.1 de | 15.8 ± 0.1 a | 13.5 ± 0.1 f | 13.0 ± 0.1 g | |
Dried (CAP) | 14.0 ± 0.1 e | 14.3 ± 0.1 de | 13.5 ± 0.1 f | 15.6 ± 0.1 a | 15.8 ± 0.1 a | 15.2 ± 0.1 b | |
TPC | Fresh (ALC) | 449.1 ± 8.0 b | 338.9 ± 6.6 ghi | 329.0 ± 7.6 ijk | 428.4 ± 3.7 c | 361.0 ± 5.9 de | 336.7 ± 6.9 hj |
Fresh (CAP) | 345.8 ± 4.0 fgh | 295.8 ± 6.4 m | 288.3 ± 3.4 mn | 352.6 ± 5.8 def | 324.5 ± 9.5 kl | 314.7 ± 7.6 l | |
Dried (ALC) | 478.5 ± 4.5 a | 324.9 ± 3.3 jkl | 336.1 ± 3.2 hijk | 450.6 ± 3.7 b | 362.2 ± 3.6 d | 351.3 ± 5.4 def | |
Dried (CAP) | 350.2 ± 4.4 efg | 292.3 ± 4.3 mn | 255.2 ± 5.3 p | 352.6 ± 5.4 def | 272.4 ± 4.4 o | 282.4 ± 4.7 no | |
TFC | Fresh (ALC) | 98.7 ± 2.5 cde | 81.4 ± 2.5 kl | 75.3 ± 2.6 m | 90.7 ± 3.1 gh | 83.1 ± 3.4 ijkl | 77.7 ± 3.3 lm |
Fresh (CAP) | 94.9 ± 2.4 efg | 97.7 ± 3.4 cde | 89.3 ± 3.7 h | 106.5 ± 2.8 b | 96.6 ± 3.9 def | 95.7 ± 2.8 defg | |
Dried (ALC) | 114.8 ± 2.0 a | 82.7 ± 1.8 ijkl | 81.7 ± 1.3 jkl | 103.2 ± 1.5 bc | 88.2 ± 1.8 hi | 87.0 ± 1.9 hij | |
Dried (CAP) | 105.4 ± 1.7 b | 92.1 ± 1.8 fgh | 78.9 ± 2.3 klm | 101.2 ± 2.8 bcd | 83.6 ± 2.3 ijk | 82.1 ± 1.9 jkl | |
TPrAC | Fresh (ALC) | 330.7 ± 7.9 b | 192.4 ± 6.2 h | 203.7 ± 9.3 gh | 292.7 ± 9.4 c | 191.0 ± 6.1 h | 211.6 ± 8.4 g |
Fresh (CAP) | 255.4 ± 5.5 de | 140.2 ± 6.0 j | 120.0 ± 5.1 k | 263.6 ± 8.1 d | 142.2 ± 8.3 j | 146.4 ± 5.3 j | |
Dried (ALC) | 357.0 ± 8.0 a | 201.5 ± 5.5 gh | 189.4 ± 6.3 hi | 331.5 ± 5.1 b | 241.9 ± 8.8 ef | 238.1 ± 7.8 f | |
Dried (CAP) | 279.3 ± 4.5 c | 211.1 ± 4.9 g | 133.5 ± 5.1 jk | 280.0 ± 7.6 c | 174.9 ± 8.5 i | 198.2 ± 5.8 gh | |
Twigs | |||||||
Yield | Fresh (ALC) | 7.9 ± 0.1 h | 6.9 ± 0.1 kl | 6.9 ± 0.1 kl | 9.0 ± 0.1 e | 8,3 ± 0.1 g | 7.7 ± 0.1 hi |
Fresh (CAP) | 7.3 ± 0.1 j | 6.7 ± 0.1 l | 7.0 ± 0.1 k | 8.0 ± 0.2 g | 7.6 ± 0.1 i | 7.0 ± 0.1 k | |
Dried (ALC) | 12.0 ± 0.1 a | 10.7 ± 0.1 b | 10.6 ± 0.1 b | 8.8 ± 0.1 ef | 7.1 ± 0.1 k | 10.1 ± 0.1 c | |
Dried (CAP) | 9.0 ± 0.1 e | 8.6 ± 0.1 f | 10.1 ± 0.1 c | 8.8 ± 0.1 ef | 8.3 ± 0.1 g | 9.5 ± 0.1 d | |
