A New Approach for Increasing Speed, Loading Capacity, Resolution, and Scalability of Preparative Size-Exclusion Chromatography of Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Short and Wide Column
2.3. z2 cuboid SEC Devices
2.4. Size-Exclusion Chromatography Experiments
3. Results and Discussion
3.1. Comparison of Two Columns
3.2. Comparison of 24 mL Conventional Column with 24 mL z2 cuboid SEC Device
3.3. Scale-Up Experiments with 200 mL z2 cuboid SEC Device
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fekete, S.; Beck, A.; Veuthey, J.L.; Guillarme, D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J. Pharm. Biomed. Anal. 2014, 101, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.; Koza, S.; Bouvier, E.S.P. A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J. Liq. Chromatogr. Rel. Technol. 2012, 35, 2923–2950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakawa, T.; Ejima, D.; Li, T.; Philo, J.S. The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. J. Pharm. Sci. 2010, 99, 1674–1692. [Google Scholar] [CrossRef]
- Latulippe, D.R.; Zydney, A.L. Size exclusion chromatography of plasmid DNA isoforms. J. Chromatogr. A 2009, 1216, 6295–6302. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Mckenna, S.A.; Puglisi, E.V.; Puglisi, J.D. Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 2007, 13, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Churms, S.C. Recent progress in carbohydrate separation by high-performance liquid chromatography based on size exclusion. J. Chromatogr. A 1996, 720, 151–166. [Google Scholar] [CrossRef]
- Fekete, S.; Beck, A.; Veuthey, J.-L.; Guillarme, D. Ion-exchange chromatography for the characterization of biopharmaceuticals. J. Pharm. Biomed. Anal. 2015, 113, 43–55. [Google Scholar] [CrossRef]
- Lienqueo, M.E.; Mahn, A.; Salgado, J.C.; Asenjo, J.A. Current insights on protein behaviour in hydrophobic interaction chromatography. J. Chromatogr. B 2007, 849, 53–68. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Recent advances on protein separation and purification methods. Adv. Colloid Interface Sci. 2020, 284, 102254. [Google Scholar] [CrossRef]
- Füssl, F.; Trappe, A.; Carillo, S.; Jakes, C.; Bones, J. Comparative elucidation of cetuximab heterogeneity on the intact protein level by cation exchange chromatography and capillary electrophoresis coupled to mass spectrometry. Anal. Chem. 2020, 92, 5431–5438. [Google Scholar] [CrossRef]
- Roth, C.M.; Unger, K.K.; Lenhoff, A.M. Mechanistic model of retention in protein ion-exchange chromatography. J. Chromatogr. A 1996, 726, 45–56. [Google Scholar] [CrossRef]
- Simoes-Cardoso, J.C.; Kojo, H.; Yoshimoto, N.; Yamamoto, S. Microcalorimetric analysis of the adsorption of lysozyme and cytochrome c onto cation-exchange chromatography resins: Influence of temperature on retention. Langmuir 2020, 36, 3336–3345. [Google Scholar] [CrossRef] [PubMed]
- Itoh, D.; Yoshimoto, N.; Yamamoto, S. Retention mechanism of proteins in hydroxyapatite chromatography–multimodal interaction based protein separations: A model study. Curr. Protein Pep. Sci. 2019, 20, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Goyon, A.; Fekete, S.; Beck, A.; Veuthey, J.-L.; Guillarme, D. Unraveling the mysteries of modern size exclusion chromatography-the way to achieve confident characterization of therapeutic proteins. J. Chromatogr. B 2018, 1092, 368–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehkirch, A.; Hernandez-Alba, O.; Colas, O.; Beck, A.; Guillarme, D.; Cianférani, S. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J. Chromatogr. B 2018, 1086, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Burgess, R.R. A brief practical review of size exclusion chromatography: Rules of thumb, limitations, and troubleshooting. Protein Expr. Purif. 2018, 150, 81–85. [Google Scholar] [CrossRef]
