Evaluation of the Gas Emissions during the Thermochemical Conversion of Eucalyptus Woodchips
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Apparatus and Procedure
3. Results and Discussion
3.1. Thermochemical Conversion: Mass Loss
3.2. Gas Release: Product Distribution
4. Conclusions
- Mainly due to the low moisture content, only two different stages can characterize the mass loss of eucalyptus woodchips at low and high temperatures with different kinetics for both thermochemical regimes.
- The first region, which corresponds to a mass loss of 75 to 85% (gasification and combustion, respectively), does not present the influence of the air flow rate, which defines the thermochemical conversion condition; however, there is a significant difference between gasification and combustion conversion at different temperatures. Therefore, the kinetics of the reaction in the devolatilization stage is mainly dependent on the temperature.
- The second conversion stage, in its turn, is dependent on the air flow rate and, therefore, dependent on the diffusion of the oxygen supplied to the solid biomass particles. However, it was verified that at the lowest reactor temperature this reaction presented a contribution of the temperature. This might be related to the remaining volatile matter that was not consumed in the devolatilization stage and was used to react with the remaining carbon.
- Regarding the gases released during all conversion periods, a strong dependency on the reactor temperature and the thermochemical conversion regime was observed.
- All gas compounds, except H2, increased substantially with reactor temperature and, mainly, when gasification occurred. This suggests that the success of obtaining a better combustible gas during the gasification process depends substantially on process temperature [50].
- The yield of the lowest temperature, comparing both thermochemical conversion conditions, the CO and CO2 emissions are approximately 3 times higher when gasification occurs. However, at 800 °C, the same trend was verified, while a considerable amount of CH4 was also verified.
- The gas emissions also showed the impact of the air injection in the conversion of combustible gases and in non-combustible gases. By increasing the CO2, CO, and CH4, concentrations for both temperatures were reduced.
- The measurement of the gas emissions in the purpose-built facility also demonstrated a useful strategy to further define the correct boundary conditions for CFD simulations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Ferreira, S.; Monteiro, E.; Brito, P.; Vilarinho, C. Biomass resources in Portugal: Current status and prospects. Renew. Sustain. Energy Rev. 2017, 78, 1221–1235. [Google Scholar] [CrossRef]
- GPP—Gabinete de Planeamento Políticas e Administração Geral. Caderno de Análise e Prospetiva Cultivar. 2018. Available online: https://doi.org/2183-5624 (accessed on 11 September 2022).
- Roman, K.; Barwicki, J.; Rzodkiewicz, W.; Dawidowski, M. Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process. Energies 2021, 14, 3270. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Hochenauer, C.; Scharler, R. Bioenergy technologies, uses, market and future trends with Austria as a case study. Renew. Sustain. Energy Rev. 2020, 135, 110237. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; p. 530. [Google Scholar] [CrossRef]
- Vainio, E. Fate of Fuel-Bound Nitrogen and Sulfur in Biomass-Fired Industrial Boilers. Ph.D. Thesis, Åbo Akademi University, Turku, Finland, 2014. [Google Scholar]
- Sadaka, S.; Johnson, D. Biomass Combustion. Agriculture and Natural Resources. 2010. Available online: https://www.researchgate.net/publication/268207461_Biomass_Combustion (accessed on 11 September 2022).
- Kirch, T.; Birzer, C.; van Eyk, P.; Medwell, P.R. Influence of Primary and Secondary Air Supply on Gaseous Emissions from a Small-Scale Staged Solid Biomass Fuel Combustor. Energy Fuels 2017, 32, 4212–4220. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, L.; Zhang, Q.; Lei, Y.; Cao, J.; Huang, Y.; Liu, S.; Zheng, C.; Xu, H.; et al. Impact of primary and secondary air supply intensity in stove on emissions of size-segregated particulate matter and carbonaceous aerosols from apple tree wood burning. Atmos. Res. 2017, 202, 33–39. [Google Scholar] [CrossRef]
- Yin, C.; Rosendahl, L.A.; Kær, S.K. Grate-firing of biomass for heat and power production. Prog. Energy Combust. Sci. 2008, 34, 725–754. [Google Scholar] [CrossRef]
