The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
- First: liquid nitrogen fertilizer KAS32+TIO10 (40.3% N), 60 kg ha−1, BBCH 23, according to the fertilizer map prepared in autumn, Horsch Leeb PT280;
- Second: ammonium sulfate NS 21–24, 33 kg ha−1, BBCH 30, YARA N-Sensor ALS, Rauch AXIS H 50.1 EMC+W;
- Third: ammonium nitrate (34.4% N), 48 kg ha−1, BBCH 37, YARA N-Sensor ALS, Rauch AXIS H 50.1 EMC+W;
- Fourth: liquid nitrogen fertilizer KAS32+TIO10 (40.3% N), 47 kg ha−1, BBCH 47, YARA N-Sensor ALS, Horsch Leeb PT280.
2.3. Statistical Evaluation of Data
3. Results
3.1. The ECa and Field Variable-Rate Fertilization Maps
3.2. The Effect of Precision Fertilization on the Tillering of Winter Wheat
3.3. Winter Wheat Yield and its Productivity Indicators
3.4. Protein Content in Grains
4. Discussion
4.1. The ECa and VRF Maps
4.2. The Tillering Coefficient
4.3. The Yield and Its Indicators
4.4. Protein Content in Grains
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Say, S.M.; Keskin, M.; Sehri, M.; Sekerli, Y.E. Adoption of precision agriculture technologies in developed and developing countries. Online J. Sci. Technol. 2018, 8, 7–15. [Google Scholar]
- Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat—A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Raizada, M.N. Challenges in using precision agriculture to optimize symbiotic nitrogen fixation in legumes: Progress, limitations, and future improvements needed in diagnostic testing. Agronomy 2018, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Denora, M.; Amato, M.; Brunetti, G.; De Mastro, F.; Perniola, M. Geophysical field zoning for nitrogen fertilization in durum wheat (Triticum durum Desf.). PLoS ONE 2022, 17, e0267219. [Google Scholar] [CrossRef]
- Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Aleksey, I.; Konashenkov, A.; Ivanova, Z. Spatial Heterogeneity of Lithogenic Mosaic of Sod-Podzolic Soils of Chudskaya Lowland and Efficiency of Precision Fertilization System. Agric. Digit. Org. Prod. 2021, 245, 53–68. [Google Scholar]
- Arnall, B. Methods of making variable-rate nitrogen recommendations. Crops Soils 2016, 49, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Stafford, J. Precision Agriculture for Sustainability; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2019; 494p. [Google Scholar]
- Shi, Y.; Zhu, Y.; Wang, X.; Sun, X.; Ding, Y.; Cao, W.; Hu, Z. Progress and development on biological information of crop phenotype research applied to real-time variable-rate fertilization. Plant Methods 2020, 16, 11. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Rogovska, N.; Laird, D.A.; Chiou, C.P.; Bond, L.J. Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management. Precis. Agric. 2019, 20, 40–55. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef]
- Grisso, R.D.; Alley, M.M.; Thomason, W.E.; Holshouser, D.L.; Roberson, G.T. Precision farming tools: Variable–rate application. Virginia Tech 2011, 442–505, 1–16. [Google Scholar]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Frasconi, C.; Raffaelli, M.; Emmi, L.; Fontanelli, M.; Martelloni, L.; Peruzzi, A. An automatic machine able to perform variable rate application of flame weeding: Design and assembly. Chem. Eng. Trans. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Jasa, P.J. Precision Agriculture: On-the-Go Vehicle-Based Soil Sensors; Historical Materials from University of Nebraska-Lincoln Extension; University of Nebraska-Lincoln Extension: Lincoln, NE, USA, 2002; p. 706. [Google Scholar]
