UPLC-MS/MS-Based Analysis of Trastuzumab in Plasma Samples: Application in Breast Cancer Patients Sample Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Standard Solution
2.3. Preparation of Sample
2.4. Mass Spectrometry and Chromatographic Conditions
2.5. Assay Validation
2.6. Patients
2.7. Pharmacokinetic Sampling
3. Results
3.1. Method Development
3.1.1. Analytical Procedure for Optimization
3.1.2. Selection of Signature Peptides
3.1.3. Digestion Workflow Optimization
3.2. Method Validation
3.2.1. Selectivity and Matrix Effect
3.2.2. Linearity and the LLOQ of the Assay
3.2.3. Precision and Accuracy
3.2.4. Stability
3.2.5. Robustness
3.3. Toxicity and Efficacy
3.4. TDM and Exposure Pharmacodynamics Relationships
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boekhout, A.H.; Beijnen, J.H.; Schellens, J.H. Trastuzumab. Oncologist 2011, 16, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Park, C.G.; Kim, Y.O. LC-MS/MS validation analysis of trastuzumab using dSIL approach for evaluating pharmacokinetics. Molecules 2016, 21, E1464. [Google Scholar]
- Albanell, J.; Codony, J.; Rovira, A.; Mellado, B.; Gascón, P. Mechanism of action of anti-HER2 monoclonal antibodies: Scientific update on trastuzumab and 2C4. In New Trends in Cancer for the 21st Century; Springer: Boston, MA, USA, 2003; pp. 253–268. [Google Scholar]
- Claret, F.X.; Vu, T.T. Trastuzumab: Updated mechanisms of action and resistance in breast cancer. Front. Oncol. 2012, 18, E62. [Google Scholar]
- Siegel, J.P. Biologics license application for trastuzumab. Clin. Rev. 1998, 98, 3–49. [Google Scholar]
- OGIVRI (Trastuzumab) Health Canada Product Information. Available online: https://health-products.canada.ca/dpd-bdpp/info.do?lang=en&code=96453 (accessed on 12 September 2020).
- KANJINTI (Trastuzumab-Anns) Prescribing Information USFDA Document. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761073s000lbl.pdf (accessed on 12 September 2020).
- Fusaro, V.A.; Mani, D.R.; Mesirov, J.P.; Carr, S.A. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat. Biotechnol. 2009, 27, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oude Munnink, T.H.; Henstra, M.J.; Segerink, L.I.; Movig, K.L.; Brummelhuis-Visser, P. Therapeutic drug monitoring of monoclonal antibodies in inflammatory and malignant disease: Translating TNF-α experience to oncology. Clin. Pharmacol. Ther. 2016, 99, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Ladwig, P.M.; Barnidge, D.R.; Willrich, M.A. Mass spectrometry approaches for identification and quantitation of therapeutic monoclonal antibodies in the clinical laboratory. Clin. Vaccine Immunol. 2017, 24, E00545-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willeman, T.; Jourdil, J.F.; Gautier-Veyret, E.; Bonaz, B.; Stanke-Labesque, F. A multiplex liquid chromatography tandem mass spectrometry method for the quantification of seven therapeutic monoclonal antibodies: Application for adalimumab therapeutic drug monitoring in patients with Crohn’s disease. Anal. Chim. Acta 2019, 1067, 63–70. [Google Scholar] [CrossRef]
- Damen, C.W.; de Groot, E.R.; Heij, M.; Boss, D.S.; Schellens, J.H.; Rosing, H.; Beijnen, J.H.; Aarden, L.A. Development and validation of an enzyme-linked immunosorbent assay for the quantification of trastuzumab in human serum and plasma. Anal. Biochem. 2009, 391, 114–120. [Google Scholar] [CrossRef]
- Sanchez, A.B.; Nguyen, T.; Dema-Ala, R.; Kummel, A.C.; Kipps, T.J.; Messmer, B.T. A general process for the development of peptide-based immunoassays for monoclonal antibodies. Cancer Chemother. Pharmacol. 2010, 66, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Becher, F.; Ciccolini, J.; Imbs, D.C.; Marin, C.; Fournel, C.; Dupuis, C.; Fakhry, N.; Pourroy, B.; Ghettas, A.; Pruvost, A.; et al. A simple and rapid LC-MS/MS method for therapeutic drug monitoring of cetuximab: A GPCO-UNICANCER proof of concept study in head-and-neck cancer patients. Sci. Rep. 2017, 7, E2714. [Google Scholar] [CrossRef] [PubMed]
- El Amrani, M.; Donners, A.A.; Hack, C.E.; Huitema, A.D.; van Maarseveen, E.M. Six-step workflow for the quantification of therapeutic monoclonal antibodies in biological matrices with liquid chromatography mass spectrometry—A tutorial. Anal. Chim. Acta 2019, 10180, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, Center for Drug Evaluation and Research; Center for Veterinary Medicine (CVM). Bioanalytical Method Validation Guidence for Industry. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 18 October 2020).