TPC | Fresh (ALC) | 526.5 ± 4.5 a | 406.6 ± 4.3 g | 348.3 ± 6.3 j | 514.6 ± 2.2 b | 420.9 ± 3.3 ef | 419.1 ± 3.0 ef |
Fresh (CAP) | 412.6 ± 6.7 fg | 294.2 ± 4.9 n | 273.7 ± 7.9 o | 367.1 ± 3.8 i | 344.8 ± 5.3 jk | 324.0 ± 6.1 l | |
Dried (ALC) | 499.0 ± 3.9 c | 389.5 ± 7.3 h | 329.0 ± 8.3 l | 485.6 ± 3.5 d | 412.5 ± 5.5 fg | 402.6 ± 6.2 g | |
Dried (CAP) | 419.1 ± 3.7 ef | 311.0 ± 6.5 m | 251.6 ± 3.4 p | 425.1 ± 5.8 e | 341.5 ± 6.1 jk | 334.9 ± 3.3 kl | |
TFC | Fresh (ALC) | 166.2 ± 4.3 cd | 139.1 ± 4.0 ijkl | 130.9 ± 2.1 m | 166.3 ± 3.9 c | 137.6 ± 3.3 jkl | 135.3 ± 2.6 klm |
Fresh (CAP) | 178.7 ± 4.7 b | 147.6 ± 2.3 fgh | 130.0 ± 3.8 mn | 153.0 ± 2.8 f | 153.2 ± 2.4 ef | 144.7 ± 4.5 ghi | |
Dried (ALC) | 166.3 ± 3.0 c | 143.0 ± 3.4 hij | 133.8 ± 2.0 lm | 163.8 ± 1.7 cd | 139.7 ± 2.8 ijkl | 141.0 ± 2.9 hijk | |
Dried (CAP) | 198.4 ± 2.7 a | 149.8 ± 3.3 fg | 123.8 ± 2.4 n | 201.0 ± 1.9 a | 159.6 ± 1.4 de | 151.5 ± 2.7 f | |
TprAC | Fresh (ALC) | 585.8 ± 10.3 b | 307.5 ± 7.1 i | 286.4 ± 11.6 j | 553.3 ± 7.0 c | 375.2 ± 6.8 g | 387.7 ± 9.0 g |
Fresh (CAP) | 440.3 ± 9.1 e | 94.2 ± 6.9 m | 72.3 ± 6.3 n | 388.3 ± 9.2 g | 209.1 ± 7.8 k | 142.1 ± 7.3 l | |
Dried (ALC) | 576.4 ± 5.5 b | 340.3 ± 9.5 h | 305.1 ± 6.9 i | 516.9 ± 8.2 d | 351.0 ± 8.1 h | 384.6 ± 6.5 g | |
Dried (CAP) | 631.3 ± 7.9 a | 379.9 ± 9.8 g | 306.0 ± 7.2 i | 614.3 ± 8.4 a | 417.6 ± 6.1 f | 432.4 ± 6.4 ef |
Samples | Maceration at Room Temperature | Hot Extraction | |||||
---|---|---|---|---|---|---|---|
70% ACE | 70% ET | 70% MET | 70% ACE | 70% ET | 70% MET | ||
Leaves | |||||||
DPPH | Fresh (ALC) | 740.8 ± 10.1 b | 597.9 ± 8.3 e | 535.8 ± 8.5 i | 740.2 ± 6.1 b | 636.7 ± 6.0 d | 526.8 ± 5.3 i |
Fresh (CAP) | 560.0 ± 7.2 h | 348.5 ± 5.7 n | 335.4 ± 5.9 n | 540.0 ± 8.4 gh | 428.4 ± 9.0 k | 393.6 ± 7.2 m | |
Dried (ALC) | 893.4 ± 10.8 a | 578.2 ± 6.5 fg | 576.4 ± 8.2 fg | 886.5 ± 7.5 a | 634.3 ± 9.1 d | 685.4 ± 5.5 c | |
