Determination of 7 Kinds of Alkaloids in Semen Nelumbinis and Its Products by HPLC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Experimental Method
2.2.1. Preparation of Standard Solution
2.2.2. Sample Handling
2.2.3. Chromatographic Method
3. Results and Discussion
3.1. Optimization of Chromatographic Conditions
3.1.1. Wavelength Selection
3.1.2. Selection of Chromatographic Column
3.1.3. Selection of Mobile Phase
3.2. Optimization of Extraction Method
3.2.1. Influence of Solid Phase Extraction Column (SPE)
3.2.2. Influence of Liquid–Solid Ratio
3.2.3. Influence of Extraction Method
3.2.4. Influence of Extraction Solvent
3.3. Method Validation
3.3.1. Linearity Range and Detection Limit
3.3.2. Recovery and Precision Experiment
3.4. Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arooj, M.; Imran, S.; Inam-Ur-Raheem, M.; Rajoka, M.S.R.; Sameen, A.; Siddique, R.; Sahar, A.; Tariq, S.; Riaz, A.; Hussain, A.; et al. Lotus seeds (Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review. Food Sci. Nutr. 2021, 9, 3971–3987. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, H.; Qiu, L.-Z.; Yue, L.-X.; Zhang, G.-J.; Deng, H.-F.; Ni, Y.-H.; Gao, Y. Cardiac efficacy and toxicity of aconitine: A new frontier for the ancient poison. Med. Res. Rev. 2021, 41, 1798–1811. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; He, S.; Huang, K.; Liang, M. Neferine suppresses vascular endothelial inflammation by inhibiting the NF-κB signaling pathway. Arch. Biochem. Biophys. 2020, 696, 108595. [Google Scholar] [CrossRef] [PubMed]
- Marealle, A.I.; Innocent, E.; Andrae-Marobela, K.; Qwarse, M.; Machumi, F.; Nondo, R.S.; Heydenreich, M.; Moshi, M.J. Safety evaluation and bioassay-guided isolation of antimycobacterial compounds from Morella salicifolia root ethanolic extract. J. Ethnopharmacol. 2022, 296, 115501. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Ishaq, M.; Zhao, L.; Safdar, B.; Rehman, A.U.; Munir, M.; Raza, A.; Nadeem, M.; Iqbal, W.; Wang, C. Natural compounds with xanthine oxidase inhibitory activity: A review. Chem. Biol. Drug Des. 2019, 93, 387–418. [Google Scholar] [CrossRef]
- Jiang, Z.; Ma, Y.; Tian, T.; Sun, Y.; Chen, H.; Lu, Y.; Wu, Y.; Jiang, H.; Li, W.; Li, L.; et al. Maimendong and Qianjinweijing Tang (Jin formula) suppresses lung cancer by regulation of miR-149-3p. J. Ethnopharmacol. 2020, 258, 112836. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, L.; Cai, W.; Shao, J.; Huang, X.; Liu, Y. An accurate and reproducible method for simultaneous determination of four flavonoids in EtOAc extracts from Sophora flavescens Ait. in rat plasma based on UHPLC Q-Exactive Mass spectrometry: Application to a pharmacokinetics study. Biomed. Chromatogr. 2019, 33, e4447. [Google Scholar] [CrossRef]
- Usuki, S.; Tamura, N.; Yuyama, K.; Tamura, T.; Mukai, K.; Igarashi, Y. Konjac Ceramide (kCer) Regulates NGF-Induced Neurite Outgrowth via the Sema3A Signaling Pathway. J. Oleo Sci. 2018, 67, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, L.; Guan, S.; Zhao, L.; Yang, B.; Chen, B. The application of heat reflux extraction to determine the contents of total alkaloids in erect hypecoum herb from different origins. Hebei Med. 2016, 22, 4. [Google Scholar]