- Duggan, J.X.; Vazvaei, F.; Jenkins, R. Bioanalytical method validation considerations for LC-MS/MS assays of therapeutic proteins. Bioanalysis 2015, 7, 1389–1395. [Google Scholar] [CrossRef]
- Gajria, D.; Chandarlapaty, S. HER2-amplified breast cancer: Mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther. 2011, 11, 263–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, F.; Ciccolini, J.; Spano, J.P.; Penault-Llorca, F.; Mounier, N.; Freyer, G.; Blay, J.Y.; Milano, G. Personalized medicine in oncology: Where have we come from and where are we going? Pharmacogenomics 2013, 14, 931–939. [Google Scholar] [CrossRef]
- Keizer, R.J.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Damen, C.W.; Schellens, J.H.; Beijnen, J.H. Bioanalytical methods for the quantification of therapeutic monoclonal antibodies and their application in clinical pharmacokinetic studies. Hum. Antib. 2009, 18, 47–73. [Google Scholar] [CrossRef]
- Suárez, I.; Salmerón-García, A.; Cabeza, J.; Capitán-Vallvey, L.F.; Navas, N. Development and use of specific ELISA methods for quantifying the biological activity of bevacizumab, cetuximab and trastuzumab in stability studies. J. Chromatogr. B. 2016, 1032, 155–164. [Google Scholar] [CrossRef]
- Spengler, M.; Adler, M.; Niemeyer, C.M. Highly sensitive ligand-binding assays in pre-clinical and clinical applications: Immuno-PCR and other emerging techniques. Analyst 2015, 140, 6175–6194. [Google Scholar] [CrossRef] [Green Version]
- Abbatiello, S.E.; Schilling, B.; Mani, D.R.; Zimmerman, L.J.; Hall, S.C.; MacLean, B.; Albertolle, M.; Allen, S.; Burgess, M.; Cusack, M.P.; et al. Large-scale interlaboratory study to develop, analytically validate and apply highly multiplexed, quantitative peptide assays to measure cancer-relevant proteins in plasma. Mol. Cell Proteom. 2015, 14, 2357–2374. [Google Scholar] [CrossRef] [Green Version]
- Addona, T.A.; Abbatiello, S.E.; Schilling, B.; Skates, S.J.; Mani, D.R.; Bunk, D.M.; Spiegelman, C.H.; Zimmerman, L.J.; Ham, A.-J.L.; Keshishian, H.; et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 2009, 27, 633–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.M.; Tannock, I.F. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer 2010, 10, E255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passot, C.; Azzopardi, N.; Renault, S.; Baroukh, N.; Arnoult, C.; Ohresser, M.; Boisdron-Celle, M.; Gamelin, E.; Watier, H.; Paintaud, G.; et al. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. MAbs 2013, 5, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.G.; Ciccolini, J.; Blesius, A.; Dahan, L.; Bagarry-Liegey, D.; Brunet, C.; Varoquaux, A.; Frances, N.; Marouani, H.; Giovanni, A.; et al. DPD-based adaptive dosing of 5-FU in patients with head and neck cancer: Impact on treatment efficacy and toxicity. Cancer Chemother. Pharmacol. 2011, 67, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Minasian, L.; Rosen, O.; Auclair, D.; Rahman, A.; Pazdur, R.; Schilsky, R.L. Optimizing dosing of oncology drugs. Clin. Pharmacol. Ther. 2014, 96, 572–579. [Google Scholar] [CrossRef]
- Gao, B.; Yeap, S.; Clements, A.; Balakrishnar, B.; Wong, M.; Gurney, H. Evidence for therapeutic drug monitoring of targeted anticancer therapies. J. Clin. Oncol. 2012, 30, 4017–4025. [Google Scholar] [CrossRef]