- Hall, M. Size Exclusion Chromatography (SEC). In Biopharmaceutical Processing: Development, Design, and Implementation of Manufacturing Processes, 1st ed.; Jagschies, G., Lindskog, E., Łącki, K., Galliher, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 421–432. [Google Scholar]
- Janson, J.C. Process scale size exclusion chromatography. In Process Scale Liquid Chromatography; Subramanian, G., Ed.; Wiley-VCH: Weinheim, Germany, 1995; pp. 81–98. [Google Scholar]
- Reissner, K.; Prior, A.; Wolfgang, J.; Bart, H.J.; Byers, C.H. Preparative desalting of bovine serum albumin by continuous annular chromatography. J. Chromatogr. A 1997, 763, 49–56. [Google Scholar] [CrossRef]
- Van Deemter, J.J.; Zuiderweg, F.J.; Klinkenberg, A.V. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 1956, 5, 271–289. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. The van Deemter equation: Assumptions, limits, and adjustment to modern high performance liquid chromatography. J. Chromatogr. A 2013, 1302, 1–13. [Google Scholar] [CrossRef]
- Lou, X.; Zhu, Q.; Lei, Z.; van Dongen, J.L.J.; Meijer, E.W. Simulation of size exclusion chromatography for characterization of supramolecular complex: A theoretical study. J. Chromatogr. A 2004, 1029, 67–75. [Google Scholar] [CrossRef]
- Yu, C.-M.; Mun, S.; Wang, N.-H.L. Theoretical analysis of the effects of reversible dimerization in size exclusion chromatography. J. Chromatogr. A 2006, 1132, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, S.; Carta, G. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior. J. Chromatogr. A 2014, 1356, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Ricker, R.D.; Sandoval, L.A. Fast, reproducible size-exclusion chromatography of biological macromolecules. J. Chromatogr. A 1996, 743, 43–50. [Google Scholar] [PubMed]
- Bedani, F.; Kok, W.T.; Janssen, H.-G. A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography × liquid chromatography. J. Chromatogr. A 2006, 1133, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, N.A.; Jupally, V.R.; Eswaramoorthy, S.K.; Wijesinghe, K.H.; Nimmala, P.R.; Kumara, C.; Rambukwella, M.; Jones, T.; Dass, A. Size exclusion chromatography: An indispensable tool for the isolation of monodisperse gold nanomolecules. Anal. Chem. 2021, 93, 3987–3996. [Google Scholar] [CrossRef]
- Wu, N.; Bradley, A.C. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography. J. Chromatogr. A 2012, 1261, 113–120. [Google Scholar] [CrossRef]
- Koh, J.-H.; Guiochon, G. Effect of the column length on the characteristics of the packed bed and the column efficiency in a dynamic axial compression column. J. Chromatogr. A 1998, 796, 41–57. [Google Scholar] [CrossRef]
- Nweke, M.C.; McCartney, R.G.; Bracewell, D.G. Mechanical characterization of agarose-based chromatography resins for biopharmaceutical manufacture. J. Chromatogr. A 2017, 1530, 129–137. [Google Scholar] [CrossRef]
- Nweke, M.C.; Rathore, A.S.; Bracewell, D.G. Lifetime and aging of chromatography resins during biopharmaceutical manufacture. Trends Biotechnol. 2018, 36, 992–995. [Google Scholar] [CrossRef]
- Chen, G.; Roshankhah, R.; Ghosh, R. A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume. J. Chromatogr. A 2021, 1647, 462167. [Google Scholar] [CrossRef]
- Ghosh, R.; Hale, G.; Durocher, Y.; Gatt, P. Dry-compression packing of hydroxyapatite nanoparticles within a flat cuboid chromatography device and its use for fast protein separation. J. Chromatogr. A 2022, 1667, 462881. [Google Scholar] [CrossRef]
- Ghosh, R.; Chen, G.; Umatheva, U.; Gatt, P. A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device. J. Chromatogr. A 2020, 1618, 460892. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz, A. The principles and domains of process intensification. Chem. Eng. Prog. 2022, 116, 23–28. [Google Scholar]
- Song, D.; Wang, J. Modified resolution factor for asymmetrical peaks in chromatographic separation. J. Pharm. Biomed. Anal. 2003, 32, 1105–1112. [Google Scholar] [CrossRef]