- Perera, S.M.; Wickramasinghe, C.; Samarasiri, B.; Narayana, M. Modeling of thermochemical conversion of waste biomass—A comprehensive review. Biofuel Res. J. 2021, 8, 1481–1528. [Google Scholar] [CrossRef]
- Ragland, K.; Aerts, D.; Baker, A. Properties of wood for combustion analysis. Bioresour. Technol. 1991, 37, 161–168. [Google Scholar] [CrossRef]
- Hellén, H.; Hakola, H.; Haaparanta, S.; Pietarila, H.; Kauhaniemi, M. Influence of residential wood combustion on local air quality. Sci. Total Environ. 2008, 393, 283–290. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Z.; Wang, Y.; Wang, X.; Lou, C.; Xiao, B.; Lim, M. Visualization of Combustion Phases of Biomass Particles: Effects of Fuel Properties. ACS Omega 2021, 6, 27702–27710. [Google Scholar] [CrossRef] [PubMed]
- Grønli, M.G.; Varhegyi, G.; Di Blasi, C. Thermogravimetric Analysis and Devolatilization Kinetics of Wood. Ind. Eng. Chem. Res. 2002, 41, 4201–4208. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, M.; Zhu, X.; Guo, D.; Liu, S.; Hu, Z.; Xiao, B.; Wang, J.; Laghari, M. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour. Technol. 2015, 192, 441–450. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour. Technol. 2018, 251, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Yang, W.; Cong, X.; Dong, K.; Xu, J.; Wang, D.; Yang, X. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy 2020, 201, 117537. [Google Scholar] [CrossRef]
- Gaitán-Álvarez, J.; Moya, R.; Puente-Urbina, A.; Rodriguez-Zúñiga, A. Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times. Energies 2018, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Soria, J.; Rodriguez, R.; Baeyens, J.; Mazza, G. Macro-TGA steam-assisted gasification of lignocellulosic wastes. J. Environ. Manag. 2018, 233, 626–635. [Google Scholar] [CrossRef]
- Becidan, M.; Skreiberg, Ø.; Hustad, J.E. Products distribution and gas release in pyrolysis of thermally thick biomass residues samples. J. Anal. Appl. Pyrolysis 2007, 78, 207–213. [Google Scholar] [CrossRef]
- Brunner, T.; Biedermann, F.; Kanzian, W.; Evic, N.; Obernberger, I. Advanced Biomass Fuel Characterization Based on Tests with a Specially Designed Lab-Scale Reactor. Energy Fuels 2013, 27, 5691–5698. [Google Scholar] [CrossRef]
- Gauthier, G.; Melkior, T.; Grateau, M.; Thiery, S.; Salvador, S. Pyrolysis of centimetre-scale wood particles: New experimental developments and results. J. Anal. Appl. Pyrolysis 2013, 104, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Weissinger, A. In situ FT-IR spectroscopic investigations of species from biomass fuels in a laboratory-scale combustor: The release of nitrogenous species. Combust. Flame 2004, 137, 403–417. [Google Scholar] [CrossRef]
- Bennadji, H.; Smith, K.; Shabangu, S.; Fisher, E. Low-Temperature Pyrolysis of Woody Biomass in the Thermally Thick Regime. Energy Fuels 2013, 27, 1453–1459. [Google Scholar] [CrossRef]
- Nikku, M.; Deb, A.; Sermyagina, E.; Puro, L. Reactivity characterization of municipal solid waste and biomass. Fuel 2019, 254, 115690. [Google Scholar] [CrossRef]
- Hu, Q.; He, X.; Yao, Z.; Dai, Y.; Wang, C.-H. Gaseous production kinetics and solid structure analysis during isothermal conversion of biomass pellet under different atmospheres. J. Energy Inst. 2021, 98, 53–62. [Google Scholar] [CrossRef]
- Baumgarten, B.; Reinhardt, J.; Lepski, C.; Risio, B.; Thorwarth, H. Kinetics of Wood Devolatilization during Start-up. Energy Fuels 2019, 33, 11285–11291. [Google Scholar] [CrossRef]
- Samuelsson, L.N.; Umeki, K.; Babler, M.U. Mass loss rates for wood chips at isothermal pyrolysis conditions: A comparison with low heating rate powder data. Fuel Process. Technol. 2017, 158, 26–34. [Google Scholar] [CrossRef]
- Orang, N.; Tran, H. Effect of feedstock moisture content on biomass boiler operation. TAPPI J. 2015, 14, 629–637. [Google Scholar] [CrossRef]
- Bin Yang, Y.; Ryu, C.; Khor, A.; Sharifi, V.N.; Swithenbank, J. Fuel size effect on pinewood combustion in a packed bed. Fuel 2005, 84, 2026–2038. [Google Scholar] [CrossRef]
- Ryu, C.; Yang, Y.B.; Khor, A.; Yates, N.E.; Sharifi, V.N.; Swithenbank, J. Effect of fuel properties on biomass combustion: Part I. Experiments—Fuel type, equivalence ratio and particle size. Fuel 2006, 85, 1039–1046. [Google Scholar] [CrossRef]
- Mahmoudi, A.H.; Markovic, M.; Peters, B.; Brem, G. An experimental and numerical study of wood combustion in a fixed bed using Euler–Lagrange approach (XDEM). Fuel 2015, 150, 573–582. [Google Scholar] [CrossRef]
- Wurzenberger, J.C.; Wallner, S.; Raupenstrauch, H.; Khinast, J. Thermal conversion of biomass: Comprehensive reactor and particle modeling. AIChE J. 2002, 48, 2398–2411. [Google Scholar] [CrossRef]