- Chen, S.; Li, X.; Wu, J.; Li, J.; Xiao, M.; Yang, Y.; Liu, Z.; Cheng, Y. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. J. Ethnopharmacol. 2021, 266, 113429. [Google Scholar] [CrossRef]
- Zeng, G.; Ran, Y.; Huang, X.; Li, Y.; Zhang, M.; Ding, H.; Ma, Y.; Ma, H.; Jin, L.; Sun, D. Optimization of ultrasonic-assisted extraction of chlorogenic acid from tobacco waste. Int. J. Environ. Res. Public Health 2022, 19, 1555. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Bekhit, A.E.-D.; Tang, Y.; Huang, Y.; Huang, L.; He, Y.; Li, X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. Ultrason. Sonochem. 2021, 73, 105538. [Google Scholar] [CrossRef] [PubMed]
- Gouvêa, M.M.; Pusceddu, B.H.; Netto, A.D.P.; Peregrino, C.A.D.F.; Macedo, E.V.; Mourão, S.C.; Marques, F.F.D.C. Isolation of mitraphylline from Uncaria tomentosa (Willd. ex Schult.) DC. barks and development of spectrophotometric method for total alkaloids determination in Cat’s Claw samples. Phytochem. Anal. 2020, 31, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, M.; Li, Y.; Zhou, M.; Wu, T.; Cheng, Z. TLC-MS identification of alkaloids in Leonuri Herba and Leonuri Fructus aided by a newly developed universal derivatisation reagent optimised by the response surface method. Phytochem. Anal. 2021, 32, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Lekhak, M.; Patel, S.; Otari, S.; Ghane, S. Bioactive potential and RP-HPLC detection of phenolics and alkaloids (lycorine and galanthamine) from ultrasonic-assisted extracts of Crinum roots. South Afr. J. Bot. 2022, 149, 923–936. [Google Scholar] [CrossRef]
- Wei, F.; Gou, X.; Xu, X.; Wang, S.; Bao, T. Sensitive quantification of liensinine alkaloid using a HPLC-MS/MS method and its application in microvolume rat plasma. J. Anal. Methods Chem. 2021, 2021, 6629579. [Google Scholar] [CrossRef]
- Long, M.; Wang, Y.; Wang, P.; Zhou, X.; Xia, H.; Luo, C.; Huang, S.; Zhang, G.; Yan, H.; Fan, Z.; et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519. [Google Scholar] [CrossRef] [Green Version]
- Javidanbardan, A.; Chu, V.; Conde, J.P.; Azevedo, A.M. Microchromatography integrated with impedance sensor for bioprocess optimization: Experimental and numerical study of column efficiency for evaluation of scalability. J. Chromatogr. A 2022, 1661, 462678. [Google Scholar] [CrossRef]
- Wang, H.; Herderschee, H.R.; Bennett, R.; Potapenko, M.; Pickens, C.J.; Mann, B.F.; Ahmad, I.A.H.; Regalado, E.L. Introducing online multicolumn two-dimensional liquid chromatography screening for facile selection of stationary and mobile phase conditions in both dimensions. J. Chromatogr. A 2020, 1622, 460895. [Google Scholar] [CrossRef]
- David, P.; Hansen, F.J.; Bhat, A.; Weber, G.F. An overview of proteomic methods for the study of ‘cytokine storms’. Expert Rev. Proteom. 2021, 18, 83–91. [Google Scholar] [CrossRef]
