Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Acquisition and Preparation
2.2. Biaxial Mechanical Testing
2.3. Tissue Stress–Strain Analysis
2.4. Analysis of Variance
3. Experimental Results
3.1. Stress–Strain Relationship
3.2. Cross-Directional Variation
3.3. Cross-Wall Variation
3.4. Stored Strain Energy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nemavhola, F. Mechanics of the septal wall may be affected by the presence of fibrotic infarct in the free wall at end-systole. Int. J. Med. Eng. Inform. 2019, 11, 205–225. [Google Scholar]
- Nemavhola, F. Fibrotic infarction on the LV free wall may alter the mechanics of healthy septal wall during passive filling. Bio-Med. Mater. Eng. 2017, 28, 579–599. [Google Scholar] [CrossRef] [PubMed]
- Nemavhola, F. Biaxial quantification of passive porcine myocardium elastic properties by region. Eng. Solid Mech. 2017, 5, 155–166. [Google Scholar] [CrossRef]
- Ndlovu, Z.; Nemavhola, F.; Desai, D. Biaxial mechanical characterization and constitutive modelling of sheep sclera soft tissue. Russ. J. Biomech./Ross. Zurnal Biomehaniki 2020, 24, 84–96. [Google Scholar]
- Ngwangwa, H.M.; Nemavhola, F. Evaluating computational performances of hyperelastic models on supraspinatus tendon uniaxial tensile test data. J. Comput. Appl. Mech. 2021, 52, 27–43. [Google Scholar]
- Nemavhola, F.; Ngwangwa, H.M.; Pandelani, T. An Investigation of Uniaxial Mechanical Properties of Excised Sheep Heart Muscle Fibre–Fitting of Different Hyperelastic Constitutive Models. Preprints 2021, 1, 2021080566. [Google Scholar] [CrossRef]
- Nemavhola, F.; Sigwadi, R. Prediction of hyperelastic material properties of Nafion117 and Nafion/ZrO2 nano-composite membrane. Int. J. Automot. Mech. Eng. 2019, 16, 6524–6540. [Google Scholar] [CrossRef]
- Li, D.S.; Avazmohammadi, R.; Merchant, S.S.; Kawamura, T.; Hsu, E.W.; Gorman III, J.H.; Gorman, R.C.; Sacks, M.S. Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3d kinematics. J. Mech. Behav. Biomed. Mater. 2020, 103, 103508. [Google Scholar] [CrossRef]
- Martynenko, A.; Zozulya, V.V. Mathematical modeling of the cardiac tissue. Mech. Adv. Mater. Struct. 2021, 28, 1–17. [Google Scholar]
- Childers, R.C.; Trask, A.J.; Liu, J.; Lucchesi, P.A.; Gooch, K.J. Paired pressure-volume loop analysis and biaxial mechanical testing characterize differences in left ventricular tissue stiffness of volume overload and angiotensin-induced pressure overload hearts. J. Biomech. Eng. 2021, 143, 081003. [Google Scholar] [CrossRef]
- Jorba, I.; Mostert, D.; Hermans, L.H.; van der Pol, A.; Kurniawan, N.A.; Bouten, C.V. In Vitro Methods to Model Cardiac Mechanobiology in Health and Disease. Tissue Eng. Part C Methods 2021, 27, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Li, W. Biomechanics of infarcted left Ventricle-A review of experiments. J. Mech. Behav. Biomed. Mater. 2020, 103, 103591. [Google Scholar] [CrossRef] [PubMed]
- Nemavhola, F. Pig sclera stress-strain dataset under biaxial tensile testing. Mendeley Data 2020, V1. [Google Scholar] [CrossRef]
- Masithulela, F.J. Computational Biomechanics in the Remodelling Rat Heart Post Myocardial Infarction. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2016. [Google Scholar]
- Masithulela, F. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart. Bio-Med. Mater. Eng. 2016, 27, 507–525. [Google Scholar] [CrossRef]