- Markovic, M.; Bramer, E.A.; Brem, G. Experimental investigation of wood combustion in a fixed bed with hot air. Waste Manag. 2014, 34, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Erić, A.; Nemoda, S.; Komatina, M.; Dakić, D.; Repić, B. Experimental investigation on the kinetics of biomass combustion in vertical tube reactor. J. Energy Inst. 2019, 92, 1077–1090. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, H.; Meng, A.; Li, Q.; Zhang, Y. Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean J. Chem. Eng. 2016, 33, 2638–2643. [Google Scholar] [CrossRef]
- Fraga, L.G.; Silva, J.; Teixeira, J.C.; Ferreira, M.E.C.; Teixeira, S.F.; Vilarinho, C.; Gonçalves, M.M. Study of Mass Loss and Elemental Analysis of Pine Wood Pellets in a Small-Scale Reactor. Energies 2022, 15, 5253. [Google Scholar] [CrossRef]
- Jiang, M.; Lai, A.; Law, A. Solid Waste Incineration Modelling for Advanced Moving Grate Incinerators. Sustainability 2020, 12, 8007. [Google Scholar] [CrossRef]
- Thunman, H.; Niklasson, F.; Johnsson, F.; Leckner, B. Composition of Volatile Gases and Thermochemical Properties of Wood for Modeling of Fixed or Fluidized Beds. Energy Fuels 2001, 15, 1488–1497. [Google Scholar] [CrossRef]
- Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.; Gómez-Barea, A. Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 2011, 37, 611–630. [Google Scholar] [CrossRef]
- Mehrabian, R.; Shiehnejadhesar, A.; Scharler, R.; Obernberger, I. Multi-physics modelling of packed bed biomass combustion. Fuel 2014, 122, 164–178. [Google Scholar] [CrossRef]
- Silva, J.P.; Teixeira, S.; Grilo, É.; Peters, B.; Teixeira, J.C. Analysis and monitoring of the combustion performance in a biomass power plant. Clean. Eng. Technol. 2021, 5, 100334. [Google Scholar] [CrossRef]
- Mau, V.; Gross, A. Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar. Appl. Energy 2018, 213, 510–519. [Google Scholar] [CrossRef]
- Li, C.-Z. Importance of volatile–char interactions during the pyrolysis and gasification of low-rank fuels—A review. Fuel 2013, 112, 609–623. [Google Scholar] [CrossRef]
- Magdziarz, A.; Werle, S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manag. 2014, 34, 174–179. [Google Scholar] [CrossRef]
- Fraga, L.G.; Silva, J.; Teixeira, S.; Soares, D.; Ferreira, M.; Teixeira, J. Influence of Operating Conditions on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysis. Energies 2020, 13, 2756. [Google Scholar] [CrossRef]
- Skreiberg, A.; Sandquist, J.; Sørum, L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel 2011, 90, 2182–2197. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Pratical Design and Theory, 3rd ed.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
Proximate Analysis (wt.%, Dry Basis) | Ultimate Analysis (wt.%, Dry Ash Free) | ||
---|---|---|---|
Volatile matter | 88.90 | Carbon | 48.68 |
Ash | 1.00 | Hydrogen | 6.91 |
Fixed carbon | 10.10 | Nitrogen | 0.23 |
Oxygen | 44.18 |
Temperature | Mass Loss—1st Stage (%) | Devolatilization Time (s) | Final Mass (%) |
---|---|---|---|
Gasification | |||
400 °C | 74.49 | 466 | 23.35 |
800 °C | 84.60 | 117 | 12.44 |
Combustion | |||
400 °C | 75.19 | 477 | 21.80 |
800 °C | 85.80 | 126 | 8.30 |
Gasification | Combustion | |||
400 °C | 800 °C | 400 °C | 800 °C | |
Value (L/g Biomass) | ||||
CO2 | 0.32 (0.57) | 3.96 (9.99) | 1.43 (3.01) | 1.28 (4.05) |
CO | 2.58 (4.50) | 2.79 (7.07) | 0.86 (1.82) | 0.53 (1.73) |
CH4 | 0.18 (0.30) | 2.02 (5.13) | 0.08 (0.17) | 0.13 (0.44) |
H2 | 0.32 (0.63) | 0.34 (0.87) | 0.32 (0.69) | 0.36 (1.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.; Castro, C.; Teixeira, S.; Teixeira, J. Evaluation of the Gas Emissions during the Thermochemical Conversion of Eucalyptus Woodchips. Processes 2022, 10, 2413. https://doi.org/10.3390/pr10112413
Silva J, Castro C, Teixeira S, Teixeira J. Evaluation of the Gas Emissions during the Thermochemical Conversion of Eucalyptus Woodchips. Processes. 2022; 10(11):2413. https://doi.org/10.3390/pr10112413
Chicago/Turabian StyleSilva, João, Carlos Castro, Senhorinha Teixeira, and José Teixeira. 2022. "Evaluation of the Gas Emissions during the Thermochemical Conversion of Eucalyptus Woodchips" Processes 10, no. 11: 2413. https://doi.org/10.3390/pr10112413
APA StyleSilva, J., Castro, C., Teixeira, S., & Teixeira, J. (2022). Evaluation of the Gas Emissions during the Thermochemical Conversion of Eucalyptus Woodchips. Processes, 10(11), 2413. https://doi.org/10.3390/pr10112413