- Chatelut, E.; Hendrikx, J.J.; Martin, J.; Ciccolini, J.; Moes, D.J. Unraveling the complexity of therapeutic drug monitoring for monoclonal antibody therapies to individualize dose in oncology. Pharmacol. Res. Persp. 2021, 9, E00757. [Google Scholar] [CrossRef]
- Martin, J.H.; Olver, I. Precision medicine-based drug treatment individualization in oncology. Br. J. Clin. Pharmacol. 2021, 87, 223–226. [Google Scholar] [CrossRef]
Patient ID | Age | Sex | Type of Cancer | Stage of Disease |
---|---|---|---|---|
BOA/42/TRB | 55 | M | Head-and-neck cancer (mouth) | Locally advanced cancer |
NCY/52/TRB | 60 | M | Head-and-neck cancer(mouth) | Locally advanced cancer |
TNS/85/TRB | 53 | F | Head-and-neck cancer (larynx) | Metastatic disease |
LCV/58/TRB | 66 | M | Head-and-neck cancer(oropharynx) | Metastatic disease |
UNT/88/TRB | 49 | F | Head-and-neck cancer (larynx) | Locally advanced cancer |
Nominal Concentration (µg/mL) | Intra-Run | Inter-Run | ||||
---|---|---|---|---|---|---|
Measured Concentration (µg/mL ± SD) | Precision (CV, %) | Accuracy (%) | Measured Concentration (µg/mL ± SD) | Precision (CV, %) | Accuracy (%) | |
5.32 | 5.43 ± 0.50 | 6.4 | 101.9 | 5.22 ± 0.45 | 8.6 | 98.0 |
15.2 | 15.16 ± 1.52 | 10.1 | 99.6 | 15.12 ± 1.19 | 7.9 | 99.3 |
249 | 241 ± 22.3 | 9.2 | 97.3 | 244 ± 16.5 | 6.8 | 97.9 |
396 | 412 ± 38.4 | 9.3 | 104.2 | 411 ± 36.7 | 8.9 | 103.9 |
Storage/Temperature | Nominal Concentration (ng/mL) | Mean ± SD (ng/mL ± SD) | Precision (% CV) | Accuracy (%) |
---|---|---|---|---|
Freeze–thaw | 15.2 | 14.70 ± 1.03 | 7.04 | 96.7 |
396 | 370 ± 18.94 | 5.12 | 93.4 | |
Auto-sampler | 15.2 | 15.2 ± 0.61 | 4.0 | 99.7 |
396 | 413 ± 42.7 | 10.4 | 104.5 | |
Short-term | 15.2 | 15.9 ± 0.53 | 3.32 | 104.6 |
396 | 410 ± 17.4 | 4.24 | 103.6 | |
Long-term | 15.2 | 14.5 ± 0.74 | 5.08 | 95.3 |
396 | 406 ± 15.63 | 3.85 | 102.6 |
Patient ID | Residual Concentration of Trastuzumab (µg/mL) | Maximal Trastuzumab Concentration (µg/mL) |
---|---|---|
BOA/42/TRB | 50.3 | 150.5 |
NCY/52/TRB | 80.5 | 148.3 |
TNS/85/TRB | 54.5 | 115.2 |
LCV/58/TRB | 100.3 | 160.2 |
UNT/88/TRB | 58.2 | 118.2 |
Mean | 68.76 | 138.48 |
SD | 21.14 | 20.41 |
CV, % | 30.75 | 14.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikh, A.A.; Alam, O.; Rub, R.A.; Iqbal, M.; Medhi, K.; Alsalman, A.J.; Imran, M.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. UPLC-MS/MS-Based Analysis of Trastuzumab in Plasma Samples: Application in Breast Cancer Patients Sample Monitoring. Processes 2022, 10, 509. https://doi.org/10.3390/pr10030509
Sheikh AA, Alam O, Rub RA, Iqbal M, Medhi K, Alsalman AJ, Imran M, Alshehri S, Ghoneim MM, Shakeel F. UPLC-MS/MS-Based Analysis of Trastuzumab in Plasma Samples: Application in Breast Cancer Patients Sample Monitoring. Processes. 2022; 10(3):509. https://doi.org/10.3390/pr10030509
Chicago/Turabian StyleSheikh, Aadil Ahmad, Ozair Alam, Rehan Abdur Rub, Muzaffar Iqbal, Kunjahari Medhi, Abdulkhaliq J. Alsalman, Mohd Imran, Sultan Alshehri, Mohammed M. Ghoneim, and Faiyaz Shakeel. 2022. "UPLC-MS/MS-Based Analysis of Trastuzumab in Plasma Samples: Application in Breast Cancer Patients Sample Monitoring" Processes 10, no. 3: 509. https://doi.org/10.3390/pr10030509
APA StyleSheikh, A. A., Alam, O., Rub, R. A., Iqbal, M., Medhi, K., Alsalman, A. J., Imran, M., Alshehri, S., Ghoneim, M. M., & Shakeel, F. (2022). UPLC-MS/MS-Based Analysis of Trastuzumab in Plasma Samples: Application in Breast Cancer Patients Sample Monitoring. Processes, 10(3), 509. https://doi.org/10.3390/pr10030509