- Patil, V.K.; Dhande, N.D.; Petha, N.H.; Narkhede, H.P. A simple derivatization RP-HPLC method for the simultaneous determination of zineb and hexaconazole in pesticide formulation using a PDA detector. Anal. Methods 2021, 13, 3930–3939. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pumarega, A.; Amézqueta, S.; Fuguet, E.; Rosés, M. Estimation of the octanol-water distribution coefficient of acidic compounds by microemulsion electrokinetic chromatography. J. Pharm. Biomed. Anal. 2020, 179, 112981. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, R.; Wei, R. Rapid determination of vitamin D3 in aquatic products by polypyrrole-coated magnetic nanoparticles extraction coupled with high-performance liquid chromatography detection. Nanomaterials 2022, 12, 1226. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, C.; Mao, D.; Luo, Y. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China. Environ. Sci. Pollut. Res. 2016, 23, 1722–1731. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, H.; Chen, Q.; Luo, J.; Chai, Z.; Shen, J. Composition, distribution and risk of total fluorine, extractable organofluorine and perfluorinated compounds in Chinese teas. Food Chem. 2017, 219, 496–502. [Google Scholar] [CrossRef]
- Lee, S.M.; Pyeon, Y.-K.; Chung, M.S.; Kim, Y.-S. Determination of methanol and fusel oils in various types of wines distributed in Korea. Food Sci. Biotechnol. 2022, 31, 203–209. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Zhang, Y.; Yang, M.; Chen, J.; Guo, M. Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets. Food Chem. 2022, 375, 131856. [Google Scholar] [CrossRef]
Liquid-Solid Ratio | Lotusine/(%) | Liensinine/(%) | Isoliensinine/(%) | Neferine/(%)) | Nuciferine/(%) | Pronuciferine/(%) | Berberine Hydrochloride/(%)) |
---|---|---|---|---|---|---|---|
10:1 | 12.72 | 68.95 | 75.97 | 72.48 | 78.43 | 77.50 | 87.91 |
15:1 | 66.98 | 87.04 | 79.96 | 93.13 | 85.61 | 85.16 | 92.16 |
20:1 | 78.49 | 88.42 | 82.38 | 87.59 | 88.72 | 89.84 | 94.04 |
Extraction Methods | Lotusine/(%) | Liensinine/(%) | Isoliensinine/(%) | Neferine/(%) | Nuciferine/(%) | Pronuciferine/ (%) | Berberine Hydrochloride/(%) |
---|---|---|---|---|---|---|---|
Ultrasonic extraction | 66.98 | 87.04 | 79.96 | 93.13 | 85.61 | 85.16 | 92.16 |
Cold soaking ultrasonic extraction | 70.61 | 84.95 | 83.16 | 90.16 | 98.83 | 89.90 | 90.31 |
Thermal reflux | 73.13 | 96.03 | 84.33 | 83.25 | 85.25 | 98.65 | 116.75 |
Extraction Solvents | Lotusine/(%) | Liensinine/(%) | Isoliensinine/(%) | Neferine/(%) | Nuciferine/(%) | Pronuciferine/(%) | Berberine Hydrochloride/(%) |
---|---|---|---|---|---|---|---|
a | 66.98 | 87.04 | 79.96 | 93.13 | 85.61 | 85.16 | 92.16 |
b | 64.26 | 61.49 | 71.25 | 66.93 | 87.10 | 82.19 | 86.34 |
c | /* | 73.38 | 81.80 | 88.77 | 93.96 | 88.72 | 95.52 |
d | 80.29 | 66.53 | 71.86 | 91.72 | 93.82 | 89.25 | 91.06 |
e | 81.07 | 62.00 | 72.32 | 69.58 | 93.93 | 89.56 | 86.94 |
f | 54.25 | 56.66 | 66.91 | 62.89 | 87.30 | 87.38 | 80.41 |
Name of Alkaloids | Linear Range (μg/mL) | Linear Equation | Correlation Coefficient | Limit of Detection/(mg/kg) | Limit of Quantitation/(mg/kg) |
---|---|---|---|---|---|
Lotusine | 0.5–25 | Y = 6.87000x − 0.24991 | 0.999896 | 0.5 | 1.25 |
Liensinine | 0.5–25 | Y = 8.50444x − 1.11677 | 0.999819 | 0.5 | 1.25 |
Isoliensinine | 1–50 | Y = 9.35156x − 1.21131 | 0.999828 | 1.25 | 2.5 |
Neferine | 1–50 | Y = 9.63994x − 1.47243 | 0.999775 | 1.25 | 2.5 |
Nuciferine | 0.3–15 | Y = 18.79125x − 0.45259 | 0.999881 | 1.5 | 4.5 |
Pronuciferine | 0.3–15 | Y = 30.26949x − 0.73528 | 0.999889 | 1.5 | 4.5 |
Berberine Hydrochloride | 0.3–15 | Y = 32.72460x − 1.08856 | 0.999856 | 1.5 | 4.5 |