Dried (CAP) | 446.3 ± 7.0 j | 412.2 ± 5.6 l | 337.0 ± 8.3 n | 588.9 ± 5.5 ef | 392.6 ± 7.3 m | 406.6 ± 6.0 lm | |
FRAP | Fresh (ALC) | 7664.1 ± 167.6 b | 6285.3 ± 95.4 ef | 5620.3 ± 118.5 gh | 7702.8 ± 164.7 b | 6501.3 ± 132.2 de | 5423.2 ± 142.5 hi |
Fresh (CAP) | 6612.1 ± 167.8 d | 4386.9 ± 93.0 l | 4403.9 ± 129.7 l | 6015.2 ± 177.6 def | 5072.4 ± 225.1 jk | 4835.8 ± 178.6 k | |
Dried (ALC) | 8885.4 ± 93.1 a | 6299.9 ± 71.9 ef | 5334.0 ± 79.0 ij | 6962.5 ± 63.4 c | 6175.8 ± 138.3 f | 3300.7 ± 98.7 n | |
Dried (CAP) | 5846.6 ± 90.7 g | 4855.0 ± 58.6 k | 3934.8 ± 103.5 m | 5766.3 ± 81.2 g | 4097.2 ± 124.8 m | 4449.8 ± 82.2 l | |
Twigs | |||||||
DPPH | Fresh (ALC) | 996.8 ± 6.7 b | 757.2 ± 11.6 e | 511.1 ± 11.3 j | 994.7 ± 6.2 bc | 778.8 ± 14.0 d | 782.7 ± 8.1 d |
Fresh (CAP) | 675.5 ± 11.0 h | 254.2 ± 6.6 q | 230.2 ± 9.2 r | 596.3 ± 11.5 i | 379.7 ± 11.8 n | 358.4 ± 11.4 o | |
Dried (ALC) | 1068.3 ± 8.5 a | 665.5 ± 11.2 h | 514.2 ± 11.8 j | 974.2 ± 6.4 c | 791.2 ± 14.3 d | 782.1 ± 7.1 d | |
Dried (CAP) | 731.3 ± 6.1 f | 418.5 ± 7.9 m | 321.3 ± 8.3 p | 710.2 ± 5.2 g | 474.5 ± 9.9 k | 452.6 ± 8.5 l | |
FRAP | Fresh (ALC) | 6852.4 ± 208.0 de | 6546.5 ± 221.0 e | 3989.4 ± 61.6 j | 7829.9 ± 140.9 c | 6851.8 ± 225.2 de | 6554.3 ± 112.4 e |
Fresh (CAP) | 6951.8 ± 146.0 d | 3306.8 ± 109.3 k | 3075.8 ± 75.0 k | 6192.0 ± 53.1 f | 4626.8 ± 255.7 hi | 4461.1 ± 137.7 i | |
Dried (ALC) | 9194.6 ± 165.8 a | 4770.3 ± 86.1 h | 3783.0 ± 84.8 j | 8804.2 ± 112.4 b | 6987.7 ± 163.4 d | 7098.5 ± 87.1 d | |
Dried (CAP) | 7754.4 ± 119.0 c | 5354.9 ± 141.1 g | 3969.0 ± 85.0 j | 8003.8 ± 171.7 c | 5585.2 ± 140.0 g | 5429.1 ± 83.3 g |
Samples | Leaves | Twigs | ||||
---|---|---|---|---|---|---|
70% ACE | 70% ET | 70% MET | 70% ACE | 70% ET | 70% MET | |
DPPH | ||||||
Maceration | 660.1 ± 174.7 a | 484.2 ± 109.0 b | 446.1 ± 113.5 b | 868.0 ± 171.5 a | 523.8 ± 203.4 bc | 394.2 ± 125.7 c |
Hot extraction | 696.2 ± 131.2 a | 523.0 ± 115.9 b | 503.1 ± 120.0 b | 818.9 ± 174.4 a | 606.0 ± 186.4 b | 593.9 ± 195.7 b |