- Masithulela, F. The Effect of Over-Loaded Right Ventricle during Passive Filling in Rat Heart: A Biventricular Finite Element Model. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Masithulela, F. Analysis of Passive Filling with Fibrotic Myocardial Infarction. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Nemavhola, F. Detailed structural assessment of healthy interventricular septum in the presence of remodeling infarct in the free wall–A finite element model. Heliyon 2019, 5, e01841. [Google Scholar] [CrossRef] [Green Version]
- Nemavhola, F.; Ngwangwa, H.; Davies, N.; Franz, T. Passive Biaxial Tensile Dataset of Three Main Rat Heart Myocardia: Left Ventricle, Mid-Wall and Right Ventricle. Preprints 2021, 1, 2021080153. [Google Scholar]
- Rigolin, V.H.; Robiolio, P.A.; Wilson, J.S.; Harrison, J.K.; Bashore, T.M. The forgotten chamber: The importance of the right ventricle. Catheter. Cardiovasc. Diagn. 1995, 35, 18–28. [Google Scholar] [CrossRef]
- Sheehan, F.; Redington, A. The right ventricle: Anatomy, physiology and clinical imaging. Heart 2008, 94, 1510–1515. [Google Scholar] [CrossRef]
- Mas, P.T.; Rodríguez-Palomares, J.F.; Antunes, M.J. Secondary tricuspid valve regurgitation: A forgotten entity. Heart 2015, 101, 1840–1848. [Google Scholar]
- Kakaletsis, S.; Meador, W.D.; Mathur, M.; Sugerman, G.P.; Jazwiec, T.; Malinowski, M.; Lejeune, E.; Timek, T.A.; Rausch, M.K. Right ventricular myocardial mechanics: Multi-modal deformation, microstructure, modeling, and comparison to the left ventricle. Acta Biomater. 2021, 123, 154–166. [Google Scholar] [CrossRef]
- Valdez-Jasso, D.; Simon, M.A.; Champion, H.C.; Sacks, M.S. A murine experimental model for the mechanical behaviour of viable right-ventricular myocardium. J. Physiol. 2012, 590, 4571–4584. [Google Scholar] [CrossRef] [PubMed]
- Sacks, M.S.; Chuong, C.J. A constitutive relation for passive right-ventricular free wall myocardium. J. Biomech. 1993, 26, 1341–1345. [Google Scholar] [CrossRef]
- Golob, M.; Moss, R.; Chelser, N. Cardiac Tissue Structure, Properties, and Performance: A Materials Science Perspective. Ann. Biomed. Eng. 2014, 42, 2003–2013. [Google Scholar] [CrossRef] [Green Version]
- Laurence, D.; Ross, C.; Jett, S.; Johns, C.; Echols, A.; Baumwart, R.; Towner, R.; Liao, J.; Bajona, P.; Wu, Y. An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets. J. Biomech. 2019, 83, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.R.; Simon, M.A.; Valdez-Jasso, D.; Zhang, W.; Champion, H.C.; Sacks, M.S. Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload. Ann. Biomed. Eng. 2014, 42, 2451–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avazmohammadi, R.; Hill, M.R.; Simon, M.A.; Zhang, W.; Sacks, M.S. A novel constitutive model for passive right ventricular myocardium: Evidence for myofiber–collagen fiber mechanical coupling. Biomech. Model. Mechanobiol. 2017, 16, 561–581. [Google Scholar] [CrossRef]
- Nemavhola, F. Study of biaxial mechanical properties of the passive pig heart: Material characterisation and categorisation of regional differences. Int. J. Mech. Mater. Eng. 2021, 16, 6. [Google Scholar] [CrossRef]
- South African Goverment. Animal Protection Index (API) 2020. 2020. Available online: https://api.worldanimalprotection.org/sites/default/files/api_2020_-_south_africa_0.pdf (accessed on 20 August 2021).