- Romaneckas, K.; Zinkevicius, R.; Steponavicius, D.; Maziliauskas, A.; Butkus, V.; Marcinkeviciene, A. Principles of precision agriculture in on-farm spring wheat fertilization experiment. In Proceedings of the 14th International Scientific Conference on Engineering for Rural Development, Jelgava, Latvia, 20–22 May 2015; Volume 14, pp. 558–563. [Google Scholar]
- Stamatiadis, S.; Schepers, J.S.; Evangelou, E.; Tsadilas, C.; Glampedakis, A.; Dercas, N.; Spyropoulos, N.; Dalezios, N.R.; Eskridge, K. Variable-rate nitrogen fertilization of winter wheat under high spatial resolution. Precis. Agric. 2018, 19, 570–587. [Google Scholar] [CrossRef]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Mouazen, A.M. Optimising site-specific potato seeding rates for maximum yield and profitability. Biosyst. Eng. 2021, 212, 126–140. [Google Scholar] [CrossRef]
- Geesing, D.; Diacono, M.P.; Schmidhalter, U. Site-specific effects of variable water supply and nitrogen fertilisation on winter wheat. J. Plant Nutr. Soil Sci. 2014, 177, 509–523. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M. The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilization in Precision Agriculture. Remote Sens. 2022, 14, 778. [Google Scholar] [CrossRef]
- Santaga, F.S.; Benincasa, P.; Toscano, P.; Antognelli, S.; Ranieri, E.; Vizzari, M. Simplified and Advanced Sentinel-2-Based Precision Nitrogen Management of Wheat. Agronomy 2021, 11, 1156. [Google Scholar] [CrossRef]
- Santos, N.; Proença, I.; Canavarro, M. Evaluating Management Practices in Precision Agriculture for Maize Yield with Spatial Econometrics. Standards 2022, 2, 121–135. [Google Scholar] [CrossRef]
- Gaile, Z.; Ruza, A.; Kreita, D.; Paura, L. Yield components and quality parameters of winter wheat depending on tillering coefficient. Agron. Res. 2017, 15, 79–93. [Google Scholar]
- Fan, J.; Lu, X.; Gu, S.; Guo, X. Improving nutrient and water use efficiencies using water-drip irrigation and fertilization technology in Northeast China. Agric. Water Manag. 2020, 241, 106352. [Google Scholar] [CrossRef]
- Zhong, X.; Huang, T.; Peng, J.; Lu, W.; Kang, X.; Sun, M.; Song, S.; Tang, Q.; Chen, Y.; Zhan, D.; et al. Effects of machine-transplanting synchronized with one-time precision fertilization on nutrient uptake and use efficiency of double cropping rice. Chin. J. Rice Sci. 2019, 33, 436–446. [Google Scholar]
- Ameer, S.; Cheema, M.J.M.; Khan, M.A.; Amjad, M.; Noor, M.; Wei, L. Delineation of nutrient management zones for precise fertilizer management in wheat crop using geo-statistical techniques. Soil Use Manag. 2022, 38, 1430–1445. [Google Scholar] [CrossRef]
- Brambilla, B.; Romano, E.; Toscano, P.; Cutini, M.; Biocca, M.; Ferré, C.; Comolli, R.; Bisaglia, C. From Conventional to Precision Fertilization: A Case Study on the Transition for a Small-Medium Farm. AgriEngineering 2021, 3, 438–446. [Google Scholar] [CrossRef]
- Kazlauskas, M.; Bručienė, I.; Jasinskas, A.; Šarauskis, E. Comparative Analysis of Energy and GHG Emissions Using Fixed and Variable Fertilization Rates. Agronomy 2021, 11, 138. [Google Scholar] [CrossRef]