Fresh | 652.5 ± 90.2 a | 502.9 ± 121.4 b | 447.9 ± 88.0 b | 815.8 ± 186.2 a | 542.5 ± 235.1 b | 470.6 ± 210.4 b |
Dried | 703.8 ± 197.2 a | 504.3 ± 106.5 b | 501.3 ± 140.5 b | 871.0 ± 157.5 a | 587.4 ± 152.6 b | 517.5 ± 171.7 b |
Alcobaça | 815.2 ± 76.8 a | 611.8 ± 26.2 b | 581.1 ± 64.7 bc | 1008.5 ± 37.0 a | 748.2 ± 51.7 b | 647.5 ± 138.1 c |
Caparica | 541.1 ± 57.3 c | 395.4 ± 31.3 d | 368.1 ± 33.6 d | 678.3 ± 53.1 c | 381.7 ± 83.2 d | 340.6 ± 81.9 d |
FRAP | ||||||
Maceration | 7252.1 ± 1174.0 a | 5456.8 ± 873.7 b | 4823.3 ± 746.5 bc | 7688.3 ± 969.5 a | 4994.6 ± 1199.0 c | 3704.3 ± 386.4 d |
Hot extraction | 6693.0 ± 746.5 a | 5461.7 ± 981.1 b | 4502.4 ± 801.6 c | 7707.5 ± 976.6 a | 6012.9 ± 1007.8 b | 5885.8 ± 1046.0 b |
Fresh | 7079.9 ± 644.8 a | 5561.5 ± 898.9 b | 5070.8 ± 509.5 b | 6956.5 ± 610.9 b | 5333.0 ± 1491.8 cd | 4520.2 ± 1306.5 d |
Dried | 6865.2 ± 1287.9 a | 5357.0 ± 946.6 b | 4254.8 ± 765.0 c | 8439.3 ± 611.2 a | 5674.5 ± 841.4 c | 5069.9 ± 1364.5 cd |
Alcobaça | 7803.7 ± 715.8 a | 6315.6 ± 159.6 b | 4919.5 ± 966.2 c | 8170.3 ± 940.4 a | 6289.1 ± 926.3 c | 5356.3 ± 1518.6 d |
Caparica | 6141.4 ± 380.2 b | 4602.9 ± 412.3 cd | 4406.1 ± 347.9 d | 7225.5 ± 737.5 b | 4718.4 ± 921.4 de | 4233.7 ± 873.4 e |
Sample | Yield | TPC | TFC | TPrAC | DPPH | FRAP | |
---|---|---|---|---|---|---|---|
Leaves | Alcobaça-spent | 15.5 ± 0.1 | 436.4 ± 11.1 | 116.1 ± 2.8 | 441.0 ± 6.8 | 796.0 ± 9.9 | 8807.8 ± 225.1 |
Alcobaça-raw | 14.8 ± 0.1 | 478.5 ± 4.5 | 114.8 ± 2.0 | 357.0 ± 8.0 | 893.4 ± 10.8 | 8885.4 ± 93.1 | |
Caparica-spent | 14.5 ± 0.1 | 350.5 ± 2.4 | 97.0 ± 1.8 | 356.9 ± 1.6 | 661.7 ± 3.5 | 6431.1 ± 85.8 | |
Caparica-raw | 14.0 ± 0.1 | 350.2 ± 4.4 | 105.4 ± 1.7 | 279.3 ± 4.5 | 446.3 ± 7.0 | 5846.6 ± 90.7 | |
Twigs | Alcobaça-spent | 12.9 ± 0.1 | 448.3 ± 8.0 | 152.8 ± 3.6 | 610.1 ± 5.8 | 838.6 ± 8.6 | 8171.1 ± 153.0 |
Alcobaça-raw | 12.0 ± 0.1 | 499.0 ± 3.9 | 166.3 ± 3.0 | 576.4 ± 5.5 | 1068.3 ± 8.5 | 9194.6 ± 165.8 | |