- Baranyai, T.; Herczeg, K.; Onódi, Z.; Voszka, I.; Módos, K.; Marton, N.; Nagy, G.; Maeger, I.; Wood, M.J.; El Andaloussi, S.; et al. Isolation of exosomes from blood plasma: Qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS ONE 2015, 10, e0145686. [Google Scholar] [CrossRef] [Green Version]
- Dangi, P.; Khatkar, B.S. Extraction and purification of low molecular weight glutenin subunits using size exclusion chromatography. J. Food Sci. Technol. 2019, 56, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.M.D.; Queiroz, E.J.A.; Sousa, F.; Sousa, A. The use of size-exclusion chromatography in the isolation of supercoiled minicircle DNA from Escherichia coli lysate. J. Chromatogr. A 2020, 1609, 460444. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, P.P.; González-Domínguez, I.; Schneider, T.A.; Gòdia, F.; Cervera, L.; Jungbauer, A. At-line multi-angle light scattering detector for faster process development in enveloped virus-like particle purification. J. Sep. Sci. 2019, 42, 2640–2649. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Wu, J.; Zhu, J.; Lubman, D.M. Comparison of an optimized ultracentrifugation method versus size-exclusion chromatography for isolation of exosomes from human serum. J. Proteome Res. 2018, 17, 3599–3605. [Google Scholar] [CrossRef]
- Bian, J.; Girotti, J.; Fan, Y.; Levy, E.S.; Zang, N.; Sethuraman, V.; Kou, P.; Zhang, K.; Gruenhagen, J.; Lin, J. Fast and versatile analysis of liposome encapsulation efficiency by nanoParticle exclusion chromatography. J. Chromatogr. A 2022, 1662, 462688. [Google Scholar] [CrossRef]
Flow Rate (mL/min) | Column Pressure (MPa) | z2 cuboid Pressure (MPa) |
---|---|---|
0.5 | 0.035 | 0.006 |
1.0 | 0.072 | 0.010 |
1.5 | 0.114 | 0.016 |
2.0 | 0.168 | 0.021 |
2.5 | - | 0.026 |
3.0 | - | 0.032 |
5.0 | - | 0.051 |
Device | Flow Rate (mL/min) | BSA Peak Width (mL) | Lysozyme Peak Width (mL) | BSA Peak Retention Volume (mL) | Lysozyme Peak Retention Volume (mL) | Resolution |
---|---|---|---|---|---|---|
Column | 0.5 | 8.072 | 19.990 | 13.923 | 34.076 | 1.80 |
z2 cuboid | 0.5 | 6.551 | 12.351 | 13.951 | 31.703 | 2.35 |
z2 cuboid | 1.0 | 7.256 | 15.271 | 13.917 | 31.569 | 1.96 |
z2 cuboid | 1.5 | 7.874 | 17.491 | 13.891 | 31.720 | 1.76 |
z2 cuboid | 2.0 | 8.341 | 21.016 | 13.758 | 31.687 | 1.53 |
z2 cuboid | 2.5 | 8.593 | 21.310 | 13.806 | 31.736 | 1.50 |
z2 cuboid | 3.0 | 8.718 | 21.709 | 13.835 | 31.664 | 1.46 |
z2 cuboid | 5.0 | N/A * | N/A * | 13.704 | 31.271 | N/A * |
Device | Flow Rate (mL/min) | BSA Peak Width (mL) | Lysozyme Peak Width (mL) | BSA Peak Retention Volume (mL) | Lysozyme Peak Retention Volume (mL) | Resolution |
---|---|---|---|---|---|---|
Column | 0.5 | 10.781 | 20.965 | 14.518 | 34.291 | 1.56 |
z2 cuboid | 1.0 | 10.831 | 17.979 | 15.055 | 32.329 | 1.50 |
Flow Rate (mL/min) | BSA Peak Width (mL) | Lysozyme Peak Width (mL) | BSA Peak Retention Volume (mL) | Lysozyme Peak Retention Volume (mL) | Resolution |
---|---|---|---|---|---|
0.5 | 12.206 | 17.010 | 17.605 | 33.857 | 1.46 |
1.0 | 11.644 | 17.736 | 17.438 | 33.685 | 1.38 |
1.5 | 12.206 | 19.011 | 17.605 | 33.635 | 1.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Pan, S.; Ghosh, R. A New Approach for Increasing Speed, Loading Capacity, Resolution, and Scalability of Preparative Size-Exclusion Chromatography of Proteins. Processes 2022, 10, 2566. https://doi.org/10.3390/pr10122566
Xu Y, Pan S, Ghosh R. A New Approach for Increasing Speed, Loading Capacity, Resolution, and Scalability of Preparative Size-Exclusion Chromatography of Proteins. Processes. 2022; 10(12):2566. https://doi.org/10.3390/pr10122566
Chicago/Turabian StyleXu, Yating, Si Pan, and Raja Ghosh. 2022. "A New Approach for Increasing Speed, Loading Capacity, Resolution, and Scalability of Preparative Size-Exclusion Chromatography of Proteins" Processes 10, no. 12: 2566. https://doi.org/10.3390/pr10122566
APA StyleXu, Y., Pan, S., & Ghosh, R. (2022). A New Approach for Increasing Speed, Loading Capacity, Resolution, and Scalability of Preparative Size-Exclusion Chromatography of Proteins. Processes, 10(12), 2566. https://doi.org/10.3390/pr10122566