- Meena, B.R.; Jatav, H.S.; Dudwal, B.L.; Kumawat, P.; Meena, S.S.; Singh, V.K.; Khan, M.A.; Sathyanarayana, E. Fertilizer Recommendations by Using Different Geospatial Technologies in Precision Farming or Nanotechnology. Ecosyst. Serv. 2022, 14, 241–257. [Google Scholar]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef]
Indicators | Field Zones | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
FZ-1 | FZ-2 | FZ-3 | FZ-4 | FZ-5 | ||||||
SSS + URF (Control) (A) | SSS + VRF (B) | SSS + URF (Control) (A) | SSS + VRF (B) | SSS + URF (Control) (A) | SSS + VRF (B) | SSS + URF (Control) (A) | SSS + VRF (B) | SSS + URF (Control) (A) | SSS + VRF (B) | |
Grain yield, kg ha−1 | 7325 ± 163.81 | 8572 ± 178.87 | 8851 ± 202.88 | 7976 ± 153.97 | 7715 ± 278.63 | 8103 ± 511.38 | 8756 ± 169.36 | 8878 ± 111.84 | 6378 ± 176.26 | 5609 ± 257.52 |
T-test05 | R(A) = 609 kg ha−1 | R(B) = 845 kg ha−1 | R(AB) = 726 kg ha−1 | |||||||
A, B | a | cd | b | c | a | cd | b | c | - | - |
A × B | - | - | - | - | a | a | b | b | - | - |
The number of ears, unit m−2 | 519 ± 12.30 | 717 ± 1.27 | 639 ± 17.39 | 612 ± 9.33 | 632 ± 11.60 | 615 ± 35.06 | 642 ± 14.42 | 632 ± 5.46 | 546 ± 10.00 | 642 ± 19.88 |
T-test05 | R(A) = 40 units m−2 | R(B) = 56.10 units m−2 | R(AB) = 48.10 units m−2 | |||||||
A, B | a | - | b | c | b | c | b | c | a | c |
A × B | - | - | a | a | b | b | c | c | - | - |
The grain number in ear, unit | 35.68 ± 0.25 | 37.36 ± 0.38 | 39.09 ± 0.11 | 39.93 ± 0.14 | 36.07 ± 0.39 | 38.47 ± 0.35 | 36.51 ± 0.60 | 38.54 ± 0.30 | 34.44 ± 0.66 | 31.82 ± 0.25 |
T-test05 | R(A) = 0.89 unit | R(B) = 1.37 unit | R(AB) = 1.12 unit | |||||||
A, B | a | b | - | - | a | b | a | b | - | - |
A × B | - | - | a | a | - | - | - | - | - | - |
1000-grain weight, g | 34.81 ± 0 | 31.81 ± 0.36 | 34.27 ± 0.63 | 35.27 ± 0.08 | 35.26 ± 0.59 | 34.27 ± 1.03 | 35.95 ± 0.62 | 36.42 ± 0.05 | 28.59 ± 0.66 | 27.48 ± 0.86 |
T-test05 | R(A) = 1.68 g | R(B) = 1.87 g | R(AB) = 1.52 g | |||||||
A, B | a | - | a | bc | a | b | a | c | - | - |
A × B | - | - | a | a | b | b | c | c | d | d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazlauskas, M.; Šarauskis, E.; Lekavičienė, K.; Naujokienė, V.; Romaneckas, K.; Bručienė, I.; Buragienė, S.; Steponavičius, D. The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding. Processes 2022, 10, 2717. https://doi.org/10.3390/pr10122717
Kazlauskas M, Šarauskis E, Lekavičienė K, Naujokienė V, Romaneckas K, Bručienė I, Buragienė S, Steponavičius D. The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding. Processes. 2022; 10(12):2717. https://doi.org/10.3390/pr10122717
Chicago/Turabian StyleKazlauskas, Marius, Egidijus Šarauskis, Kristina Lekavičienė, Vilma Naujokienė, Kęstutis Romaneckas, Indrė Bručienė, Sidona Buragienė, and Dainius Steponavičius. 2022. "The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding" Processes 10, no. 12: 2717. https://doi.org/10.3390/pr10122717
APA StyleKazlauskas, M., Šarauskis, E., Lekavičienė, K., Naujokienė, V., Romaneckas, K., Bručienė, I., Buragienė, S., & Steponavičius, D. (2022). The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding. Processes, 10(12), 2717. https://doi.org/10.3390/pr10122717