Caparica-spent | 10.2 ± 0.1 | 389.0 ± 5.3 | 147.6 ± 2.2 | 544.2 ± 4.7 | 644.8 ± 9.6 | 7151.6 ± 160.4 | |
Caparica-raw | 9.0 ± 0.1 | 419.1 ± 3.7 | 198.4 ± 2.7 | 631.3 ± 7.9 | 731.3 ± 6.1 | 7754.4 ± 119.0 |
TPC | TFC | TPrAC | DPPH | FRAP | ||
---|---|---|---|---|---|---|
Leaves | TPC | 1 | ||||
TFC | r = 0.563 ** p = 0.003 | 1 | ||||
TPrAC | r = 0.801 ** p = 0.000 | r = 0.553 ** p = 0.003 | 1 | |||
DPPH | r = 0.922 ** p = 0.000 | r = 0.373 p = 0.061 | r = 0.766 ** p = 0.000 | 1 | ||
FRAP | r = 0.864 ** p = 0.000 | r = 0.490 * p = 0.011 | r = 0.742 ** p = 0.000 | r = 0.778 ** p = 0.000 | 1 | |
Twigs | TPC | 1 | ||||
TFC | r = 0.511 ** p = 0.008 | 1 | ||||
TPrAC | r = 0.754 ** p = 0.000 | r = 0.671 ** p = 0.000 | 1 | |||
DPPH | r = 0.967 ** p = 0.000 | r = 0.396 * p = 0.045 | r = 0.765 ** p = 0.000 | 1 | ||
FRAP | r = 0.861 ** p = 0.000 | r = 0.603 ** p = 0.011 | r = 0.856 ** p = 0.000 | r = 0.884 ** p = 0.000 | 1 |
Samples (0.5 mg/well) | S. aureus | MRSA | S. epidermidis | E. faecalis | B. cereus | S. mutans | S. mitis |
---|---|---|---|---|---|---|---|
Leaves | |||||||
Dried-70%ACE-maceration (ALC) | 10.3 ± 0.1 | 10.3 ± 0.0 | 9.8 ± 0.1 | 8.5 ± 0.1 | 12.1 ± 0.1 | 11.0 ± 0.0 | 11.3 ± 0.6 |
Dried-70%ET-maceration (ALC) | 8.8 ± 0.0 | 9.5 ± 0.1 | 8.5 ± 0.1 | 8.0 ± 0.0 | 11.5 ± 0.0 | 10.0 ± 0.0 | 11.0 ± 0.0 |
Dried-70%MET-maceration (ALC) | 8.5 ± 0.1 | 9.3 ± 0.1 | 8.0 ± 0.0 | nd | 11.0 ± 0.0 | 10.0 ± 0.0 | nd |
Dried-70%ACE-maceration (CAP) | 9.3 ± 0.0 | 9.0 ± 0.0 | 8.5 ± 0.1 | 8.8 ± 0.0 | 11.0 ± 0.0 | 10.0 ± 0.0 | 9.0 ± 1.7 |
Dried-70%ACE-hot extraction (ALC) | 9.5 ± 0.1 | 10.5 ± 0.1 | 9.5 ± 0.1 | 8.8 ± 0.1 | 12.0 ± 0.0 | 10.0 ± 0.0 | nd |
Fresh-70%ACE-maceration (ALC) | 9.5 ± 0.1 | 9.8 ± 0.0 | 9.3 ± 0.1 | 8.3 ± 0.1 | 11.3 ± 0.0 | 10.0 ± 0.0 | 9.3 ± 0.6 |
Spent leaves-70%ACE-maceration (ALC) | 10.5 ± 0.1 | 10.5 ± 0.1 | 9.3 ± 0.0 | 8.5 ± 0.1 | 11.8 ± 0.0 | 11.3 ± 0.0 | nd |
Twigs | |||||||