- Gardiner, J.C.; Weiss, J.A. Simple shear testing of parallel-fibered planar soft tissues. J. Biomech. Eng. 2001, 123, 170–175. [Google Scholar] [CrossRef]
- Viiidik, A. Biomechanics of tendons and other soft connective tissues. Testing methods and structure-function interdependence. In Biomechanics: Basic and Applied Research; Bergmann, G., Kolbel, R., Rohlmann, A., Eds.; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1987; pp. 59–72. [Google Scholar]
- Fung, Y.C. A First Course in Continuum Mechanics for Physical and Biological Engineers and Scientists; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers (with CD); John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Jiang, M.; Lawson, Z.T.; Erel, V.; Pervere, S.; Nan, T.; Robbins, A.B.; Feed, A.D.; Moreno, M.R. Clamping soft biologic tissues for uniaxial tensile testing: A brief survey of current methods and development of a novel clamping mechanism. J. Mech. Behav. Biomed. Mater. 2020, 103, 103503. [Google Scholar] [CrossRef]
- Sirry, M.S.; Butler, J.R.; Patnaik, S.S.; Brazile, B.; Bertucci, R.; Claude, A.; McLaughlin, R.; Davies, N.H.; Liao, J.; Franz, T. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. J. Mech. Behav. Biomed. Mater. 2016, 63, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Martonová, D.; Alkassar, M.; Seufert, J.; Holz, D.; Dương, M.T.; Reischl, B.; Friedrich, O.; Leyendecker, S. Passive mechanical properties in healthy and infarcted rat left ventricle characterised via a mixture model. J. Mech. Behav. Biomed. Mater. 2021, 119, 104430. [Google Scholar] [CrossRef] [PubMed]
p-Values: Cross-Directional Variation in a Wall | |||
---|---|---|---|
LV | SPW | RV | |
Elastic Modulus | 0.0601 | 0.0001 | 0.1128 |
Peak stress at toe region limit | 0.0042 | 0.2791 | 0.0000 |
Peak stress at 40% strain | 0.9537 | 0.0342 | 0.0005 |
p-Values: Cross-Wall Variation in a Particular Direction | ||||||
---|---|---|---|---|---|---|
LV-SPW | LV-RV | SPW-RV | ||||
L | C | L | C | L | C | |
Elastic Modulus | 0.0000 | 0.0043 | 0.0142 | 0.0000 | 0.6552 | 0.0001 |
Peak stress at toe region limit | 0.0007 | 0.0111 | 0.8879 | 0.0001 | 0.0084 | 0.0033 |
Peak stress at 40% strain | 0.0021 | 0.2117 | 0.2119 | 0.0000 | 0.2864 | 0.0000 |
Wall of Myocardium | Toe Region (Kj) | Linear Elastic Region (Kj) | ||
---|---|---|---|---|
Longitudinal | Circumferential | Longitudinal | Circumferential | |
Left ventricle | 0.0803 | 0.2210 | 3.3130 | 3.4471 |
Septum | 0.1941 | 0.3359 | 4.5341 | 3.7879 |
Right ventricle | 0.0728 | 0.7697 | 1.3251 | 2.8569 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngwangwa, H.; Nemavhola, F.; Pandelani, T.; Msibi, M.; Mabuda, I.; Davies, N.; Franz, T. Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia. Processes 2022, 10, 629. https://doi.org/10.3390/pr10040629
Ngwangwa H, Nemavhola F, Pandelani T, Msibi M, Mabuda I, Davies N, Franz T. Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia. Processes. 2022; 10(4):629. https://doi.org/10.3390/pr10040629
Chicago/Turabian StyleNgwangwa, Harry, Fulufhelo Nemavhola, Thanyani Pandelani, Makhosasana Msibi, Israel Mabuda, Neil Davies, and Thomas Franz. 2022. "Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia" Processes 10, no. 4: 629. https://doi.org/10.3390/pr10040629
APA StyleNgwangwa, H., Nemavhola, F., Pandelani, T., Msibi, M., Mabuda, I., Davies, N., & Franz, T. (2022). Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia. Processes, 10(4), 629. https://doi.org/10.3390/pr10040629