Alkaloids | Addition Level /(mg/kg) | Average Recovery/(%) | Relative Standard Deviation/(%) |
---|---|---|---|
Lotusine | 1.25 | 87.43 | 3.27 |
2.5 | 99.29 | 2.46 | |
12.5 | 116.04 | 2.89 | |
Liensinine | 2.5 | 77.44 | 3.20 |
5.0 | 92.59 | 3.38 | |
25 | 95.78 | 1.15 | |
Isoliensinine | 2.5 | 85.18 | 2.18 |
5.0 | 92.90 | 5.25 | |
25 | 88.52 | 1.15 | |
Neferine | 2.5 | 83.33 | 3.59 |
5.0 | 112.83 | 4.11 | |
25 | 107.46 | 1.54 | |
Nuciferine | 4.5 | 95.36 | 4.00 |
9.0 | 105.48 | 1.69 | |
45 | 106.55 | 1.29 | |
Pronuciferine | 4.5 | 87.16 | 2.46 |
9.0 | 94.18 | 1.86 | |
45 | 98.69 | 1.06 | |
Berberine Hydrochloride | 4.5 | 103.58 | 2.66 |
9.0 | 104.72 | 1.23 | |
45 | 100.22 | 1.59 |
Samples | Lotusine/ (mg/kg) | Liensinine/ (mg/kg) | Isoliensinine/ (mg/kg) | Neferine/ (mg/kg) | Nuciferine/ (mg/kg) | Pronuciferine/ (mg/kg) | Berberine Hydrochloride/(mg/kg) |
---|---|---|---|---|---|---|---|
Herbal Secret Semen Nelumbinis-1 | 16.98 | 5.37 | 3.16 | 13.25 | 2.27 | ND* | ND* |
Herbal Secret Semen Nelumbinis-2 | 16.97 | 5.41 | 3.18 | 13.24 | 2.25 | ND* | ND* |
Herbal Secret Semen Nelumbinis-3 | 16.96 | 5.38 | 3.16 | 13.15 | 2.28 | ND* | ND* |
Huayangmingtang Semen Nelumbinis-1 | 56.24 | 9.47 | 13.11 | 55.05 | ND* | ND* | ND* |
Huayangmingtang Semen Nelumbinis-2 | 56.44 | 8.83 | 12.67 | 57.04 | ND* | ND* | ND* |
Huayangmingtang Semen Nelumbinis-3 | 56.15 | 8.76 | 12.29 | 56.79 | ND* | ND* | ND* |
Bulk Semen Nelumbinis-1 | 19.37 | 1.35 | 6.02 | 9.61 | 2.31 | ND* | ND* |
Bulk Semen Nelumbinis-2 | 23.82 | 1.65 | 7.93 | 14.00 | 2.36 | ND* | ND* |
Bulk Semen Nelumbinis-3 | 19.25 | 1.43 | 5.74 | 10.60 | 2.92 | ND* | ND* |
Wahaha eight-treasure porridge -1 | 9.64 | 0.50 | ND* | ND* | 2.67 | ND* | ND* |
Wahaha eight-treasure porridge -2 | 9.44 | 0.53 | ND* | ND* | 3.07 | ND* | ND* |
Wahaha eight-treasure porridge -3 | 9.94 | 0.52 | ND* | ND* | 2.97 | ND* | ND* |
Huilong plumula nelumbinis-1 | 1843.44 | 288.89 | 674.70 | 1923.79 | 52.58 | 8.78 | ND* |
Huilong plumula nelumbinis-2 | 2173.45 | 336.14 | 756.89 | 2042.93 | 52.72 | 8.53 | ND* |
Huilong plumula nelumbinis-3 | 2412.04 | 394.31 | 923.64 | 2421.55 | 52.79 | 9.09 | ND* |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, F.; Ouyang, L.; Deng, N.; Yin, F.; He, J.; Lei, D.; Gao, J.; Zeng, H.; Wang, Z.; Wang, L.; et al. Determination of 7 Kinds of Alkaloids in Semen Nelumbinis and Its Products by HPLC. Processes 2022, 10, 2678. https://doi.org/10.3390/pr10122678
Zhong F, Ouyang L, Deng N, Yin F, He J, Lei D, Gao J, Zeng H, Wang Z, Wang L, et al. Determination of 7 Kinds of Alkaloids in Semen Nelumbinis and Its Products by HPLC. Processes. 2022; 10(12):2678. https://doi.org/10.3390/pr10122678
Chicago/Turabian StyleZhong, Feifei, Li Ouyang, Nan Deng, Fangping Yin, Jiajie He, Deqing Lei, Jieying Gao, Hui Zeng, Zhaoxia Wang, Lu Wang, and et al. 2022. "Determination of 7 Kinds of Alkaloids in Semen Nelumbinis and Its Products by HPLC" Processes 10, no. 12: 2678. https://doi.org/10.3390/pr10122678
APA StyleZhong, F., Ouyang, L., Deng, N., Yin, F., He, J., Lei, D., Gao, J., Zeng, H., Wang, Z., Wang, L., Yang, L., & Zhou, H. (2022). Determination of 7 Kinds of Alkaloids in Semen Nelumbinis and Its Products by HPLC. Processes, 10(12), 2678. https://doi.org/10.3390/pr10122678