Dried-70%ACE-maceration (ALC) | 10.8 ± 0.0 | 10.5 ± 0.0 | 10.3 ± 0.1 | 9.5 ± 0.1 | 12.5 ± 0.1 | 9.0 ± 0.0 | 12.0 ± 0.0 |
Dried-70%ET-maceration (ALC) | nd | 7.8 ± 0.0 | nd | nd | 10.0 ± 0.0 | 9.0 ± 0.0 | 11.0 ± 0.0 |
Dried-70%MET-maceration (ALC) | nd | nd | nd | nd | 9.3 ± 0.0 | 10.0 ± 0.0 | 10.0 ± 0.0 |
Dried-70%ACE-maceration (CAP) | 11.0 ± 0.0 | 11.0 ± 0.0 | 10.0 ± 0.0 | 9.5 ± 0.1 | 13.0 ± 0.0 | 12.0 ± 0.0 | 10.0 ± 0.0 |
Dried-70%ACE-hot extraction (ALC) | 10.0 ± 0.0 | 10.8 ± 0.1 | 9.8 ± 0.0 | 9.5 ± 0.1 | 13.0 ± 0.0 | 9.0 ± 0.0 | 11.0 ± 0.0 |
Fresh-70%ACE-maceration (ALC) | 11.0 ± 0.0 | 10.7 ± 0.0 | 9.5 ± 0.1 | 9.3 ± 0.0 | 12.8 ± 0.1 | 11.0 ± 0.0 | 12.0 ± 0.0 |
Spent twigs-70%ACE-maceration (ALC) | 11.0 ± 0.0 | 11.0 ± 0.0 | 9.5 ± 0.1 | 9.8 ± 0.0 | 12.1 ± 0.0 | 9.0 ± 0.0 | 10.0 ± 0.0 |
Positive control | 12.5 ± 0.5 a | 13.9 ± 0.7 a | 15.7 ± 1.0 a | 12.5 ± 0.5 a | 16.4 ± 1.1 a | 19.3 ± 0.6 b | 25.7 ± 0.6 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, R.; Duarte, M.P.; Maurício, E.M.; Brinco, J.; Quintela, J.C.; da Silva, M.G.; Gonçalves, M. Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia dealbata. Processes 2022, 10, 2429. https://doi.org/10.3390/pr10112429
Correia R, Duarte MP, Maurício EM, Brinco J, Quintela JC, da Silva MG, Gonçalves M. Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia dealbata. Processes. 2022; 10(11):2429. https://doi.org/10.3390/pr10112429
Chicago/Turabian StyleCorreia, Ricardo, Maria Paula Duarte, Elisabete Muchagato Maurício, João Brinco, José Carlos Quintela, Marco Gomes da Silva, and Margarida Gonçalves. 2022. "Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia dealbata" Processes 10, no. 11: 2429. https://doi.org/10.3390/pr10112429
APA StyleCorreia, R., Duarte, M. P., Maurício, E. M., Brinco, J., Quintela, J. C., da Silva, M. G., & Gonçalves, M. (2022). Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia dealbata. Processes, 10(11), 2429. https://doi.org/10.3390/pr10112429